CPV seu Pé Direito no INSPER

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CPV seu Pé Direito no INSPER"

Transcrição

1 CPV seu Pé Direito no INSPER INSPER Resolvida 6/junho/03 Prova A (Marrom) ANÁLISE QUANTITATIVA E LÓGICA 0. Na figura está representado o preço de um console de video game, em função do tempo decorrido desde o seu lançamento. Utilize as informções a seguir para as questões 0 e 03. A parte externa do palco de um teatro será construída tendo como contorno um trecho de parábola. Para projetá-la, um arquiteto usou um plano cartesiano e desenhou a parábola de equação y x, restrita aos quadrantes correspondentes a y 0, conforme a figura a seguir. O preço do aparelho será menor do que 50% do valor de lançamento a partir do: a) 6 o mês b) 8 o mês c) 0 o mês d) o mês e) 4 o mês Pelo gráfico, para y,5 obtemos t 4, ou seja, a partir do 4 o mês. Alternativa E Cada unidade nos eixos corresponde a 0 metros. 0. O chão do palco precisa ser recoberto com um revestimento acústico especial, que é muito caro. Como o arquiteto não dispõe de uma fórmula para calcular a área delimitada por uma reta e uma parábola, ele decidiu estimá-la, obtendo um valor mínimo e um valor máximo, usando: um triângulo de vértices sobre os pontos (0;), (; 0) e ( ; 0). um trapázio de vértices sobre os pontos (; 0), ( ; 0), ( 0,5; ) e (0,5; ). Considerando as dimensões reais do palco, a diferença entre os valores que ele obteve corresponde a: a) 0,5 m b),0 m c) 5,0 m d) 0,0 m e) 50,0 m CPV INSPERJUN03

2 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades C D Como cada unidade do gráfico corresponde a 0 m, temos: Área do ΔABC: 0. 0 S 00 m Área do trapézio BCDE: (0 + 0). 0 S 50 m Portanto, a diferença é: S S 50 m Alternativa E A 0 E B 03. Dada a dificuldade de se construir uma superfície que tem um trecho de parábola como contorno, o arquiteto decidiu trocar a forma do palco por um semicírculo de raio (quando representado no mesmo plano cartesiano). Entretanto, dois trilhos de iluminação já estavam sendo construídos no teto nas direções das retas y x e y x, ligando o ponto representado por (0; 0) aos respectivos pontos de encontro das retas com a parábola. Com essa alteração no projeto, o total de trilho adicional necessário para os dois lados será igual a, aproximadamente, a), metros b) 3, metros c) 4, metros d) 5, metros e) 6, metros y x (Use, 4 e, ) y x G H I F A 0 B Para obtermos o segmento IF HG, devemos obter o ponto I resolvendo o sistema: y x x + 5 +, 0,6 Þ x + x 0 y x x 5,,6 (não convém) O ponto I tem coordenadas I (0,6; 0,6). Como OI é diagonal de um quadrado de lado 0,6, então: OF 0,6 0,6.,4 Þ OF 0,84 isto é, 8,4 m Como OF é o raio da circunferência do raio, então OF 0 m. Logo, IF HG 0 8,4,6 Portanto, a medida do trilho adicional é:.,6 3, m Alternativa B CPV INSPERJUN03

3 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/ Considere que a seguinte declaração é verdadeira. Se todos os homens de bem preferem qualquer outra atividade à política, então são governados por pessoas de outra natureza, nunca por homens de bem. Se um homem de bem governa, pode-se deduzir que necessariamente a) todos os homens de bem preferem a política às outras atividades. b) pelo menos um homem de bem prefere a política a alguma outra atividade. c) todas as pessoas de outra natureza preferem a política às outras atividades. d) pelo menos uma pessoa de outra natureza prefere a política às outras atividades. e) nenhuma pessoa de outra natureza prefere a política às outras atividades. Um condicional do tipo Se A, então B é verdadeiro somente em 3 situações: V V, F V, F F. 05. Jane retirou R$40,00 num caixa eletrônico que dispunha de notas de R$50,00 e R$0,00, tendo recebido c cédulas de R$50,00 e v cédulas de R$0,00. A diferença entre c e v, em módulo, pode ser: a) no mínimo e no máximo 5. b) no mínimo e no máximo 7. c) no mínimo e no máximo. d) no mínimo 3 e no máximo 7. e) no mínimo 3 e no máximo. Temos as seguintes distribuições possíveis: c v Então, a diferença em módulo entre c e v, pode ser no mínimo e no máximo. Alternativa C Temos então a declaração: [se] NENHUM homem de bem prefere a política, [então] NENHUM homem de bem governa. Como o enunciado afirma que um homem de bem governa, a segunda parte da proposição (o consequente) é seguramente FALSA. Desse modo, é necessário que a primeira parte da proposição (o antecedente) seja FALSA (afinal, se for verdadeira, teremos V F). Logo, é falso que nenhum homem de bem prefere a política ; ou seja, é verdadeiro que pelo menos um homem de bem prefere a política. Alternativa B INSPERJUN03 CPV

4 4 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades Utilize as informações a seguir para as questões 06, 07 e 08. Um géografo deseja determinar a localização do pico de uma montanha. Na região, há duas estradas retas, ambas no nível do mar, sem subidas ou descidas ao longo de seus percursos, que se cruzam formando um ângulo reto. Ele conta com um instrumento que lhe permite observar o pico por meio de uma luneta e registrar: o ângulo de observação, formado pela reta que liga o ponto em que está o aparelho e o pico com o plano formado pelas duas estradas; a distância aproximada entre o ponto de observação e o pico. Está mais distante do pico o ponto a) A b) B c) C d) D e) E Projetando os pontos A, B, C, D e E sobre a mesma reta em relação ao pico da montanha, temos: pico Os eixos da figura a seguir representam as duas estradas e os pontos A, B, C, D e E correspondem a locais onde ele fez as suas primeiras observações. 45º 40º 37º 34º 3º E D B A C Portanto, o ponto mais distante é o C. Alternativa C Cada unidade nos eixos corresponde a quilômetro. 06. Os ângulos de inclinação entre o plano determinado pelas estradas e as retas ligando os pontos de observação com o pico foram registrados na tabela. CPV INSPERJUN03

5 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/ Como estava com dificuldades para determinar a altura do pico em relação ao nível do mar, o géografo fez diversas outras medições em pontos da estrada representada pelo eixo x. Nesse processo, ele encontrou um ponto F em que o ângulo entre o plano das estradas e a reta que o ligava ao pico era exatamente 30 o. Seu aparelho mostrou que a distância entre o ponto F e o pico era igual a 6 km. A altura do pico em relação ao nível do mar é igual a a) 6 km b) 5 km c) 4 km d) 3 km e) km A figura relacionada à questão é: 08. Para determinar a projeção do pico da montanha no plano representado na figura, o géografo pensou em fazer diversas observações ao longo das duas estradas. Ele o faria até que encontrasse pontos equidistantes da projeção do pico. Para que seja determinada esta localização, a) é suficiente encontrar dois pontos equidistantes distintos na mesma estrada. b) é suficiente encontrar dois pontos equidistantes distintos, sendo um em cada estrada. c) é necessário encontrar três pontos equidistantes distintos dois a dois na mesma estrada. d) é suficiente encontrar três pontos equidistantes distintos dois a dois. e) é necessário encontrar quatro pontos equidistantes distintos dois a dois. 6 km h y 30º D Então, sen 30º h 6 Þ h 3 km Alternativa D P C A B x A projeção ortagonal do pico sobre o plano é o centro da circunferência cujo raio é a medida feita pelo geógrafo. Se este tomasse apenas pontos dentre A, B, C e D, o pico estaria em um ponto qualquer da mediatriz do segmento de reta determinado por estes pontos. Portanto, seria necessário um terceiro ponto para encontrarmos as coordenadas do ponto pedido. Obs: Se considerarmos que o geógrafo considera a medida da distância do ponto de observação até a projeção, bastariam apenas pontos na mesma reta, o que nos conduziria à alternativa A. Alternativa D INSPERJUN03 CPV

6 6 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades 09. Uma doceira vende bombons artesanais em embalagens individuais (por R$5,00 a unidade), caixas com (por R$5,00 cada uma) ou pacotes com 4 (por R$96,00 cada um). Há também uma promoção: comprando x embalagens individuais, o cliente ganha x% de desconto, para x 50. Comparando os preços, é correto concluir que comprar bombons pela promoção é a) mais vantajoso para um cliente que quiser ou 4 unidades do que adquiri-las na caixa ou no pacote, respectivamente. b) mais vantajoso para um cliente que quiser 4 unidades em relação ao preço do pacote, mas não para quem quiser. c) mais vantajoso para um cliente que quiser unidades em relação ao preço da caixa, mas não para quem quiser 4. d) menos vantajoso tanto para um cliente que quiser unidades quanto para quem quiser 4, em relação aos preços da caixa ou do pacote, respectivamente. e) indiferente tanto para um cliente que quiser unidades quanto para quem quiser 4. O preço da promoção é 5x ( x 00) ; os preços para e 4 unidades são respectivamente, 5,8 e 9,0. Portanto, é mais vantajoso para um cliente que quer 4 unidades mas não para aquele que quer unidades. Alternativa b CPV INSPERJUN03

7 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/ Gilson está fazendo dez treinos para uma corrida de 5 quilômetros. A cada treino ele faz o pecurso da corrida e registra seu tempo. A recomendação de seu treinador é que consiga um tempo médio de h30min, considerando os dez treinos. Os tempos dos treinos já realizados constam na tabela a seguir. Para que Gilson consiga atingir o tempo médio recomendado pelo seu treinador, nos três últimos treinos ele deve manter um tempo médio de no máximo a) h5min b) h6min c) h7min d) h8min e) h9min Calculando a média para as 0 tomadas de tempo com todo os valores em minutos T 8 + T 9 + T 0 T 8 + T 9 + T 0 55 min A média dos 3 últimos tempos é h 5 min Alternativa A INSPERJUN03 CPV

8 8 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades Utilize as informações a seguir para as questões e. c) Em um torneio de apostas, cada participante recebe 50 fichas. Ao longo do torneio, eles podem apostar qualquer quantidade de fichas com qualquer outro participante. Em toda aposta, um ganha e outro perde as fichas apostadas. 00 pessoas entraram nesse torneio e, ao final, foram identificados os 30 que tinham acabado com mais fichas (Grupo G) e os 30 que tinham acabado com menos fichas (Grupo P). A organização registrou o total de fichas de todos os participantes em 4 momentos do torneio. A tabela abaixo mostra as somas das fichas das pessoas dos Grupos G e P nas 4 contagens feitas. d). O gráfico que melhor expressa a soma das fichas daqueles que não estão no Grupo G e nem no Grupo P é: a) e) b) Somando o total de fichas em cada uma das quatro contagens e subtraindo esse resultado de 5000, teremos o total de fichas que não pertencem ao grupo G e ao grupo P. Contagem Soma de P e G Assim, o gráfico correto é o da Alternativa A CPV INSPERJUN03

9 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/03 9. Ao final do torneio, não havia dois participantes que tivessem o mesmo número de fichas. Júlio, um dos participantes, terminou com o maior número de fichas entre todos os 00. Júlio chegou ao fim do torneio com, no máximo, a) 49 fichas. b) 50 fichas. c) 499 fichas. d) 500 fichas. e) 4900 fichas. 3. Na figura, P é o ponto médio de AC, P é o ponto médio de P C, P 3 é o ponto médio de P C, e assim sucessivamente, em uma sequência infinita de pontos. Além disso, o lado de cada triângulo que está contido no eixo x mede a metade do lado do triângulo anterior. Para a resolução desta questão é importante salíentar que não iremos considerar que o jogo acabou na quarta rodada. Assumindo que Júlio terminou com o maior número de fichas e todos os perdedores estão com números diferentes de fichas podemos distribuilos em P.A da seguinte forma: (0 + 98) 99 0,,, 3, 4,..., 98 assim 485 Então Júlio acabou o jogo com no máximo 49 fichas. Alternativa a A soma das áreas dos triângulos sombreados é igual a: a) 8 b) 7 c) 6 d) 5 e) 4 Pela figura: S S S Assim, a soma das infinitas áreas dos triângulos é igual a: 5 4 S 5-4 Alternativa D INSPERJUN03 CPV

10 0 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades 4. Se, α e β são as raízes da função f (x) x 3 + 4x 55x + 50, então + α + β é igual a: a) 4 b) 50 c) 55 d) 0 e) 6 Utilize as informações a seguir para as questões 5 e 6. O gráfico a seguir mostra as temperaturas registradas em uma cidade localizada numa região serrana ao longo de um dia inteiro. Se x é raiz de f (x) x 3 + 4x 55x + 50, então: f (x) (x ). (x + 5x 50) (x ). (x 5). x + 0 Assim, as raízes de f (x) são, 5 e 0. Logo, + α + β 6 Alternativa E 5. Os horários do dia em que a temperatura estava mais alta e mais baixa foram, respectivamente, a) 0h e 4h. b) 7h e 7h. c) 0h e 7h. d) 7h e 4h. e) 7h e 4h. Observando o gráfico, temos que a temperatura mais alta ocorreu às 0 h (5ºC), e a mais baixa às 4 h (8,5ºC) Alternativa A CPV INSPERJUN03

11 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/03 6. O aquecedor de uma residência nessa cidade está programado para funcionar sempre que a temperatura fica abaixo de 6 o C. Durante esse dia, este aquecedor ficou ligado por, aproximadamente, a) 3h b) 7h c) 0h d) 4h e) 7h Observando o gráfico, temos que a temperatura fica abaixo de 6ºC, nos seguintes intervalos de horas: das 4 h às h Þ 7 horas e das h às 4 h Þ 3 horas Assim, o total de horas que o aquecedor fica ligado neste dia é de 0 horas. Alternativa C 7. O número de soluções reais da equação é igual a: a) b) c) 3 d) 4 e) 5 x 4 log 7 x 6 log 7 x 0 Para x Î R * +, temos: (x 4 6). log 7 x 0 Þ x ou x. Portanto, são soluções reais. Alternativa B INSPERJUN03 CPV

12 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades Utilize as informações a seguir para as questões 8 e 0. Um modelo probabilístico foi criado para ajudar a polícia rodoviária a identificar motoristas potencialmente problemáticos. O modelo aponta, de acordo com as características do veículo, comportamento do motorista e velocidades registradas nos radares, as probabilidades de o indíviduo: Perfil A: causar um acidente grave; Perfil B: cometer uma infração de trânsito; Perfil C: dirigir de forma segura e responsável. Para cada pessoa, o modelo calcula três valores a, b e c, dos quais resultam as probabilidades dos três perfis, dadas, respectivamente, por: pa pb pc a a + b + c b a + b + c c a + b + c A maior dessas 3 probabilidades indica o perfil do motorista correspondente. 8. Quando a soma das probabilidades pa e pb, para um determinado motorista, superar 35%, a polícia rodoviária deve submetê-lo ao teste do bafômetro. A tabela abaixo mostra os valores de a, b e c determinados pelo sistema para 4 motoristas. Considerando os valores da tabela dada temos para: Motorista pa pb pa + pb Motorista 5 < 35% pa pb pa + pb Motorista > 35% pa pb e pa + pb 3 5 > 35% Portanto, devem ser submetidos ao teste do bafômetro apenas os motoristas e 3 Alternativa C Devem ser submetidos ao teste do bafômetro apenas os motoristas: a) e b) e 3 c) e 3 d) e 4 e) 3 e 4 CPV INSPERJUN03

13 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/ Durante o processamento, o computador que executa o modelo somente consegue efetuar operações com números inteiros menores ou iguais a Das possibilidades de combinações de valores a seguir, a única que permitirá ao computador efetuar as operações é: a) a 30, b 0 e c b) a, b 3 e c 5 c) a 8, b 7 e c 3 d) a 35, b 3 e c e) a 7, b 0 e c Quando calculamos 0 obtemos 04 que vale aproximadamente 0 3. Então, 30 ( 0 ) (0 3 ) > A única alternativa que possui todos os expoentes menores do que 30 é a E. Portanto Alternativa E 0. Para simplificar os cálculos, um analista percebeu que, para a grande maioria dos motoristas, ele poderia fixar c e fazer a b. Para esses casos, ele pode programar o sistema para calcular pa pela fórmula: a) b) c) d) e) + a a + a a + a a a + a a + a pa a a + a + a ( a + ). a a ( + a ) + a Alternativa A INSPERJUN03 CPV

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER ANÁLISE Quantitativa e Lógica Utilize as informações a seguir para as questões 01 e 02. Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam,

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo

Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo 1 a Questão: Observando, em cada caso, os gráficos apresentados, responda

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do TRT/4ª Região (Rio

Leia mais

Calculando probabilidades

Calculando probabilidades A UA UL LA Calculando probabilidades Introdução evento E é: P(E) = Você já aprendeu que a probabilidade de um nº deresultadosfavoráveis nº total de resultados possíveis Nesta aula você aprenderá a calcular

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP Péricles Bedretchuk Araújo Situações de aprendizagem: a circunferência, a mediatriz e uma abordagem com o Geogebra Dissertação apresentada à Banca Examinadora

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio 36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

16 Comprimento e área do círculo

16 Comprimento e área do círculo A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTIA DA UNIAMP VESTIULAR 011 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 1 Recentemente, um órgão governamental de pesquisa divulgou que, entre 006 e 009, cerca de 5, milhões de brasileiros

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem)

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem) (Enem) (Unimontes-MG) A resolução das câmeras digitais modernas é dada em megapixels, unidade de medida que representa um milhão de pontos. As informações sobre cada um desses pontos são armazenadas, em

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

Questão do ENEM 1. Conclusão. Questão do ENEM 4. Caso o posto X encerre suas atividades, teremos: 1º caso (dois octógonos e um de outro tipo)

Questão do ENEM 1. Conclusão. Questão do ENEM 4. Caso o posto X encerre suas atividades, teremos: 1º caso (dois octógonos e um de outro tipo) Questão do ENEM 1 Consideremos uma combinação de dois tipos diferentes de ladrilhos em que um deles é, necessariamente, um octógono regular. Temos dois casos para análise: 1º caso (dois octógonos e um

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão II 1. Um carro está viajando numa estrada retilínea com velocidade de 72 km/h. Vendo adiante um congestionamento

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

Equacionando problemas - II

Equacionando problemas - II A UA UL LA Equacionando problemas - II Introdução Nossa aula Nas duas últimas aulas, resolvemos diversas equações do º grau pelo processo de completar o quadrado perfeito ou pela utilização da fórmula

Leia mais

TC1 REVISÃO ENEM MATEMÁTICA ALEXANDRINO

TC1 REVISÃO ENEM MATEMÁTICA ALEXANDRINO TC1 REVISÃO ENEM MATEMÁTICA ALEXANDRINO 1.Considere o seguinte jogo de apostas: Numa cartela com 0 números disponíveis, um apostador escolhe de a 10 números. Dentre os números disponíveis, serão sorteados

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

Provas Comentadas OBF/2011

Provas Comentadas OBF/2011 PROFESSORES: Daniel Paixão, Deric Simão, Edney Melo, Ivan Peixoto, Leonardo Bruno, Rodrigo Lins e Rômulo Mendes COORDENADOR DE ÁREA: Prof. Edney Melo 1. Um foguete de 1000 kg é lançado da superfície da

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m?

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m? 1 - Dadas as medidas da bicicleta abaixo: a) Sabendo que um ciclista pedala com velocidade constante de tal forma que o pedal dá duas voltas em um segundo. Qual a velocidade linear, em km/h da bicicleta?

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

1. Na figura está representado o preço de um console de video game, em função do tempo decorrido desde o seu lançamento. p (milhares de reais)

1. Na figura está representado o preço de um console de video game, em função do tempo decorrido desde o seu lançamento. p (milhares de reais) 1. Na figura está representado o preço de um console de video game, em função do tempo decorrido desde o seu lançamento. 3,00 p (milhares de reais) 2,75 2,50 2,25 2,00 1,75 1,50 1,25 1,00 0,75 0,50 0,25

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B 1. Uma escola irá sortear duas pessoas dentre os seus 20 melhores alunos para representá-la em um encontro de estudantes no Canadá, país que possui dois idiomas oficiais, Inglês e Francês. Sabe-se que,

Leia mais

LISTA EXTRA MRU e MRUV - 2ª SÉRIE

LISTA EXTRA MRU e MRUV - 2ª SÉRIE LISTA EXTRA MRU e MRUV - ª SÉRIE 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência:

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

Roda de Samba. Série Matemática na Escola

Roda de Samba. Série Matemática na Escola Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300 01) Uma empresa possui 1000 carros, sendo uma parte com motor a gasolina e o restante com motor flex (que funciona com álcool e com gasolina). Numa determinada época, neste conjunto de 1000 carros, 36%

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais

01) 551 02) 552 03) 553 04) 554 05) 555

01) 551 02) 552 03) 553 04) 554 05) 555 Questão 01 PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA (FUVEST010)

Leia mais

TIPOS DE REFLEXÃO Regular Difusa

TIPOS DE REFLEXÃO Regular Difusa Reflexão da luz TIPOS DE REFLEXÃO Regular Difusa LEIS DA REFLEXÃO RI = raio de luz incidente i normal r RR = raio de luz refletido i = ângulo de incidência (é formado entre RI e N) r = ângulo de reflexão

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br

O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br A U A UL LA O céu Atenção Aquela semana tinha sido uma trabalheira! Na gráfica em que Júlio ganhava a vida como encadernador, as coisas iam bem e nunca faltava serviço. Ele gostava do trabalho, mas ficava

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

SISTEMA CLÁSSICO DE REDUÇÃO

SISTEMA CLÁSSICO DE REDUÇÃO Page 1 of 6 SISTEMA CLÁSSICO DE REDUÇÃO Este documento irá ensinar-lhe como pode fazer um desdobramento reduzido, segundo o processo clássico (italiano) para qualquer sistema 5/50, em particular para o

Leia mais

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do

Leia mais

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005

Leia mais

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 0 pontos Na Tabela 1 temos a progressão mensal para o Imposto de Renda Pessoa Física 014 01. Tabela 1: Imposto de Renda Pessoa Física 014 01. Base

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais

EXAME DISCURSIVO 2ª fase

EXAME DISCURSIVO 2ª fase EXAME DISCURSIVO 2ª fase 30/11/2014 MATEMÁTICA Caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.

Leia mais

Aulas 8 e 9. Aulas 10 e 11. Colégio Jesus Adolescente. a n g l o

Aulas 8 e 9. Aulas 10 e 11. Colégio Jesus Adolescente. a n g l o Colégio Jesus Adolescente a n g l o Ensino Médio 1º Bimestre Disciplina Física Setor A Turma 1º ANO Professor Gnomo Lista de Exercício Bimestral SISTEMA DE ENSINO Aulas 8 e 9 1) Um autorama descreve uma

Leia mais

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir.

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. 1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,52m. b) 0,64m.

Leia mais

Lista de exercícios nº 2

Lista de exercícios nº 2 F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 2 MOVIMENTO EM UMA DIMENSÃO Exercício 1: A velocidade escalar média é definida como a razão entre a distância total percorrida

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 31/maio/015 Prova A MATEMÁTICA 01. Fabiana recebeu um empréstimo de R$ 15 000,00 a juros compostos à taxa de 1% ao ano. Um ano depois, pagou uma parcela de

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

Lista de exercícios comitê. (Professor BOB)

Lista de exercícios comitê. (Professor BOB) Lista de exercícios comitê (Professor BOB) 1. (Fuvest) Dois carros, A e B, movem-se no mesmo sentido, em uma estrada reta, com velocidades constantes VÛ=l00km/h e V½=80km/h, respectivamente. a) Qual é,

Leia mais

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:

Leia mais