Razão e Proporção. Daniel Bruno

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Razão e Proporção. Daniel Bruno"

Transcrição

1 Razão e Proporção Daniel Bruno

2 Razão A razão pode ser expressa como a divisão ou relação entre duas grandezas de algum sistema de medidas. Por exemplo, para preparar uma bebida na forma de suco, normalmente adicionamos a litros de suco concentrado com b litros de água. A relação entre a quantidade de litros de suco concentrado e de água é um número real expresso como uma fração: a b = a/b, lê-se razão entre a e b ou a está para b. UNIVERSIDADE FEDERAL DE ALAGOAS 2

3 Razão Outro exemplo: Em uma partida de basquete um jogador faz 20 arremessos e acerta 10. Podemos avaliar o aproveitamento desse jogador, dividindo o número de arremessos que ele acertou pelo total de arremessos, o que significa que o jogador acertou 1 para cada dois arremessos. Nesse caso, temos: Razão = número de acertos = 10 = 1 número de arremessos 20 2 UNIVERSIDADE FEDERAL DE ALAGOAS 3

4 Razão Inversa Na razão temos os termos: antecedente e consequente, onde na razão antecedente é 1 e o consequente é 2. Para a razão inversa é feita a troca do antecedente com o consequente. Exemplo: 1 2 o Razão = 1 2 Razão Inversa = 2 1 UNIVERSIDADE FEDERAL DE ALAGOAS 4

5 Proporção Proporção representa a igualdade entre duas razões. A proporção entre a/b e c/d é a igualdade: a b = c d UNIVERSIDADE FEDERAL DE ALAGOAS 5

6 Proporção Exemplo: Um carro faz 13km por litro de combustível, então para 26km preciso de 2L, para 39km preciso de 3L e assim por diante. R 1 = 26 2 R 2 = 39 3 Logo, formamos a proporção: R 1 = R 2 26 = UNIVERSIDADE FEDERAL DE ALAGOAS 6

7 Propriedades Numa proporção: a b = c d Os números a e d são denominados extremos enquanto os números b e c são os meios e vale a propriedade: o produto dos meios é igual ao produto dos extremos, isto é: a d = b c UNIVERSIDADE FEDERAL DE ALAGOAS 7

8 Propriedades Numa proporção quando somamos termo a termo a razão se mantém. 26 = = Numa proporção quando subtraímos termo a termo a razão se mantém. 26 = = UNIVERSIDADE FEDERAL DE ALAGOAS 8

9 Números proporcionais O número 3 representa em relação a 6 (metade) o mesmo que 10 representa em relação a 20 (metade), que é o mesmo que 8 representa em relação a 16. Dizemos então que os números 3, 10 e 8 são diretamente proporcionais aos números 6, 20 e 16, nessa ordem. Veja: 3 = 10 = Nesse caso, 1 é considerado o coeficiente ou constante 2 de proporcionalidade. 1 2 UNIVERSIDADE FEDERAL DE ALAGOAS 9

10 Números proporcionais Além disso: A fração irredutível coeficiente de proporcionalidade(k); a b é equivalente ao Quando somamos ou subtraímos termos a termos a razão que se mantém é k. Exemplo: a + c + e + y b + d + f + z = k UNIVERSIDADE FEDERAL DE ALAGOAS 10

11 Grandezas Diretamente Proporcionais (G.D.P.) Duas grandezas são ditas diretamente proporcionais, quando o aumento de uma implica no aumento da outra, quando a redução de uma implica na redução da outra, ou seja, o que você fizer com uma acontecerá com a outra. UNIVERSIDADE FEDERAL DE ALAGOAS 11

12 Grandezas Diretamente Proporcionais (G.D.P.) Exemplo: Se numa receita de pudim de micro-ondas uso duas latas de leite condensado, 6 ovos e duas latas de leite, para um pudim. Terei que dobrar a quantidade de cada ingrediente se quiser fazer dois pudins, ou reduzir a metade cada quantidade de ingredientes se quiser, apenas meia receita. UNIVERSIDADE FEDERAL DE ALAGOAS 12

13 Grandezas Diretamente Proporcionais (G.D.P.) Observe a tabela abaixo que relaciona o preço que tenho que pagar em relação à quantidade de pães que peça: Preço (R$ ) 0,20 0,40 1,00 2,00 4,00 10,00 Nº de pães Preço e quantidade de pães são grandezas diretamente proporcionais. Portanto, se peço mais pães, pago mais, se peço menos pães, pago menos. UNIVERSIDADE FEDERAL DE ALAGOAS 13

14 Grandezas Diretamente Proporcionais (G.D.P.) Observe que quando dividimos o preço pela quantidade de pães obtemos sempre o mesmo valor. Em grandezas diretamente proporcionais, a razão é constante. 0,20 1 = 0,40 2 = 1,00 5 = 2,00 10 = 4,00 20 = 10,00 50 = k UNIVERSIDADE FEDERAL DE ALAGOAS 14

15 Grandezas Inversamente Proporcionais (G.I.P.) Duas grandezas são ditas inversamente proporcionais quando o aumento de uma implica na redução da outra, quando a redução de uma implica no aumento da outra, ou seja, o que você fizer com uma acontecerá o inverso com a outra. UNIVERSIDADE FEDERAL DE ALAGOAS 15

16 Grandezas Inversamente Proporcionais (G.I.P.) Exemplo: Numa viagem, quanto maior a velocidade média no percurso, menor será o tempo de viagem. Quanto menor for a velocidade média, maior será o tempo de viagem. Observe a tabela abaixo que relaciona a velocidade média e o tempo de viagem, para uma distância de 600km. Velocidade média (km/h) Tempo de viagem (h) UNIVERSIDADE FEDERAL DE ALAGOAS 16

17 Grandezas Inversamente Proporcionais (G.I.P.) Velocidade média e Tempo de viagem são grandezas inversamente proporcionais, assim se viajo mais depressa levo um tempo menor, se viajo com menor velocidade média levo um tempo maior. Observe que quando multiplicamos a velocidade média pelo tempo de viagem obtemos sempre o mesmo valor. Em grandezas inversamente proporcionais, o produto é constante = = = = = = k UNIVERSIDADE FEDERAL DE ALAGOAS 17

18 Vamos praticar... Um estado brasileiro ocupa a área de Km². De acordo com o censo realizado, o estado tem uma população aproximada de habitantes. Qual a densidade demográfica desse estado? UNIVERSIDADE FEDERAL DE ALAGOAS 18

19 Vamos praticar... Para obtermos a densidade demográfica usamos a seguinte razão: Dens. demográfica = número de habitantes área ocupada habitantes Dens. demográfica = Km 2 Dens. Demográfica = 60 habitantes/km 2 UNIVERSIDADE FEDERAL DE ALAGOAS 19

20 Vamos praticar... Suponhamos que um carro de Fórmula Indy percorreu 328Km em 2h. Qual foi a velocidade média do veículo nesse percurso? UNIVERSIDADE FEDERAL DE ALAGOAS 20

21 Vamos praticar... Para obtermos a velocidade média usamos a seguinte razão: Velocidade média = distância percorrida tempo gasto Velocidade média = 328Km 2h Velocidade média = 164 Km/h UNIVERSIDADE FEDERAL DE ALAGOAS 21

22 Vamos praticar... Qual a renda per capita de Alagoas considerando os dados do IBGE (Instituto Brasileiro de Geografia e Estatística), onde o PIB (Produto Interno Bruto) era de R$ e população era cerca de habitantes? UNIVERSIDADE FEDERAL DE ALAGOAS 22

23 Vamos praticar... A renda per capita é a razão entre o PIB (Produto Interno Bruto) e o número de habitantes, assim: Produto Interno Bruto Renda per capita = Número de habitantes R$ Renda per capita = habitantes Renda per capita R$6,8/habitante UNIVERSIDADE FEDERAL DE ALAGOAS 23

24 Vamos praticar... Uma empreiteira planejou construir determinada obra em 8 dias, empregando 10 trabalhadores, trabalhando 6 horas por dia. Se a jornada de trabalho fosse ampliada em 2 horas diárias e o número de trabalhadores reduzido para 7 essa mesma obra seria concluída em quantos dias? UNIVERSIDADE FEDERAL DE ALAGOAS 24

25 Vamos praticar... Separando os dados: Trabalhadores Horas por dia Conclusão em dias x Faremos as seguintes considerações: Trabalhadores e Dias. Se 10 empregados terminam uma obra em 8 dias, então apenas 7 empregados vão terminar essa mesma obra em mais dias. Diminuiu o número de empregados, mas aumentou o número de dias. Então considera-se grandezas inversamente proporcionais, assim teremos a razão de 7/10. UNIVERSIDADE FEDERAL DE ALAGOAS 25

26 Vamos praticar... Horas e dias. Dispondo-se de 6 horas diárias, termina-se uma obra em 8 dias, se passar a dispuser de 8 horas diárias, então termina-se o trabalho em menos dias. Aumentou o número de horas e diminuiu o número de dias. Então considera-se grandezas inversamente proporcionais, assim teremos a razão de 8/6. UNIVERSIDADE FEDERAL DE ALAGOAS 26

27 Vamos praticar... Agora é só multiplicar as razões e igualar à razão que contém a incógnita (8/x). Assim: 7. 8 = 8 56 = x 60 x x = 8,57 56x = 480 x = A obra será concluída em aproximadamente 9 dias. UNIVERSIDADE FEDERAL DE ALAGOAS 27

28 Vamos praticar... Em uma construtora, 20 caminhões descarregam 160m 3 de areia em 8 horas. Diminuindo as horas de atividade dos caminhões para 5 horas, quantos caminhões serão necessários para descarregar 125m 3 de areia. UNIVERSIDADE FEDERAL DE ALAGOAS 28

29 Vamos praticar... Montando uma tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem: Horas Caminhões Volume x 125 Vamos comparar as grandezas. UNIVERSIDADE FEDERAL DE ALAGOAS 29

30 Vamos praticar... Observe que: Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação é inversamente proporcional. Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação é diretamente proporcional. Devemos igualar a razão que contém o termo x com o produto das outras razões de acordo com o que observamos. UNIVERSIDADE FEDERAL DE ALAGOAS 30

31 Vamos praticar... Montando a proporção e resolvendo: 20 = = = 4 4x = 100 x x 25 x 5 x = 100 x = 25 4 Assim, serão necessários 25 caminhões para descarregar 125m 3 em 5 horas. UNIVERSIDADE FEDERAL DE ALAGOAS 31

REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM

REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM 1 1. REGRA DE TRÊS SIMPLES E COMPOSTA E PORCENTAGEM Uma poderosa e simples ferramenta para resolução de problemas é a regra de três. A regra de três relaciona

Leia mais

Grandezas proporcionais. Matemática 1 Aulas 13 e 14 Prof. Henrique Figo

Grandezas proporcionais. Matemática 1 Aulas 13 e 14 Prof. Henrique Figo Grandezas proporcionais Matemática 1 Aulas 13 e 14 Prof. Henrique Figo Motivação Qual desses carros gasta mais combustível para ir de São Paulo ao Rio de Janeiro? Sabe-se que o carro A, movido a gasolina,

Leia mais

Regra de três simples

Regra de três simples Regra de três simples Aula 7 Velocidade Ricardo Ferreira Paraizo Tempo e-tec Brasil Matemática Instrumental Meta Apresentar os conceitos sobre grandezas direta e inversamente proporcionais e regra de três.

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 09 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

ALGUMAS RAZÕES ESPECIAIS

ALGUMAS RAZÕES ESPECIAIS ALGUMAS RAZÕES ESPECIAIS VELOCIDADE MÉDIA Se uma viagem de 210 km é realizada em 3 horas por um automóvel, podemos imaginar a viagem da seguinte maneira: Daí, dizemos que a velocidade média desenvolvida

Leia mais

a) Alice b) Beatriz c) Carlos d) Daniel

a) Alice b) Beatriz c) Carlos d) Daniel Razão e Proporção II Prof. Hugo Gomes EXERCÍCIOS 1. Em um exame de seleção concorreram 4800 candidatos para 240 vagas. A razão entre o número de vagas e o número de candidatos foi de: a) 1. 2000 b) 1.

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Questão 2 Em um salão de festas, a razão entre os lugares ocupados e os vazios é de

Questão 2 Em um salão de festas, a razão entre os lugares ocupados e os vazios é de SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR NADER ALVES DOS SANTOS SÉRIE/ANO: º TURMA(S): A,

Leia mais

Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento?

Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento? A UUL AL A 5 Regra de três Num acampamento, há 48 pessoas e alimento suficiente para um mês. Se 6 pessoas forem embora, para quantos dias ainda haverá alimento? Para pensar Observe a seguinte situação:

Leia mais

04.1 Razão É a comparação entre duas grandezas, de mesma espécie, da forma

04.1 Razão É a comparação entre duas grandezas, de mesma espécie, da forma EXERCÍCIOS DE MATEMÁTICA Prof. Mário e-mail: marioffer@yahoo.com.br 04 Razão e Proporção 04. Razão É a comparação entre duas grandezas, de mesma espécie, da forma a ou a : b com b? 0 b Onde: a antecedente

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

I-EXPRESSÕES NUMÉRICAS

I-EXPRESSÕES NUMÉRICAS I-EXPRESSÕES NUMÉRICAS São expressões matemáticas que envolvem operações com números. Exemplos: a) 9+3+5 b) 2-5+4 c) (15-4)+2 4 5 + 7 2-1 + 7 2 + 6 2 = + 4 = 4 Nas expressões e sentenças matemáticas, os

Leia mais

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo

Leia mais

COLÉGIO INTEGRADO JAÓ

COLÉGIO INTEGRADO JAÓ COLÉGIO INTEGRADO JAÓ Professor Tales Mazzoccante ORIENTAÇÕES PARA PROVA BIMESTRAL MATEMÁTICA 7º ANO Data: 07 / 10 / 2016 Aluno(a): 7º Ano Turma: Algumas orientações: Neste terceiro bimestre, daremos ênfase

Leia mais

Magnitudes inversamente proporcionais

Magnitudes inversamente proporcionais Magnitudes inversamente proporcionais A proporcionalidade é um conceito que o indivíduo constrói ao lon-go de sua vida e tem grande utilização na Matemática e nas ciências, pois nos permite estabelecer

Leia mais

MATEMÁTICA CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP PARABÉNS!!! VOCÊ JÁ É UM VENCEDOR! Grandezas diretamente e inversamente proporcionais.

MATEMÁTICA CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP PARABÉNS!!! VOCÊ JÁ É UM VENCEDOR! Grandezas diretamente e inversamente proporcionais. CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP MATEMÁTICA 10 PARABÉNS!!! VOCÊ JÁ É UM VENCEDOR! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

Estudo de Proporcionalidade, Porcentagem, Juros e Regra de Três

Estudo de Proporcionalidade, Porcentagem, Juros e Regra de Três Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo de

Leia mais

Numa banca de jornal, observa-se que 30 pessoas compra o jornal A, 48 compram o jornal B, e 72 compram outros jornais.

Numa banca de jornal, observa-se que 30 pessoas compra o jornal A, 48 compram o jornal B, e 72 compram outros jornais. MATEMÁTICA BÁSICA 6 PORCENTAGEM Numa banca de jornal, observa-se que 30 pessoas compra o jornal A, 48 compram o jornal B, e 72 compram outros jornais. Você sabe dizer: # a porcentagem de pessoas que compram

Leia mais

GRANDEZAS PROPORCIONAIS

GRANDEZAS PROPORCIONAIS RAZÃO, PROPORÇÃO, REGRA DE TRÊS E PORCENTAGEM GRANDEZAS PROPORCIONAIS Grandezas Diretamente Proporcionais Duas grandezas são diretamente proporcionais quando, multiplicando o valor de uma delas por um

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Aula 6 Razão. Taxa. Porcentagem. Francisco A. M. Gomes. Março de 2016

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Aula 6 Razão. Taxa. Porcentagem. Francisco A. M. Gomes. Março de 2016 Roteiro da aula MA09 Matemática básica Aula 6.. Francisco A. M. Gomes UNICAMP - IMECC Março de 206 2 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA09 Matemática básica Março de 206 / 29 Francisco A. M.

Leia mais

Figuras semelhantes. utilizando o restante da parte quadriculada do quadro de modo que as dimensões da figura original sejam duplicadas.

Figuras semelhantes. utilizando o restante da parte quadriculada do quadro de modo que as dimensões da figura original sejam duplicadas. A UUL AL A 49 Figuras semelhantes Desenhe uma ampliação da figura abaixo, utilizando o restante da parte quadriculada do quadro de modo que as dimensões da figura original sejam duplicadas. Para pensar

Leia mais

Garantia de aprovação escolar

Garantia de aprovação escolar 1) Uma pessoa caminha em uma pista plana com a forma de triângulo retângulo. Ao dar uma volta completa na pista com velocidade constante de caminhada, ela percorre 600 e 800 metros nos trajetos correspondentes

Leia mais

Professor Mauricio Lutz RAZÕES E PROPORÇÕES

Professor Mauricio Lutz RAZÕES E PROPORÇÕES 1 RAZÕES E PROPORÇÕES Chama-se razão de dois números, dados numa certa ordem e sendo o segundo diferente de zero, ao quociente do primeiro pelo segundo. a ou b a : b, onde a é chamado antecedente enquanto

Leia mais

= 18 = = 9

= 18 = = 9 I-EXPRESSÕES NUMÉRICAS São expressões matemáticas que envolvem operações com números. Exemplos: a) 9+3+5 b) 2-5+4 c) (15-4)+2 Prevalece o sinal do maior. Exemplo 1: Resolva a seguinte expressão: 4 5 +

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

REGRA DE TRÊS SIMPLES E COMPOSTA. Prof. Flavio Fernandes

REGRA DE TRÊS SIMPLES E COMPOSTA. Prof. Flavio Fernandes REGRA DE TRÊS SIMPLES E COMPOSTA Prof. Flavio Fernandes Grandezas proporcionais Observe as situações: O tempo que se gasta em uma viagem depende da velocidade do veículo. A quantidade de tinta que se gasta

Leia mais

Prof. Rivelino Matemática Básica

Prof. Rivelino Matemática Básica NÚMEROS PROPORCIONAIS Números Diretamente Proporcionais Os números de uma sucessão numérica A = ( a, a, a,... a n ) são ditos diretamente proporcionais aos números da sucessão numérica B = ( b,.. n), quando

Leia mais

Matemática Aplicada Gestão

Matemática Aplicada Gestão UNIP Tatuapé Matemática - Profa. Ecila Alves de Oliveira 1 :. Primeira Aula Matemática Aplicada Gestão :. Apresentação :. Frase :. Avisos :. Sistema de Avaliação :. Bibliografias (Básica e Complementar)

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Conteúdos Exame Final e Avaliação Especial

Conteúdos Exame Final e Avaliação Especial Componente Curricular: Matemática Série/Ano: 7º ANO Professora: Fernanda S. Hamerski Conteúdos Exame Final e Avaliação Especial 1. Números Racionais 2. Números Inteiros 3. Equações do 1º grau 4. Sistemas

Leia mais

Matéria: Matemática Assunto: Regra de Três Composta Prof. Dudan

Matéria: Matemática Assunto: Regra de Três Composta Prof. Dudan Matéria: Matemática Assunto: Regra de Três Composta Prof. Dudan Matemática Regra de três composta A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.

Leia mais

Aula 1 Razão 5. Meta da aula. Objetivos da aula. Uma foto na medida certa

Aula 1 Razão 5. Meta da aula. Objetivos da aula. Uma foto na medida certa Aula 1 Razão Meta da aula Apresentar o conceito matemático de razão e mostrar como aplicá-lo em situações cotidianas. Objetivos da aula Ao final desta aula, você deverá ser capaz de: 1. calcular a razão

Leia mais

Resolução de Problemas

Resolução de Problemas Resolução de Problemas 1. (Enem PPL) Para um principiante em corrida, foi estipulado o seguinte plano de treinamento diário: correr 300 metros no primeiro dia e aumentar 00 metros por dia, a partir do

Leia mais

Matemática Comercial

Matemática Comercial Matemática Comercial Razão Dados dois números a e b, b 0, chamamos de razão de a para b, nesta ordem, ao quociente a/b ou a:b. a é chamado de antecedente e b de consequente. Quando a e b forem medidas

Leia mais

Matemática Básica para ENEM

Matemática Básica para ENEM Matemática Básica para ENEM Júlio Sousa I - Frações Fração também pode ser chamada de razão e é escrita da seguinte forma: a b onde a é o numerador e b o denominador, e devemos ter a Є N e b Є N* Obs:

Leia mais

Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 8ª Série / 9º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 A área do quadrado a seguir é 49 cm 2. O valor de X, em

Leia mais

LISTA DE EXERCÍCIOS II - 3 O BIMESTRE. FRAÇÕES: conceito, classificação, números mistos, fração de quantidade e equivalência

LISTA DE EXERCÍCIOS II - 3 O BIMESTRE. FRAÇÕES: conceito, classificação, números mistos, fração de quantidade e equivalência NOME: Nº. - 6 o ANO - E.F.II DATA: / / 2016 PROF. MARCO MALZONE - MATEMÁTICA I LISTA DE EXERCÍCIOS II - 3 O BIMESTRE FRAÇÕES: conceito, classificação, números mistos, fração de quantidade e equivalência

Leia mais

Razões e proporções. Profa. Dra. Denise Ortigosa Stolf

Razões e proporções. Profa. Dra. Denise Ortigosa Stolf Razões e proporções Profa. Dra. Denise Ortigosa Stolf Sumário Página Razão... 1 Razões inversas... Algumas razões especiais... 5 As razões escritas na forma percentual... 6 Calculando a porcentagem...

Leia mais

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68 Matemática 5 aula. DIVISIBILIDADE a) N = 0 = 8. 9. 5 =.. 5 Seja n o número de divisores positivos, n = ( + )( + )( + ) = 4 b) Se n é o número de divisores negativos, n 4. Logo, a quantidade total é 48.

Leia mais

RAZÃO... 2 PROPORÇÃO... 2 REGRA DE TRÊS... 8 PORCENTAGEM RESPOSTAS... 18

RAZÃO... 2 PROPORÇÃO... 2 REGRA DE TRÊS... 8 PORCENTAGEM RESPOSTAS... 18 RAZÃO... 2 PROPORÇÃO... 2 REGRA DE TRÊS... 8 PORCENTAGEM... 13 RESPOSTAS... 18 MATEMÁTICA FINANCEIRA 1 RAZÃO, PROPORÇÃO, REGRAS DE TRES e PORCENTAGEM RAZÃO Sejam dados dois números a e b (b 0), chamamos

Leia mais

- MATEMÁTICA - PUC-MG

- MATEMÁTICA - PUC-MG Vestibulando Web Page 1. Uma empresa deve instalar telefones de emergência a cada 42 quilômetros, ao longo da rodovia de 2.184 km, que liga Maceió ao Rio de Janeiro. Considere que o primeiro desses telefones

Leia mais

... Onde usar os conhecimentos os sobre s?...

... Onde usar os conhecimentos os sobre s?... Manual de IV Matemática SEQÜÊNCIA OU SUCESSÃO Por que aprender Progr ogressõe ssões? s?... O estudo das Progressões é uma ferramenta que nos ajuda a entender fenômenos e fatos do cotidiano, desde situações

Leia mais

Matemática/15 6ºmat302r 6º ano Turma: 2º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 2 Trimestre

Matemática/15 6ºmat302r 6º ano Turma: 2º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 2 Trimestre Matemática/15 6ºmat302r 6º ano Turma: 2º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 2 Trimestre Os conteúdos estão abaixo selecionados e deverão ser estudados

Leia mais

MATEMÁTICA. Professor Diego Viug

MATEMÁTICA. Professor Diego Viug MATEMÁTICA Professor Diego Viug FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA FUNÇÃO AFIM Taxa de variação constante. Proporcionalidade. (usaremos semelhança) y = ax + b a coeficiente angular. b coeficiente linear.

Leia mais

Questões utilizadas nas aulas de terça (15/10)

Questões utilizadas nas aulas de terça (15/10) Matemática Matemática financeira 3 os anos João/Blaidi out/13 Nome: Nº: Turma: Questões utilizadas nas aulas de terça (15/10) 1. (Fgv 013) Para o consumidor individual, a editora fez esta promoção na compra

Leia mais

1. Pablo tinha uma nota, mas não sabemos de quanto era essa nota, então a chamaremos de x. 2x + 8 = 0 5x 4 = 6x + 8 3a b c = 0

1. Pablo tinha uma nota, mas não sabemos de quanto era essa nota, então a chamaremos de x. 2x + 8 = 0 5x 4 = 6x + 8 3a b c = 0 Aula Período Zero Turma 1 Data: 13/03/2013 Tópicos Equação de 1º Grau Noção de Equação Incógnitas Operações com incógnitas (Adição, subtração, multiplicação, divisão, potência) Exemplos para montar equação

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O MATEMÁTICA. Razão, proporção e grandezas proporcionais. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O MATEMÁTICA. Razão, proporção e grandezas proporcionais. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 01 MATEMÁTICA Razão, proporção e grandezas proporcionais Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico

Leia mais

AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO. Professores: Zélia e Edcarlos

AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO. Professores: Zélia e Edcarlos AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO Professores: Zélia e Edcarlos . Um ciclista percorreu 4,5 km de manhã. À tarde ele percorreu duas vezes e meia essa distância. Quantos quilômetros ele percorreu

Leia mais

(09) Uma prova de matemática contém 50 questões. Um aluno acertou 7/10 das questões. Quantas questões esse aluno errou? (a) 35

(09) Uma prova de matemática contém 50 questões. Um aluno acertou 7/10 das questões. Quantas questões esse aluno errou? (a) 35 Lista 05 2014 Exercícios Razão e Proporção (01) Uma fração equivalente a 15/24, cuja soma dos termos seja 78, é: (a) 48/30 (b) 20/58 (c) 40/38 (d) 30/48 (02) Doze rapazes cotizaram-se para comprar um barco.

Leia mais

SISTEMAS DE EQUAÇÕES DO 1º GRAU

SISTEMAS DE EQUAÇÕES DO 1º GRAU SISTEMAS DE EQUAÇÕES DO 1º GRAU I INTRODUÇÃO: Os sistemas de equação são ferramentas muito comuns na resolução de problemas em várias áreas ( matemática, química, física, engenharia,...) e aparecem sempre

Leia mais

SEXO POPULAÇÃO AMOSTRA

SEXO POPULAÇÃO AMOSTRA Amostragem É o estudo de um pequeno grupo de elementos retirado de uma população que se pretende conhecer. Esses pequenos grupos retirados da população são chamados de Amostras. Como a amostragem considera

Leia mais

Duas grandezas são diretamente proporcionais quando, aumentando ou diminuindo uma delas, a outra grandeza aumenta ou diminui na mesma razão.

Duas grandezas são diretamente proporcionais quando, aumentando ou diminuindo uma delas, a outra grandeza aumenta ou diminui na mesma razão. Regra de três simples Introdução: São problemas onde relacionamos duas grandezas podendo ser diretamente ou inversamente proporcionais. Para a solução dos mesmos consiste em formar com três valores conhecidos

Leia mais

LISTA DE EXERCICIOS DE RAZÃO E PROPORÇÃO (1) 1) Em cada 10 terrenos vendidos, um é do corretor =>

LISTA DE EXERCICIOS DE RAZÃO E PROPORÇÃO (1) 1) Em cada 10 terrenos vendidos, um é do corretor => LISTA DE EXERCICIOS DE RAZÃO E PROPORÇÃO () ) Em cada 0 terrenos vendidos, um é do corretor => ) Os times A e B jogaram vezes e o time A ganhou todas => ) Uma liga de metal é feita de partes de ferro e

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 5 (SÉTIMA SÉRIE) PROFESSOR Ardelino R Puhl

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 5 (SÉTIMA SÉRIE) PROFESSOR Ardelino R Puhl NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 5 (SÉTIMA SÉRIE) PROFESSOR Ardelino R Puhl REGRA DE TRÊS SIMPLES Regra de três simples é um processo prático para

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Não fujas da Matemática!

Não fujas da Matemática! Não fujas da Matemática! Problema: O pai do Filipe decidiu propor ao seu filho um negócio, que consistia em lavar o seu carro pagando-lhe assim uma quantia de 1,5 euros por hora. Se o Filipe demorar 3

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

Prova Resolvida Matemática (IBGE/2016) Prof. Guilherme Neves

Prova Resolvida Matemática (IBGE/2016) Prof. Guilherme Neves Prova Resolvida Matemática (IBGE/2016) 36. (IBGE 2016/FGV) As meninas Alice, Beatriz e Celia brincam na balança. Alice e Beatriz juntas pesam 100 kg, Alice e Celia juntas pesam 96 kg e Beatriz e Celia

Leia mais

Aula 5 - Parte 1: Funções. Exercícios Resolvidos

Aula 5 - Parte 1: Funções. Exercícios Resolvidos Aula 5 - Parte : Funções Exercícios Resolvidos Construção de Funções: a) O valor pago por usuário que acessou a internet por x horas em uma lan house é dado pela função y(x) = a +, 5x, em que a é o custo

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Centro Educacional Juscelino Kubitschek ALUNO: DATA: / / 2011. ENSINO: Fundamental SÉRIE: 7 ª TURMA: TURNO: DISCIPLINA: Matemática PROFESSOR(A): Equipe de Matemática Valor da Lista: 3,0 Valor Obtido: LISTA

Leia mais

Linha: Campinas (SP) - Juiz de Fora (MG)

Linha: Campinas (SP) - Juiz de Fora (MG) Linha: Campinas (SP) - Juiz de Fora (MG) 1. Objeto Este projeto refere-se ao transporte rodoviário interestadual de passageiros, na ligação Campinas (SP) - Juiz de Fora (MG). A ligação, representada na

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

Grandezas, Unidades de. Alex Oliveira. Medida e Escala

Grandezas, Unidades de. Alex Oliveira. Medida e Escala Grandezas, Unidades de Alex Oliveira Medida e Escala Medindo Grandezas Aprendemos desde cedo a medir e comparar grandezas como comprimento; tempo; massa; temperatura; pressão e corrente elétrica. Atualmente,

Leia mais

Lá vai o às do. skate.

Lá vai o às do. skate. 1) Leia com atenção a tira da Turma da Mônica mostrada abaixo e analise as afirmativas que se seguem, considerando os princípios da Mecânica Clássica. Lá vai o às do skate. Cascão, você não sabe que é

Leia mais

Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior. Ano Lectivo 2008/2009. Ficha de Exercícios/Problemas N.º 2

Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior. Ano Lectivo 2008/2009. Ficha de Exercícios/Problemas N.º 2 Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior Ano Lectivo 2008/2009 Ficha de Exercícios/Problemas N.º 2 Razão. Proporção. Regra de três simples. Percentagens. Proporcionalidade Directa.

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte

Leia mais

Linha: Manaus (AM) Caracaraí (RR)

Linha: Manaus (AM) Caracaraí (RR) Linha: Manaus (AM) Caracaraí (RR) 1. Objeto Este projeto refere-se ao transporte rodoviário interestadual de passageiros, na ligação Manaus (AM) Caracaraí (RR), com uma extensão de 642,20 km. A ligação

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Álgebra Relações e regularidades Sequências e regularidades Proporcionalidade direta Síntese (Nota: As expressões numéricas e as propriedades das operações já foram abordadas na ficha Números naturais

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 3ª Etapa 2014. Ano: 7º Turma: 7.1

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 3ª Etapa 2014. Ano: 7º Turma: 7.1 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 3ª Etapa 2014 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 7º Turma: 7.1 Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Oficina - Frações e Porcentagem

Oficina - Frações e Porcentagem Oficina - Frações e Porcentagem PROBLEMA 1 Imagine que alguém esteja lhe servindo um pedaço de bolo. O retângulo abaixo representa esse pedaço. Como você está de regime, você acha esse pedaço um pouco

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

5.3 EXERCÍCIO pg. 191

5.3 EXERCÍCIO pg. 191 5 EXERCÍCIO pg 9 0 Numa granja experimental, constatou-se que uma ave em desenvolvimento pesa em gramas l 0 + (t + ) W(t),t + 60, 0, 60 onde t é medido em dias t 60 t 90, (a) Qual a razão de aumento do

Leia mais

3º Ano do Ensino Médio. Aula nº4

3º Ano do Ensino Médio. Aula nº4 Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº4 Assunto: Sistemas Lineares 1. Introdução 1.1. Equação Linear: Equação linear é uma equação composta por diversas incógnitas todas

Leia mais

b) Qual é a diferença entre as partes que ambos pintaram? c) Que parte da parede o Paulo pintou a mais que o Pedro?

b) Qual é a diferença entre as partes que ambos pintaram? c) Que parte da parede o Paulo pintou a mais que o Pedro? Adição e subtração de números racionais Exemplos. O Paulo e o Pedro estão a pintar uma parede no seu quintal. O Paulo já pintou da parede e o Pedro. 4 6 a) Qual foi a parte que ambos pintaram em conjunto?

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Vestibular 011 Utilize as informações a seguir para responder às questões de números e 3. Um

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações como Razões. 6 o ano/e.f. Frações, o Primeiro Contato. Frações como Razões. Exercícios Introdutórios Exercício. Sabendo que velocidade média é a razão entre a

Leia mais

ax bx c 0, onde a, b e c são números reais quaisquer e a 0.

ax bx c 0, onde a, b e c são números reais quaisquer e a 0. Matemática Básica: Revisão 014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno 1 Aula 6 Equações do º grau com uma variável. Resolução de problemas. Objetivos: Conceituar e classificar equações do segundo

Leia mais

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro

Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro Razão e Proporção Razão: comparação de quantidades usando uma divisão. Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro pelo segundo. Indica-se: a/b ou a : b e, lê-se:

Leia mais

Cursinho TRIU 22/04/2010. Física Mecânica Aula 1. Cinemática Escalar Exercícios Resolução

Cursinho TRIU 22/04/2010. Física Mecânica Aula 1. Cinemática Escalar Exercícios Resolução Física Mecânica Aula 1 Cinemática Escalar Exercícios Resolução 1. O ônibus movimenta-se com velocidade constante, sem mudar sua trajetória. Então, tanto a lâmpada quanto o passageiro, que estão dentro

Leia mais

Funções e gráficos num problema de freagem

Funções e gráficos num problema de freagem Funções e gráficos num problema de freagem Adaptado do artigo de Geraldo Ávila Há situações concretas das quais o professor pode extrair, de maneira espontânea e natural, conceitos importantes e muito

Leia mais

Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b

Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b Inequações do Primeiro Grau Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b Se os números a e b forem distintos, então a < b ou a > b e

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi A função afim, proporcionalidade e a função linear

LISTA DE EXERCÍCIOS. Humberto José Bortolossi  A função afim, proporcionalidade e a função linear GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 10 A função afim, proporcionalidade e a função linear [01] Considere

Leia mais

Exercícios cinemática Conceitos básicos e Velocidade média

Exercícios cinemática Conceitos básicos e Velocidade média Física II Professor Alexandre De Maria Exercícios cinemática Conceitos básicos e Velocidade média COMPETÊNCIA 1 Compreender as Ciências Naturais e as tecnologias a elas associadas como construções humanas,

Leia mais

7º ANO. Lista extra de exercícios

7º ANO. Lista extra de exercícios 7º ANO Lista extra de exercícios 1. Reescreva cada uma das medidas a seguir na unidade pedida. a) 230 m em centímetros b) 4,65 km em decímetros c) 1,9 cm em decâmetros d) 51,76 mm em metros e) 98,43 kg

Leia mais

RESOLUÇÃO RESOLUÇÃO MODELO 1:

RESOLUÇÃO RESOLUÇÃO MODELO 1: Distância (km) MODELO 1: 1) Sabendo que a velocidade da luz no vácuo vale 300.000 km/s, calcule quantas voltas a luz efetuaria ao redor da Terra em 1 segundo (suponha que viaje sobre o Equador, cujo comprimento

Leia mais

Caracterização do território

Caracterização do território Perfil do Município de Porto Real do Colégio, AL 14/01/2014 - Pág 1 de 14 Report a map error Caracterização do território Área 240,46 km² IDHM 2010 0,551 Faixa do IDHM Baixo (IDHM entre 0,5 e 0,599) (Censo

Leia mais

Caracterização do território

Caracterização do território Perfil do Município de Palmeira dos Índios, AL 14/01/2014 - Pág 1 de 14 Report a map error Caracterização do território Área 462,76 km² IDHM 2010 0,638 Faixa do IDHM Médio (IDHM entre 0,6 e 0,699) (Censo

Leia mais

2010 PORCENTAGEM NA 1ª FASE (ALGUMAS QUESTÕES)

2010 PORCENTAGEM NA 1ª FASE (ALGUMAS QUESTÕES) LISTA 2-2010 2 2010 PORCENTAGEM NA 1ª FASE (ALGUMAS QUESTÕES) 1) [Fuvest 77] Um vendedor ambulante vende seus produtos com um lucro de 50% sobre o preço de venda. Então seu lucro sobre o preço de custo

Leia mais

Caracterização do território

Caracterização do território Perfil do Município de Boca da Mata, AL 13/01/2014 - Pág 1 de 14 Report a map error Caracterização do território Área 187,11 km² IDHM 2010 0,604 Faixa do IDHM Médio (IDHM entre 0,6 e 0,699) (Censo 2010)

Leia mais

Caracterização do território

Caracterização do território Perfil do Município de Belém, AL 13/01/2014 - Pág 1 de 14 Report a map error Caracterização do território Área 48,36 km² IDHM 2010 0,593 Faixa do IDHM Baixo (IDHM entre 0,5 e 0,599) (Censo 2010) 4551 hab.

Leia mais

Função Afim Fabio Licht

Função Afim Fabio Licht Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)

Leia mais

Linha: Joinville (SC) - Gramado (RS)

Linha: Joinville (SC) - Gramado (RS) Linha: Joinville (SC) - Gramado (RS) 1. Objeto Este projeto refere-se ao transporte rodoviário interestadual de passageiros, na ligação Joinville (SC) Gramado (RS), com uma extensão de 755,20 km. A ligação

Leia mais

Caracterização do território

Caracterização do território Perfil do Município de Olho D'Água das Flores, AL 14/01/2014 - Pág 1 de 14 Report a map error Caracterização do território Área 183,96 km² IDHM 2010 0,565 Faixa do IDHM Baixo (IDHM entre 0,5 e 0,599) (Censo

Leia mais

dadas no ano letivo. Se a sua escola der 720 aulas, quantas no mínimo terá de frequentar?

dadas no ano letivo. Se a sua escola der 720 aulas, quantas no mínimo terá de frequentar? UNIVERSIDADE FEDERAL DO PARÁ CURSO DE LICENCIATURA EM MATEMÁTICA DO PARFOR LISTA DE EXERCÍCIOS DE ARITMÉTICA BÁSICA 1. Calcule os seguintes m.m.c. e m.d.c. mmc e (a) m.d.c.(51, 24) mdc (b) m.m.c.(65, 169,

Leia mais