Grandezas proporcionais. Matemática 1 Aulas 13 e 14 Prof. Henrique Figo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Grandezas proporcionais. Matemática 1 Aulas 13 e 14 Prof. Henrique Figo"

Transcrição

1 Grandezas proporcionais Matemática 1 Aulas 13 e 14 Prof. Henrique Figo

2 Motivação Qual desses carros gasta mais combustível para ir de São Paulo ao Rio de Janeiro? Sabe-se que o carro A, movido a gasolina, consumiu o equivalente a R$60,00 de combustível para fazer a viagem. O carro B, movido a álcool, consumiu o equivalente a R$40,00. Evidentemente o carro A gasta mais combustível, mas, em termos relativos, quanto a mais? Para sabermos exatamente essa razão o que fazemos? Observe que a palavra razão é auto-explicativa, ou seja, devemos fazer a divisão entre as grandezas envolvidas custo de gasolina do carro A custo de álcool do carro B = = 1,5 Isto é, o carro A consome de combustível uma vez e meia o que consome o carro B.

3 Motivação João vendeu seu apartamento e aplicou R$8000 numa caderneta de poupança que, ao final de um ano, rendeu R$960. No mesmo período, ele aplicou R$5000 num fundo de investimentos que rendeu R$800. Qual das duas aplicações teve maior rentabilidade? Como descobrir tal comparação? Em termos absolutos, observe que o rendimento da caderneta de poupança foi maior. Será que a resposta será a mesma em termos relativos? Fazendo as razões entre o investimento e o valor obtido temos que caderneta de poupança= = = 12% fundo de investimento= = = 16% Proporcionalmente, o fundo de investimento é mais rentável

4 Definição A razão de um número a para um número b, com b 0, é o quociente a b A igualdade entre duas razões equivalentes determina uma proporção, isto é: a b = c d Exemplos: 4 5 = 8 10 = = = 1 2 = 2 4 = 3 6 = 4 8 =

5 Propriedades 1. a b = c d a d = b c 2. a b = c d a±b b = c±d d 3. a b = c d a±c b ±d = a b = c d Exemplos: 3 4 = = 9 4 = 36 (propriedade 1) 10 = = = 3 2 (propriedade 2) 1 4 = = = 1 4 (propriedade 3)

6 Grandezas diretamente proporcionais Consideremos a seguinte situação: quanto mais combustível um tanque de carro possuir, maior será a distância potencialmente percorrida. Dizemos que as grandezas envolvidas (combustível e distância) são diretamente proporcionais. De modo geral, se x e y são grandezas diretamente proporcionais então: x y = constante

7 Grandezas inversamente proporcionais Sabemos que a distância entre Campinas e São Paulo é de, aproximadamente 100 km. Se um carro parte de Campinas com uma velocidade de 100 km/h, chegará à capital paulista em torno de uma hora depois da partida. Caso sua velocidade seja reduzida à metade (50 km/h), o que podemos afirmar a respeito do tempo de chegada? Você concorda que o mesmo dobrará? Nessa situação as duas grandezas envolvidas (velocidade e tempo) são inversamente proporcionais. De modo geral, se x e y são grandezas inversamente proporcionais então: x 1 y = xy = constante

8 Exemplos: 1. Se R$60,00 é o preço de 12 kg de biscoito, qual será o preço de 40 kg? Observe que as grandezas envolvidas são diretamente proporcionais, isto é, 60 = constante, na qual a constante em questão vale = x 40 Logo x 40 = 5, ou seja, x = R$200,00 2. y é inversamente proporcional a x e para x = 2 tem-se y = 24. Qual o valor de y para x = 3 2? O raciocínio para se resolver esse tipo de problema é o seguinte: sabemos que a proporção entre x e y se dá de forma inversa (segundo dados do enunciado), logo o produto x y é uma constante. Pela informação inicial sabemos que x y = 2 24 = 48 (constante). Portanto, se x = 3, teremos que resolver a seguinte 2 equação: 3 2 y = 48, ou seja y = 32.

9 Regra de três composta Utilizaremos regra de três composta quando nossos problemas envolverem mais de duas grandezas. Acompanhe o seguinte exemplo. Em uma central de atendimento, 5 telefonistas recebem chamadas em 30 dias, trabalhando 6 horas por dia. Supondo que as telefonistas estejam o tempo todo atendendo alguém, quantas horas por dia deverão trabalhar 4 daquelas telefonistas para atender pessoas em 25 dias? Grandezas envolvidas: chamadas, dias, horas por dia e telefonistas h/dia telefonistas chamadas dias antes depois x

10 Observe que a incógnita x aparece na grandeza horas/dia. Faça a relação entre essa grandeza e as demais, procurando saber se as relações se dão de forma direta ou inversa. Acompanhe: + horas/dia telefonistas (inversamente) + horas/dia + chamadas (diretamente) + horas/dia dias (inversamente) Devemos, finalmente, resolver a seguinte equação: 6 = x x = 3 horas/dia

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno Unidade I MATEMÁTICA APLICADA Profa. Ana Carolina Bueno Números reais Fonte: http://infomaticando.blogspot.com.br/2012/12/numeros-irracionais.html Expressões algébricas São expressões matemáticas que apresentam

Leia mais

Razão e Proporção. Daniel Bruno

Razão e Proporção. Daniel Bruno Razão e Proporção Daniel Bruno Razão A razão pode ser expressa como a divisão ou relação entre duas grandezas de algum sistema de medidas. Por exemplo, para preparar uma bebida na forma de suco, normalmente

Leia mais

Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento?

Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento? A UUL AL A 5 Regra de três Num acampamento, há 48 pessoas e alimento suficiente para um mês. Se 6 pessoas forem embora, para quantos dias ainda haverá alimento? Para pensar Observe a seguinte situação:

Leia mais

Matemática - UEL Compilada em 25 de Março de Prof. Ulysses Sodré Matemática Essencial: 1 Razões 1

Matemática - UEL Compilada em 25 de Março de Prof. Ulysses Sodré Matemática Essencial:  1 Razões 1 Matemática Essencial Razões e Proporções Conteúdo Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Razões 1 2

Leia mais

Matemática Régis Cortes RAZÃO E PROPORÇÃO

Matemática Régis Cortes RAZÃO E PROPORÇÃO RAZÃO E PROPORÇÃO 1 RAZÃO é uma forma de se realizar a comparação de duas grandezas, no entanto, para isto é necessário que as duas estejam na mesma unidade de medida. A razão entre dois números a e b

Leia mais

Prof. Luiz Felix. Unidade I MATEMÁTICA APLICADA

Prof. Luiz Felix. Unidade I MATEMÁTICA APLICADA Prof. Luiz Felix Unidade I MATEMÁTICA APLICADA Sistemas de numeração A vida do homem, há milhares de anos, era muito diferente da atual. Ele não tinha necessidade de contar, uma vez que não comprava, não

Leia mais

Grandezas Diretamente e Inversamente Proporcionais Aula baseada em resolução de exercícios.

Grandezas Diretamente e Inversamente Proporcionais Aula baseada em resolução de exercícios. Aula Período Zero Turma 2 Data: 13/03/2013 Tópicos Regra de Três Simples Grandezas Diretamente e Inversamente Proporcionais Aula baseada em resolução de exercícios. Regra de Três Simples A regra de três

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS. Razão, Proporção,Regra de 3, Porcentagem e Juros NOME DO ALUNO: Nº TURMA:

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS. Razão, Proporção,Regra de 3, Porcentagem e Juros NOME DO ALUNO: Nº TURMA: ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar 1 RAZÃO, PROPORÇÃO

Leia mais

MATEMÁTICA. EXERCÍCIOS E PROBLEMAS PROPOSTOS Nível: Ensino Fundamental SUJESTÕES PARA ESTUDO DE RACIOCÍNIO LÓGICO E RAZÕES = CONCURSOS =

MATEMÁTICA. EXERCÍCIOS E PROBLEMAS PROPOSTOS Nível: Ensino Fundamental SUJESTÕES PARA ESTUDO DE RACIOCÍNIO LÓGICO E RAZÕES = CONCURSOS = MATEMÁTICA EXERCÍCIOS E PROBLEMAS PROPOSTOS Nível: Ensino Fundamental SUJESTÕES PARA ESTUDO DE RACIOCÍNIO LÓGICO E RAZÕES = CONCURSOS = SELEÇÃO DE EXERCÍCIOS FEITA PELO PROFESSOR MARCELO S SILVÉRIO profmarcelo@uol.com.br

Leia mais

MMC, MDC, Regra de Três Simples e Composta & Porcentagem

MMC, MDC, Regra de Três Simples e Composta & Porcentagem Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 3 a Lista de Matemática Aluno a): Disciplina: Matemática Conteúdo: Matemática Básica Turma: A e B Data: Agosto de 06 MMC, MDC, Regra de

Leia mais

Matemática Comercial

Matemática Comercial Matemática Comercial Razão Dados dois números a e b, b 0, chamamos de razão de a para b, nesta ordem, ao quociente a/b ou a:b. a é chamado de antecedente e b de consequente. Quando a e b forem medidas

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 09 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres.

Vamos iniciar, nesta aula, a revisão do nosso. Vamos, inicialmente, escolher nossas incógnitas: x = número de homens. y = número de mulheres. A UA UL LA Revisão I Introdução Vamos iniciar, nesta aula, a revisão do nosso curso do 2º grau. Ela será feita em forma de exemplos que vão abordar de novo os principais conteúdos. Para aproveitar bem

Leia mais

Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 8ª Série / 9º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 A área do quadrado a seguir é 49 cm 2. O valor de X, em

Leia mais

AULA 01 Razão, Proporção e regra de Três

AULA 01 Razão, Proporção e regra de Três Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina, Luísa e Bruno AULA 01 Razão, Proporção e regra de Três Conceitos envolvidos: Razão; Proporção; Grandezas

Leia mais

4 Resultados: Comparação entre modais

4 Resultados: Comparação entre modais 71 4 Resultados: Comparação entre modais 4.1 Introdução A determinação do custo de transporte de gás natural se baseou na estimativa dos custos de investimento e operacionais para diferentes combinações

Leia mais

Exemplo: Algoritmo fundamental da divisão: Exemplo:

Exemplo: Algoritmo fundamental da divisão: Exemplo: RAZÃO E PROPORÇÃO Vamos revisar o conceito de divisão. A divisão é uma das quatro operações fundamentais da Matemática que pode ser representada da seguinte forma: Algoritmo da divisão: Exemplo: Algoritmo

Leia mais

Fundamentos da Matemática Eduardo Araújo* Resumo. Equação do 1.º grau

Fundamentos da Matemática Eduardo Araújo* Resumo. Equação do 1.º grau Resumo Existem fundamentos de Matemática que são imprescindíveis nas diversas formações profissionais. Médicos, arquitetos, engenheiros, administradores, gestores e tantos outros profissionais utilizam

Leia mais

Movimento fev retilíneo e uniforme. 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto

Movimento fev retilíneo e uniforme. 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto 08 Movimento fev retilíneo e uniforme (MU) 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto RESUMO Ao estudarmos o Movimento Uniforme (ou MU) estamos nos referindo aos movimentos

Leia mais

TER EXERCICIOS. 5) Uma sala de aula contém 38 alunos e, dentre eles, 18 são meninas. Assim, podemos afirmar que:

TER EXERCICIOS. 5) Uma sala de aula contém 38 alunos e, dentre eles, 18 são meninas. Assim, podemos afirmar que: Nome: nº: 7º ano: do Ensino Fundamental Professores: Edilaine, Luiz Carlos e Matheus TER Razão EXERCICIOS 1) A idade de Pedro é 30 anos e a idade de Josefa é 45 anos. Qual é a razão entre as idades de

Leia mais

Matemática. Aula: 02/10. Prof. Pedrão. Visite o Portal dos Concursos Públicos

Matemática. Aula: 02/10. Prof. Pedrão.  Visite o Portal dos Concursos Públicos Matemática Aula: 02/10 Prof. Pedrão UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15 AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/15 Ficha 3 Sequências e proporcionalidade direta NOME N.º Turma 1. Em relação às sequências seguintes escreva os cinco primeiros termos e

Leia mais

Regra de três simples

Regra de três simples Regra de três simples Aula 7 Velocidade Ricardo Ferreira Paraizo Tempo e-tec Brasil Matemática Instrumental Meta Apresentar os conceitos sobre grandezas direta e inversamente proporcionais e regra de três.

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Questão 1 Concurso 010 Sabendo que 1 grosa é equivalente a 1 dúzias, é correto afirmar que

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Aula 6 Razão. Taxa. Porcentagem. Francisco A. M. Gomes. Março de 2016

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Aula 6 Razão. Taxa. Porcentagem. Francisco A. M. Gomes. Março de 2016 Roteiro da aula MA09 Matemática básica Aula 6.. Francisco A. M. Gomes UNICAMP - IMECC Março de 206 2 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA09 Matemática básica Março de 206 / 29 Francisco A. M.

Leia mais

Unidade III Matemática Financeira.

Unidade III Matemática Financeira. Unidade III Matemática Financeira. Aula 18.1 Conteúdo: Inflação. Habilidade: Calcular rentabilidades descontando a inflação. O que é a Inflação? REVISÃO Inflação ( Inflar) Aumento consistente e generalizado

Leia mais

a) Sabendo que o carro A faz 6 km por litro de combustível no circuito, quantos litros esse carro gastará durante o percurso total?

a) Sabendo que o carro A faz 6 km por litro de combustível no circuito, quantos litros esse carro gastará durante o percurso total? Questão 1 Um circuito de teste para carros é constituído de duas pistas circulares de raios 10 km e 5 km, que se intersectam num único ponto C. Na pista menor, o sentido obrigatório é o anti-horário e

Leia mais

Fís. fevereiro. Leonardo Gomes (Guilherme Brigagão)

Fís. fevereiro. Leonardo Gomes (Guilherme Brigagão) 06 10 fevereiro Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Conteúdos Exame Final e Avaliação Especial

Conteúdos Exame Final e Avaliação Especial Componente Curricular: Matemática Série/Ano: 7º ANO Professora: Fernanda S. Hamerski Conteúdos Exame Final e Avaliação Especial 1. Números Racionais 2. Números Inteiros 3. Equações do 1º grau 4. Sistemas

Leia mais

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68 Matemática 5 aula. DIVISIBILIDADE a) N = 0 = 8. 9. 5 =.. 5 Seja n o número de divisores positivos, n = ( + )( + )( + ) = 4 b) Se n é o número de divisores negativos, n 4. Logo, a quantidade total é 48.

Leia mais

Seis pessoas pretendem entrar num elevador, onde há um cartaz dizendo que o peso máximo permitido é de 420 quilos.

Seis pessoas pretendem entrar num elevador, onde há um cartaz dizendo que o peso máximo permitido é de 420 quilos. Seis pessoas pretendem entrar num elevador, onde há um cartaz dizendo que o peso máximo permitido é de 420 quilos. Quanto deve ser, em média, o peso de cada pessoa que entrar no elevador? Uma pessoa que

Leia mais

MATEMÁTICA 1 MÓDULO 3. Razões e Proporções. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 3. Razões e Proporções. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 3 Razões e Proporções 1. RAZÕES E PROPORÇÕES 1.1 RAZÃO: A razão entre dois números a e b é definida como sendo a fração ou. Em uma razão, a e b são ditos os

Leia mais

21/08/2012. Definição de Razão. Se a e b são dois números reais, a razão entre a e b é o quociente. consequente consequente (b 0)

21/08/2012. Definição de Razão. Se a e b são dois números reais, a razão entre a e b é o quociente. consequente consequente (b 0) MATEMÁTICA Revisão Geral Aula 4 - Parte 1 Professor Me. Álvaro Emílio Leite Definição de Razão Se a e b são dois números reais, a razão entre a e b é o quociente antecedente antecedente : consequente consequente

Leia mais

a) Alice b) Beatriz c) Carlos d) Daniel

a) Alice b) Beatriz c) Carlos d) Daniel Razão e Proporção II Prof. Hugo Gomes EXERCÍCIOS 1. Em um exame de seleção concorreram 4800 candidatos para 240 vagas. A razão entre o número de vagas e o número de candidatos foi de: a) 1. 2000 b) 1.

Leia mais

ALGUMAS RAZÕES ESPECIAIS

ALGUMAS RAZÕES ESPECIAIS ALGUMAS RAZÕES ESPECIAIS VELOCIDADE MÉDIA Se uma viagem de 210 km é realizada em 3 horas por um automóvel, podemos imaginar a viagem da seguinte maneira: Daí, dizemos que a velocidade média desenvolvida

Leia mais

REGRA DE TRÊS SIMPLES E COMPOSTA. Prof. Flavio Fernandes

REGRA DE TRÊS SIMPLES E COMPOSTA. Prof. Flavio Fernandes REGRA DE TRÊS SIMPLES E COMPOSTA Prof. Flavio Fernandes Grandezas proporcionais Observe as situações: O tempo que se gasta em uma viagem depende da velocidade do veículo. A quantidade de tinta que se gasta

Leia mais

A figura abaixo mostra a variação de direção do vetor velocidade em alguns pontos.

A figura abaixo mostra a variação de direção do vetor velocidade em alguns pontos. EDUCANDO: Nº: TURMA: DATA: / / LIVRES PARA PENSAR EDUCADOR: Rosiméri dos Santos ESTUDOS DE RECUPERAÇÃO - MOVIMENTO CIRCULAR UNIFORME Introdução Dizemos que uma partícula está em movimento circular quando

Leia mais

Lista de exercícios I - regra de três simples

Lista de exercícios I - regra de três simples PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA (MAF) MATEMÁTICA PARA NEGÓCIOS PROFESSOR: MS SAMUEL LIMA PICANÇO Lista de exercícios I - regra de três simples 1 Uma roda dá

Leia mais

QUESTÕES DE PROVA FCC

QUESTÕES DE PROVA FCC QUESTÕES DE PROVA FCC http://edgarabreu.com.br Página 1 Banca Concurso Cargo Ano FCC TRT 15ª REGIÃO ANALISTA 2009 1 - Um criptograma aritmético é um esquema operatório codificado, em que cada letra corresponde

Leia mais

Não fujas da Matemática!

Não fujas da Matemática! Não fujas da Matemática! Problema: O pai do Filipe decidiu propor ao seu filho um negócio, que consistia em lavar o seu carro pagando-lhe assim uma quantia de 1,5 euros por hora. Se o Filipe demorar 3

Leia mais

Questão 2 Em um salão de festas, a razão entre os lugares ocupados e os vazios é de

Questão 2 Em um salão de festas, a razão entre os lugares ocupados e os vazios é de SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR NADER ALVES DOS SANTOS SÉRIE/ANO: º TURMA(S): A,

Leia mais

Aula 1 Razão 5. Meta da aula. Objetivos da aula. Uma foto na medida certa

Aula 1 Razão 5. Meta da aula. Objetivos da aula. Uma foto na medida certa Aula 1 Razão Meta da aula Apresentar o conceito matemático de razão e mostrar como aplicá-lo em situações cotidianas. Objetivos da aula Ao final desta aula, você deverá ser capaz de: 1. calcular a razão

Leia mais

GRANDEZAS PROPORCIONAIS

GRANDEZAS PROPORCIONAIS RAZÃO, PROPORÇÃO, REGRA DE TRÊS E PORCENTAGEM GRANDEZAS PROPORCIONAIS Grandezas Diretamente Proporcionais Duas grandezas são diretamente proporcionais quando, multiplicando o valor de uma delas por um

Leia mais

Matemática em ação 9. Álgebra e Funções.

Matemática em ação 9. Álgebra e Funções. Matemática em ação 9 Álgera e Funções http://www.raizeditora.pt Matemática em ação 9 Fichas teóricas Conteúdos aordados: Equações do.º grau a uma incógnita Sistemas de equações Funções de proporcionalidade

Leia mais

aparecem os números, na parte de cima da máquina)

aparecem os números, na parte de cima da máquina) Um número de quatro algarismos multiplicado por outro de três algarismos deu como resultado 123 123. Quais são esses números? Vamos aprender a utilizar a máquina de calcular em operações simples. Para

Leia mais

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação

COLÉGIO XIX DE MARÇO excelência em educação COLÉGIO XIX DE MARÇO excelência em educação 1ª PROVA PARCIAL DE FÍSICA Aluno(a): Nº Ano: 1º Turma: Data: 02/04/2011 Nota: Professor: Antonio Márcio Valor da Prova: 40 pontos Assinatura do responsável:

Leia mais

8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5.

8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. 8º Ano Ficha de Trabalho 16 fevereiro de 2012 1) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. a) No enunciado são referidas duas variáveis, a quantidade (em kg) e o preço a

Leia mais

Edital Pibid n 11 /2012 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID. Plano de Atividades (PIBID/UNESPAR)

Edital Pibid n 11 /2012 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID. Plano de Atividades (PIBID/UNESPAR) Edital Pibid n 11 /2012 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:

Leia mais

EXERCÍCIOS. Questão 03 (INSS) A razão entre o número de homens e de mulheres, funcionários de uma firma, é de 5

EXERCÍCIOS. Questão 03 (INSS) A razão entre o número de homens e de mulheres, funcionários de uma firma, é de 5 EXERCÍCIOS Questão 01 (Banco do Brasil) Uma empresa possui atualmente.100 funcionários. Se a relação entre o número de efetivos e contratados é de 5 para, quantos são os efetivos? a) 600 b) 1.000 c) 1.500

Leia mais

PESQUISA. ATIVIDADE DE MATEMÁTICA Revisão de potências. Indique às respostas a caneta. Indique as resoluções a lápis no espaço indicado.

PESQUISA. ATIVIDADE DE MATEMÁTICA Revisão de potências. Indique às respostas a caneta. Indique as resoluções a lápis no espaço indicado. OSASCO, DE DE 2011 NOME: PROF. 9º ANO Data da entrega: 29/02/12 PESQUISA Faça uma pesquisa, sobre algoritmos matemáticos utilizados em redes sociais, esta pesquisa deve ter: capa, introdução, conclusão

Leia mais

Por exemplo, calcular 30% de Ora, 30% = = 0,3. Portanto, é só fazer a multiplicação ,3. O resultado é 975. Suponha que Osvaldo tem na cade

Por exemplo, calcular 30% de Ora, 30% = = 0,3. Portanto, é só fazer a multiplicação ,3. O resultado é 975. Suponha que Osvaldo tem na cade MATEMÁTICA FINANCEIRA AULA 01: PORCENTAGEM TÓPICO 02: CÁLCULO DE PORCENTAGEM Suponha que uma loja de tecidos pague 5% de comissão sobre o total de vendas. Se o vendedor Joaquim num determinado mês vendeu

Leia mais

Exercícios sobre Inequações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda

Exercícios sobre Inequações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 1 Eercícios

Leia mais

COLÉGIO INTEGRADO JAÓ

COLÉGIO INTEGRADO JAÓ COLÉGIO INTEGRADO JAÓ Professor Tales Mazzoccante ORIENTAÇÕES PARA PROVA BIMESTRAL MATEMÁTICA 7º ANO Data: 07 / 10 / 2016 Aluno(a): 7º Ano Turma: Algumas orientações: Neste terceiro bimestre, daremos ênfase

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

Se, no universo R, as inequações 3(x 1) 2(x + 2) 2 e x + ( k 1) mesmo conjunto solução, então a constante k é igual a 112

Se, no universo R, as inequações 3(x 1) 2(x + 2) 2 e x + ( k 1) mesmo conjunto solução, então a constante k é igual a 112 Questão 01) A fórmula N 5 p + 8 4 = dá o valor aproximado do número do calçado (N) em função do comprimento (p), em centímetros, do pé de qualquer pessoa. De acordo com a fórmula, o comprimento do pé de

Leia mais

Exercícios de Programação Lista de Exercícios

Exercícios de Programação Lista de Exercícios Exercícios de Programação Lista de Exercícios 1 2016-1 Entrada e Saída de Dados Exercício 01 Codifique um programa que, dado dois números inteiros quaisquer, efetue a soma desses números e imprima o resultado

Leia mais

Prova Resolvida Matemática (IBGE/2016) Prof. Guilherme Neves

Prova Resolvida Matemática (IBGE/2016) Prof. Guilherme Neves Prova Resolvida Matemática (IBGE/2016) 36. (IBGE 2016/FGV) As meninas Alice, Beatriz e Celia brincam na balança. Alice e Beatriz juntas pesam 100 kg, Alice e Celia juntas pesam 96 kg e Beatriz e Celia

Leia mais

Lista de Exercícios 01 Entrada e Saída de Dados

Lista de Exercícios 01 Entrada e Saída de Dados Lista de Exercícios 01 e de Dados Exercício 01 Uma P. A., Progressão Aritmética, fica determinada pela sua razão (r) e pelo seu primeiro termo (a 1 ). Escreva um programa que determine o n-ésimo termo

Leia mais

CADERNO DE EXERCÍCIOS 3C

CADERNO DE EXERCÍCIOS 3C CADERNO DE EXERCÍCIOS 3C Ensino Fundamental Matemática Questão Conteúdo 1 Interpretação gráfica. Razão. Porcentagem. Habilidade da Matriz da EJA/FB H52 H36 H14 2 Sistema de equações do 1º grau. H38 H44

Leia mais

Roteiro de recuperação 4º Bimestre Matemática 7 Ano

Roteiro de recuperação 4º Bimestre Matemática 7 Ano Roteiro de recuperação 4º Bimestre Matemática 7 Ano Nome: Nº Série/Ano Data: / / Professor(: Décio/Fernanda/Vinicius Este roteiro tem o objetivo de promover maior qualidade de seu estudo para a Prova Bimestral.

Leia mais

Magnitudes inversamente proporcionais

Magnitudes inversamente proporcionais Magnitudes inversamente proporcionais A proporcionalidade é um conceito que o indivíduo constrói ao lon-go de sua vida e tem grande utilização na Matemática e nas ciências, pois nos permite estabelecer

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

Matemática Guarda Municipal de Curitiba. Prof.: Braian Azael da Silva

Matemática Guarda Municipal de Curitiba. Prof.: Braian Azael da Silva Matemática Guarda Municipal de Curitiba Prof.: Braian Azael da Silva CONJUNTOS NUMÉRICOS Exercício A sequência abaixo foi criada repetindo-se as letras da palavra JANEIRO na mesma ordem: J A N E I R O

Leia mais

Números Diretamente e Inversamente Proporcionais. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Números Diretamente e Inversamente Proporcionais. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Razões e Proporções Números Diretamente e Inversamente Proporcionais 7 ano E.F. Professores Tiago Miranda e Cleber Assis Razões e Proporções Números Diretamente e Inversamente Proporcionais Exercícios

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

ax bx c 0, onde a, b e c são números reais quaisquer e a 0.

ax bx c 0, onde a, b e c são números reais quaisquer e a 0. Matemática Básica: Revisão 014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno 1 Aula 6 Equações do º grau com uma variável. Resolução de problemas. Objetivos: Conceituar e classificar equações do segundo

Leia mais

REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM

REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM 1 1. REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM Uma poderosa e simples ferramenta para resolução de problemas é a regra de três. A regra de três relaciona

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabarito... 1 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada Tarefa n.º 1. Quando o Afonso sai

Leia mais

AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO. Professor Guilherme Neves. Aula 00 Aula Demonstrativa

AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO. Professor Guilherme Neves.  Aula 00 Aula Demonstrativa AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO Professor Guilherme Neves www.pontodosconcursos.com.br Aula 00 Aula Demonstrativa www.pontodosconcursos.com.br Professor Guilherme Neves 1 Aula Conteúdo Programático

Leia mais

Atividade: Escalas utilizadas em mapas

Atividade: Escalas utilizadas em mapas Atividade: Escalas utilizadas em mapas I. Introdução: Os mapas são representações gráficas reduzidas de uma determinada região e de grande importância para vários profissionais como engenheiros, geógrafos,

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11.

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11. Aula n ọ 05 A conta do 11 Para multiplicar um número de dois algarismos por 11, podemos fazê-lo assim: conservamos a unidade na unidade do resultado; a dezena na centena do resultado; e a dezena do resultado

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Linguagem de programação métodos/funções

Linguagem de programação métodos/funções Instituto Federal de Minas Gerais Campus Ponte Nova Linguagem de programação métodos/funções Professor: Saulo Henrique Cabral Silva MÉTODOS / MODULARIZANDO Modularizando... 2 Métodos Funções Sub-rotinas

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Centro Educacional Juscelino Kubitschek ALUNO: DATA: / / 2011. ENSINO: Fundamental SÉRIE: 7 ª TURMA: TURNO: DISCIPLINA: Matemática PROFESSOR(A): Equipe de Matemática Valor da Lista: 3,0 Valor Obtido: LISTA

Leia mais

Sala de Estudo Acompanhado Municipal

Sala de Estudo Acompanhado Municipal Sala de Estudo Acompanhado Municipal 9º Ano º Teste Intermédio (Modelo) Lê com atenção as questões que se seguem e responde de forma correcta. Bom trabalho! "Cada problema que resolvi, tornou-se numa regra,

Leia mais

OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores.

OPERAÇÕES COM FRAÇÕES. Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. ADIÇÃO E SUBTRAÇÃO Há dois casos possíveis: º) Frações com denominadores iguais OPERAÇÕES COM FRAÇÕES Neste caso, adicionamos ou subtraímos os numeradores e conservamos os mesmos denominadores. Exemplos:

Leia mais

Sequência da apresentação

Sequência da apresentação Sequência da apresentação Mal entendidos dos alunos relativos às frações. Os diferentes significados das frações. Diferentes tipos de unidade. Exemplos de tarefas para a reconstrução da unidade e exploração

Leia mais

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 3.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Funções de proporcionalidade direta FSS7 Funções de proporcionalidade inversa

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas FADESP... 4 Relação das questões comentadas... 8 Gabaritos...

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas FADESP... 4 Relação das questões comentadas... 8 Gabaritos... Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas FADESP... 4 Relação das questões comentadas... 8 Gabaritos... 9 1 Apresentação Olá, pessoal! Tudo bem com vocês? Como vocês bem sabem,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Cinemática II. Bruno Conde Passos - Engenharia Civil Jaime Vinicius - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Cinemática II. Bruno Conde Passos - Engenharia Civil Jaime Vinicius - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Cinemática II Bruno Conde Passos - Engenharia Civil Jaime Vinicius - Engenharia de Produção Definição Ao estudar a cinemática, procuramos descrever

Leia mais

Disciplina: Matemática Prof. Diego Lima 1ª Lista de Exercícios Equação do 1 Grau

Disciplina: Matemática Prof. Diego Lima 1ª Lista de Exercícios Equação do 1 Grau Disciplina: Matemática Prof. Diego Lima 1ª Lista de Exercícios Equação do 1 Grau 1. (G1) Resolver a equação x 9 = 0, em N: a) V = {3} b) V = { 3} c) V = { 3, 3} d) V = {4} e) V =. (Fuvest) Um casal tem

Leia mais

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a: Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)

Leia mais

Professor Mauricio Lutz REGRA DE TRÊS SIMPLES E COMPOSTA

Professor Mauricio Lutz REGRA DE TRÊS SIMPLES E COMPOSTA 1 REGRA DE TRÊS SIMPLES E COMPOSTA Regra de três simples São problemas que envolvem duas grandezas direta ou inversamente proporcionais. Resolvê-los consiste em formar com os 3 valores conhecidos e a incógnita

Leia mais

Fís. Semana. Leonardo Gomes (Arthur Vieira)

Fís. Semana. Leonardo Gomes (Arthur Vieira) Semana 2 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/02

Leia mais

COLÉGIO SÃO JOÃO GUALBERTO

COLÉGIO SÃO JOÃO GUALBERTO RESOLUÇÃO COMENTADA Prof.: Pedro Bittencourt Série: 1ª Turma: A Disciplina: Física Nota: Atividade: Avaliação mensal 1º bimestre Valor da Atividade: 10 Instruções Esta avaliação é individual e sem consulta.

Leia mais

Propriedades de Proporções. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Propriedades de Proporções. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Razões e Proporções Propriedades de Proporções 7 ano E.F. Professores Tiago Miranda e Cleber Assis Razões e Proporções Propriedades de Proporções 1 Eercícios Introdutórios Eercício 1. A primeira

Leia mais

RACIOCÍNIO LÓGICO

RACIOCÍNIO LÓGICO RACIOCÍNIO LÓGICO 01. Uma pessoa saiu de casa para o trabalho decorridos 5/18 de um dia e retornou à sua casa decorridos 13/16 do mesmo dia. Permaneceu fora de casa durante um período de: a) 14 horas e

Leia mais

Disciplina de Lógica de Programação - LOPS1

Disciplina de Lógica de Programação - LOPS1 Disciplina de Lógica de Programação - LOPS1 Curso Superior de TMI - 1º Semestre (Professor Dênis Leonardo Zaniro) Lista de exercícios (Conteúdo 3) - Cálculos sequenciais e leitura de dados em C Os exercícios

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 1 o ano Disciplina: Física - Unidades de medidas, Velocidade e Aceleração média

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 1 o ano Disciplina: Física - Unidades de medidas, Velocidade e Aceleração média Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 1 o ano Disciplina: Física - Unidades de medidas, Velocidade e Aceleração média UNIDADES DE MEDIDAS

Leia mais

Cinemática REVISÃO ENEM 1. SISTEMAS DE REFERÊNCIA

Cinemática REVISÃO ENEM 1. SISTEMAS DE REFERÊNCIA REVISÃO ENEM Cinemática CINEMÁTICA é a parte da Mecânica que descreve os movimentos, sem levar em consideração as causas do mesmo. Os conceitos de espaço, movimento, repouso e trajetória são relativos,

Leia mais

Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I

Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves luis.goncalves@ucp.br

Leia mais

01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo

01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo Aula n ọ 02 01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo 100 km Taxa fixa de R$ 50,00 300 km Taxa fixa de R$ 65,00 500 km Taxa fixa de R$ 75,00 Considerando

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico.

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. Grandezas Vetores É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. GRANDEZA ESCALAR São aquelas medidas que precisam

Leia mais

Matemática I Lista de exercícios 02

Matemática I Lista de exercícios 02 Matemática I 2011.1 Lista de exercícios 02 1. O conjunto {( 1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {( x, y) R R x = y} (B) {( x, y) R R x > y} (C) {( x, y) R R x y} (D) {(

Leia mais

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2013

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2013 2013 TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 1 Explicando o funcionamento da disciplina e a avaliação. Serão 2 aulas semanais onde os conteúdos serão abordados, explicados e exercitados.

Leia mais