CPV seu Pé Direito no INSPER

Tamanho: px
Começar a partir da página:

Download "CPV seu Pé Direito no INSPER"

Transcrição

1 CPV seu Pé Direito no INSPER INSPER Resolvida 6/junho/03 Prova A (Marrom) ANÁLISE QUANTITATIVA E LÓGICA 0. Na figura está representado o preço de um console de video game, em função do tempo decorrido desde o seu lançamento. Utilize as informções a seguir para as questões 0 e 03. A parte externa do palco de um teatro será construída tendo como contorno um trecho de parábola. Para projetá-la, um arquiteto usou um plano cartesiano e desenhou a parábola de equação y x, restrita aos quadrantes correspondentes a y 0, conforme a figura a seguir. O preço do aparelho será menor do que 50% do valor de lançamento a partir do: a) 6 o mês b) 8 o mês c) 0 o mês d) o mês e) 4 o mês Pelo gráfico, para y,5 obtemos t 4, ou seja, a partir do 4 o mês. Alternativa E Cada unidade nos eixos corresponde a 0 metros. 0. O chão do palco precisa ser recoberto com um revestimento acústico especial, que é muito caro. Como o arquiteto não dispõe de uma fórmula para calcular a área delimitada por uma reta e uma parábola, ele decidiu estimá-la, obtendo um valor mínimo e um valor máximo, usando: um triângulo de vértices sobre os pontos (0;), (; 0) e ( ; 0). um trapázio de vértices sobre os pontos (; 0), ( ; 0), ( 0,5; ) e (0,5; ). Considerando as dimensões reais do palco, a diferença entre os valores que ele obteve corresponde a: a) 0,5 m b),0 m c) 5,0 m d) 0,0 m e) 50,0 m CPV INSPERJUN03

2 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades C D Como cada unidade do gráfico corresponde a 0 m, temos: Área do ΔABC: 0. 0 S 00 m Área do trapézio BCDE: (0 + 0). 0 S 50 m Portanto, a diferença é: S S 50 m Alternativa E A 0 E B 03. Dada a dificuldade de se construir uma superfície que tem um trecho de parábola como contorno, o arquiteto decidiu trocar a forma do palco por um semicírculo de raio (quando representado no mesmo plano cartesiano). Entretanto, dois trilhos de iluminação já estavam sendo construídos no teto nas direções das retas y x e y x, ligando o ponto representado por (0; 0) aos respectivos pontos de encontro das retas com a parábola. Com essa alteração no projeto, o total de trilho adicional necessário para os dois lados será igual a, aproximadamente, a), metros b) 3, metros c) 4, metros d) 5, metros e) 6, metros y x (Use, 4 e, ) y x G H I F A 0 B Para obtermos o segmento IF HG, devemos obter o ponto I resolvendo o sistema: y x x + 5 +, 0,6 Þ x + x 0 y x x 5,,6 (não convém) O ponto I tem coordenadas I (0,6; 0,6). Como OI é diagonal de um quadrado de lado 0,6, então: OF 0,6 0,6.,4 Þ OF 0,84 isto é, 8,4 m Como OF é o raio da circunferência do raio, então OF 0 m. Logo, IF HG 0 8,4,6 Portanto, a medida do trilho adicional é:.,6 3, m Alternativa B CPV INSPERJUN03

3 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/ Considere que a seguinte declaração é verdadeira. Se todos os homens de bem preferem qualquer outra atividade à política, então são governados por pessoas de outra natureza, nunca por homens de bem. Se um homem de bem governa, pode-se deduzir que necessariamente a) todos os homens de bem preferem a política às outras atividades. b) pelo menos um homem de bem prefere a política a alguma outra atividade. c) todas as pessoas de outra natureza preferem a política às outras atividades. d) pelo menos uma pessoa de outra natureza prefere a política às outras atividades. e) nenhuma pessoa de outra natureza prefere a política às outras atividades. Um condicional do tipo Se A, então B é verdadeiro somente em 3 situações: V V, F V, F F. 05. Jane retirou R$40,00 num caixa eletrônico que dispunha de notas de R$50,00 e R$0,00, tendo recebido c cédulas de R$50,00 e v cédulas de R$0,00. A diferença entre c e v, em módulo, pode ser: a) no mínimo e no máximo 5. b) no mínimo e no máximo 7. c) no mínimo e no máximo. d) no mínimo 3 e no máximo 7. e) no mínimo 3 e no máximo. Temos as seguintes distribuições possíveis: c v Então, a diferença em módulo entre c e v, pode ser no mínimo e no máximo. Alternativa C Temos então a declaração: [se] NENHUM homem de bem prefere a política, [então] NENHUM homem de bem governa. Como o enunciado afirma que um homem de bem governa, a segunda parte da proposição (o consequente) é seguramente FALSA. Desse modo, é necessário que a primeira parte da proposição (o antecedente) seja FALSA (afinal, se for verdadeira, teremos V F). Logo, é falso que nenhum homem de bem prefere a política ; ou seja, é verdadeiro que pelo menos um homem de bem prefere a política. Alternativa B INSPERJUN03 CPV

4 4 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades Utilize as informações a seguir para as questões 06, 07 e 08. Um géografo deseja determinar a localização do pico de uma montanha. Na região, há duas estradas retas, ambas no nível do mar, sem subidas ou descidas ao longo de seus percursos, que se cruzam formando um ângulo reto. Ele conta com um instrumento que lhe permite observar o pico por meio de uma luneta e registrar: o ângulo de observação, formado pela reta que liga o ponto em que está o aparelho e o pico com o plano formado pelas duas estradas; a distância aproximada entre o ponto de observação e o pico. Está mais distante do pico o ponto a) A b) B c) C d) D e) E Projetando os pontos A, B, C, D e E sobre a mesma reta em relação ao pico da montanha, temos: pico Os eixos da figura a seguir representam as duas estradas e os pontos A, B, C, D e E correspondem a locais onde ele fez as suas primeiras observações. 45º 40º 37º 34º 3º E D B A C Portanto, o ponto mais distante é o C. Alternativa C Cada unidade nos eixos corresponde a quilômetro. 06. Os ângulos de inclinação entre o plano determinado pelas estradas e as retas ligando os pontos de observação com o pico foram registrados na tabela. CPV INSPERJUN03

5 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/ Como estava com dificuldades para determinar a altura do pico em relação ao nível do mar, o géografo fez diversas outras medições em pontos da estrada representada pelo eixo x. Nesse processo, ele encontrou um ponto F em que o ângulo entre o plano das estradas e a reta que o ligava ao pico era exatamente 30 o. Seu aparelho mostrou que a distância entre o ponto F e o pico era igual a 6 km. A altura do pico em relação ao nível do mar é igual a a) 6 km b) 5 km c) 4 km d) 3 km e) km A figura relacionada à questão é: 08. Para determinar a projeção do pico da montanha no plano representado na figura, o géografo pensou em fazer diversas observações ao longo das duas estradas. Ele o faria até que encontrasse pontos equidistantes da projeção do pico. Para que seja determinada esta localização, a) é suficiente encontrar dois pontos equidistantes distintos na mesma estrada. b) é suficiente encontrar dois pontos equidistantes distintos, sendo um em cada estrada. c) é necessário encontrar três pontos equidistantes distintos dois a dois na mesma estrada. d) é suficiente encontrar três pontos equidistantes distintos dois a dois. e) é necessário encontrar quatro pontos equidistantes distintos dois a dois. 6 km h y 30º D Então, sen 30º h 6 Þ h 3 km Alternativa D P C A B x A projeção ortagonal do pico sobre o plano é o centro da circunferência cujo raio é a medida feita pelo geógrafo. Se este tomasse apenas pontos dentre A, B, C e D, o pico estaria em um ponto qualquer da mediatriz do segmento de reta determinado por estes pontos. Portanto, seria necessário um terceiro ponto para encontrarmos as coordenadas do ponto pedido. Obs: Se considerarmos que o geógrafo considera a medida da distância do ponto de observação até a projeção, bastariam apenas pontos na mesma reta, o que nos conduziria à alternativa A. Alternativa D INSPERJUN03 CPV

6 6 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades 09. Uma doceira vende bombons artesanais em embalagens individuais (por R$5,00 a unidade), caixas com (por R$5,00 cada uma) ou pacotes com 4 (por R$96,00 cada um). Há também uma promoção: comprando x embalagens individuais, o cliente ganha x% de desconto, para x 50. Comparando os preços, é correto concluir que comprar bombons pela promoção é a) mais vantajoso para um cliente que quiser ou 4 unidades do que adquiri-las na caixa ou no pacote, respectivamente. b) mais vantajoso para um cliente que quiser 4 unidades em relação ao preço do pacote, mas não para quem quiser. c) mais vantajoso para um cliente que quiser unidades em relação ao preço da caixa, mas não para quem quiser 4. d) menos vantajoso tanto para um cliente que quiser unidades quanto para quem quiser 4, em relação aos preços da caixa ou do pacote, respectivamente. e) indiferente tanto para um cliente que quiser unidades quanto para quem quiser 4. O preço da promoção é 5x ( x 00) ; os preços para e 4 unidades são respectivamente, 5,8 e 9,0. Portanto, é mais vantajoso para um cliente que quer 4 unidades mas não para aquele que quer unidades. Alternativa b CPV INSPERJUN03

7 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/ Gilson está fazendo dez treinos para uma corrida de 5 quilômetros. A cada treino ele faz o pecurso da corrida e registra seu tempo. A recomendação de seu treinador é que consiga um tempo médio de h30min, considerando os dez treinos. Os tempos dos treinos já realizados constam na tabela a seguir. Para que Gilson consiga atingir o tempo médio recomendado pelo seu treinador, nos três últimos treinos ele deve manter um tempo médio de no máximo a) h5min b) h6min c) h7min d) h8min e) h9min Calculando a média para as 0 tomadas de tempo com todo os valores em minutos T 8 + T 9 + T 0 T 8 + T 9 + T 0 55 min A média dos 3 últimos tempos é h 5 min Alternativa A INSPERJUN03 CPV

8 8 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades Utilize as informações a seguir para as questões e. c) Em um torneio de apostas, cada participante recebe 50 fichas. Ao longo do torneio, eles podem apostar qualquer quantidade de fichas com qualquer outro participante. Em toda aposta, um ganha e outro perde as fichas apostadas. 00 pessoas entraram nesse torneio e, ao final, foram identificados os 30 que tinham acabado com mais fichas (Grupo G) e os 30 que tinham acabado com menos fichas (Grupo P). A organização registrou o total de fichas de todos os participantes em 4 momentos do torneio. A tabela abaixo mostra as somas das fichas das pessoas dos Grupos G e P nas 4 contagens feitas. d). O gráfico que melhor expressa a soma das fichas daqueles que não estão no Grupo G e nem no Grupo P é: a) e) b) Somando o total de fichas em cada uma das quatro contagens e subtraindo esse resultado de 5000, teremos o total de fichas que não pertencem ao grupo G e ao grupo P. Contagem Soma de P e G Assim, o gráfico correto é o da Alternativa A CPV INSPERJUN03

9 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/03 9. Ao final do torneio, não havia dois participantes que tivessem o mesmo número de fichas. Júlio, um dos participantes, terminou com o maior número de fichas entre todos os 00. Júlio chegou ao fim do torneio com, no máximo, a) 49 fichas. b) 50 fichas. c) 499 fichas. d) 500 fichas. e) 4900 fichas. 3. Na figura, P é o ponto médio de AC, P é o ponto médio de P C, P 3 é o ponto médio de P C, e assim sucessivamente, em uma sequência infinita de pontos. Além disso, o lado de cada triângulo que está contido no eixo x mede a metade do lado do triângulo anterior. Para a resolução desta questão é importante salíentar que não iremos considerar que o jogo acabou na quarta rodada. Assumindo que Júlio terminou com o maior número de fichas e todos os perdedores estão com números diferentes de fichas podemos distribuilos em P.A da seguinte forma: (0 + 98) 99 0,,, 3, 4,..., 98 assim 485 Então Júlio acabou o jogo com no máximo 49 fichas. Alternativa a A soma das áreas dos triângulos sombreados é igual a: a) 8 b) 7 c) 6 d) 5 e) 4 Pela figura: S S S Assim, a soma das infinitas áreas dos triângulos é igual a: 5 4 S 5-4 Alternativa D INSPERJUN03 CPV

10 0 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades 4. Se, α e β são as raízes da função f (x) x 3 + 4x 55x + 50, então + α + β é igual a: a) 4 b) 50 c) 55 d) 0 e) 6 Utilize as informações a seguir para as questões 5 e 6. O gráfico a seguir mostra as temperaturas registradas em uma cidade localizada numa região serrana ao longo de um dia inteiro. Se x é raiz de f (x) x 3 + 4x 55x + 50, então: f (x) (x ). (x + 5x 50) (x ). (x 5). x + 0 Assim, as raízes de f (x) são, 5 e 0. Logo, + α + β 6 Alternativa E 5. Os horários do dia em que a temperatura estava mais alta e mais baixa foram, respectivamente, a) 0h e 4h. b) 7h e 7h. c) 0h e 7h. d) 7h e 4h. e) 7h e 4h. Observando o gráfico, temos que a temperatura mais alta ocorreu às 0 h (5ºC), e a mais baixa às 4 h (8,5ºC) Alternativa A CPV INSPERJUN03

11 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/03 6. O aquecedor de uma residência nessa cidade está programado para funcionar sempre que a temperatura fica abaixo de 6 o C. Durante esse dia, este aquecedor ficou ligado por, aproximadamente, a) 3h b) 7h c) 0h d) 4h e) 7h Observando o gráfico, temos que a temperatura fica abaixo de 6ºC, nos seguintes intervalos de horas: das 4 h às h Þ 7 horas e das h às 4 h Þ 3 horas Assim, o total de horas que o aquecedor fica ligado neste dia é de 0 horas. Alternativa C 7. O número de soluções reais da equação é igual a: a) b) c) 3 d) 4 e) 5 x 4 log 7 x 6 log 7 x 0 Para x Î R * +, temos: (x 4 6). log 7 x 0 Þ x ou x. Portanto, são soluções reais. Alternativa B INSPERJUN03 CPV

12 INSPER 6/06/03 Seu Pé Direito nas Melhores Faculdades Utilize as informações a seguir para as questões 8 e 0. Um modelo probabilístico foi criado para ajudar a polícia rodoviária a identificar motoristas potencialmente problemáticos. O modelo aponta, de acordo com as características do veículo, comportamento do motorista e velocidades registradas nos radares, as probabilidades de o indíviduo: Perfil A: causar um acidente grave; Perfil B: cometer uma infração de trânsito; Perfil C: dirigir de forma segura e responsável. Para cada pessoa, o modelo calcula três valores a, b e c, dos quais resultam as probabilidades dos três perfis, dadas, respectivamente, por: pa pb pc a a + b + c b a + b + c c a + b + c A maior dessas 3 probabilidades indica o perfil do motorista correspondente. 8. Quando a soma das probabilidades pa e pb, para um determinado motorista, superar 35%, a polícia rodoviária deve submetê-lo ao teste do bafômetro. A tabela abaixo mostra os valores de a, b e c determinados pelo sistema para 4 motoristas. Considerando os valores da tabela dada temos para: Motorista pa pb pa + pb Motorista 5 < 35% pa pb pa + pb Motorista > 35% pa pb e pa + pb 3 5 > 35% Portanto, devem ser submetidos ao teste do bafômetro apenas os motoristas e 3 Alternativa C Devem ser submetidos ao teste do bafômetro apenas os motoristas: a) e b) e 3 c) e 3 d) e 4 e) 3 e 4 CPV INSPERJUN03

13 Seu Pé Direito nas Melhores Faculdades INSPER 6/06/ Durante o processamento, o computador que executa o modelo somente consegue efetuar operações com números inteiros menores ou iguais a Das possibilidades de combinações de valores a seguir, a única que permitirá ao computador efetuar as operações é: a) a 30, b 0 e c b) a, b 3 e c 5 c) a 8, b 7 e c 3 d) a 35, b 3 e c e) a 7, b 0 e c Quando calculamos 0 obtemos 04 que vale aproximadamente 0 3. Então, 30 ( 0 ) (0 3 ) > A única alternativa que possui todos os expoentes menores do que 30 é a E. Portanto Alternativa E 0. Para simplificar os cálculos, um analista percebeu que, para a grande maioria dos motoristas, ele poderia fixar c e fazer a b. Para esses casos, ele pode programar o sistema para calcular pa pela fórmula: a) b) c) d) e) + a a + a a + a a a + a a + a pa a a + a + a ( a + ). a a ( + a ) + a Alternativa A INSPERJUN03 CPV

Derivação Implícita e Taxas Relacionadas

Derivação Implícita e Taxas Relacionadas Capítulo 14 Derivação Implícita e Taxas Relacionadas 14.1 Introdução A maioria das funções com as quais trabalhamos até agora é da forma y = f(x), em que y é dado diretamente ou, explicitamente, por meio

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo

Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo 1 a Questão: Observando, em cada caso, os gráficos apresentados, responda

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito no INSPER INSPER Resolvida 5/novembro/0 Prova A (Verde) ANÁLISE quantitativa e lógica 0 Por um terminal de ônibus passam dez diferentes linhas A mais movimentada delas é a linha : quatro

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

Lista de Exercícios - Integrais

Lista de Exercícios - Integrais Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

TOPOGRAFIA. Áreas e Volumes

TOPOGRAFIA. Áreas e Volumes TOPOGRAFIA Áreas e Volumes A estimativa da área de um terreno pode ser determinada através de medições realizadas diretamente no terreno ou através de medições gráficas sobre uma planta topográfica. As

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 2008 2 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP 8 a Fase Professora Maria Antônia Gouveia. Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IBMEC 0/junho/007 NÁLISE QUNTITTIV E LÓGIC OBJETIV. Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados

Leia mais

Lista de exercícios de recuperação. 3º E.M. - Matemática

Lista de exercícios de recuperação. 3º E.M. - Matemática Lista de exercícios de recuperação 3º E.M. - Matemática 1) As equações das retas r e s da figura são, respectivamente, a) r: -x + y - 5 = 0 e s: x + y - 5 = 0. b) r: -5x + y - 5 = 0 e s: 5x + y - 5 = 0.

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA y y a y P A y b B R T xb x xa x y y a A y b M xb xa x y y x x r s a 3 a 2 a a 1 b c b + c Como pode cair no enem (CESGRANRIO) As escalas termométricas Celsius

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP Péricles Bedretchuk Araújo Situações de aprendizagem: a circunferência, a mediatriz e uma abordagem com o Geogebra Dissertação apresentada à Banca Examinadora

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

1. (Upe 2014) O deslocamento Δ x de uma partícula em função do tempo t é ilustrado no gráfico a seguir:

1. (Upe 2014) O deslocamento Δ x de uma partícula em função do tempo t é ilustrado no gráfico a seguir: 1. (Upe 2014) O deslocamento Δ x de uma partícula em função do tempo t é ilustrado no gráfico a seguir: Com relação ao movimento mostrado no gráfico, assinale a alternativa CORRETA. a) A partícula inicia

Leia mais

ENEM 2012 MATEMÁTICA PROVA AMARELA

ENEM 2012 MATEMÁTICA PROVA AMARELA ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

UFPel - CENG - CÁLCULO 1

UFPel - CENG - CÁLCULO 1 UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

LISTA EXTRA MRU e MRUV - 2ª SÉRIE

LISTA EXTRA MRU e MRUV - 2ª SÉRIE LISTA EXTRA MRU e MRUV - ª SÉRIE 1. (Unicamp 014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência:

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos:

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos: CINEMÁTICA ESCALAR A Física objetiva o estudo dos fenômenos físicos por meio de observação, medição e experimentação, permite aos cientistas identificar os princípios e leis que regem estes fenômenos e

Leia mais

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 0 pontos Na Tabela 1 temos a progressão mensal para o Imposto de Renda Pessoa Física 014 01. Tabela 1: Imposto de Renda Pessoa Física 014 01. Base

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

1. (U.F.São Carlos SP)

1. (U.F.São Carlos SP) 1. (U.F.São Carlos SP) Um trem carregado de combustível, de 120m de comprimento, faz o percurso de Campinas até Marília, com velocidade constante de 50 Km/h. Esse trem gasta 15s para atravessar completamente

Leia mais

Capítulo IV TAQUEOMETRIA

Capítulo IV TAQUEOMETRIA 62 Capítulo IV TAQUEOMETRIA 1. Princípios Gerais A taqueometria, do grego takhys (rápido), metren (medição), compreende uma série de operações que constituem um processo rápido e econômico para a obtenção

Leia mais

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem)

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem) (Enem) (Unimontes-MG) A resolução das câmeras digitais modernas é dada em megapixels, unidade de medida que representa um milhão de pontos. As informações sobre cada um desses pontos são armazenadas, em

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades dos móveis variam com o decurso do tempo, introduz-se o conceito de uma grandeza

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B 1. Uma escola irá sortear duas pessoas dentre os seus 20 melhores alunos para representá-la em um encontro de estudantes no Canadá, país que possui dois idiomas oficiais, Inglês e Francês. Sabe-se que,

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS

ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS PROBABILIDADES E COMBINATÓRIA ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 Introdução ao cálculo Conhecer terminologia das probabilidades de Probabilidades

Leia mais

b) A distância X, em km, entre o receptor R, no avião, e o ponto O.

b) A distância X, em km, entre o receptor R, no avião, e o ponto O. 1. (Fuvest 94) Dois carros, A e B, movem-se no mesmo sentido, em uma estrada reta, com velocidades constantes Va = 100 km/h e Vb = 80 km/h, respectivamente. a) Qual é, em módulo, a velocidade do carro

Leia mais

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Geometria Analítica Cônicas Eercícios de Matemática Geometria Analítica Cônicas ) (ITA-004) Considere todos os números z = + i que têm módulo e estão na elipse + 4 = 4. Então, o produto deles é igual a 9 49 8 4 ) (VUNESP-00) A figura

Leia mais

SuperPro copyright 1994-2011 Colibri Informática Ltda.

SuperPro copyright 1994-2011 Colibri Informática Ltda. mesmo percurso. 1. (Ufpe 2005) Um submarino em combate lança um torpedo na direção de um navio ancorado. No instante do lançamento o submarino se movia com velocidade v = 14 m/s. O torpedo é lançado com

Leia mais

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde

FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde FUNÇÃO DO GRAU Professora Laura 1. Definição Chamamos de função do grau, ou também função quadrática, toda função que assume a forma: f : R R; f ( x) ax bx c onde a, b, c R e a 0. Podemos classificar as

Leia mais

Física Fácil prof. Erval Oliveira. Aluno:

Física Fácil prof. Erval Oliveira. Aluno: Física Fácil prof. Erval Oliveira Aluno: O termo trabalho utilizado na Física difere em significado do mesmo termo usado no cotidiano. Fisicamente, um trabalho só é realizado por forças aplicadas em corpos

Leia mais

UNIDADE 10 ESTUDOS DE MECÂNICA - INÍCIO LISTA DE EXERCÍCIOS

UNIDADE 10 ESTUDOS DE MECÂNICA - INÍCIO LISTA DE EXERCÍCIOS INTRODUÇÃO À FÍSICA turma MAN 26/2 profa. Marta F. Barroso UNIDADE 1 LISTA DE EXERCÍCIOS UNIDADE 1 ESTUDOS DE MECÂNICA - INÍCIO Exercício 1 Movendo-se com velocidade constante de 15 m/s, um trem, cujo

Leia mais

Exemplos de aceleração Constante 1 D

Exemplos de aceleração Constante 1 D Exemplos de aceleração Constante 1 D 1) Dada a equação de movimento de uma partícula em movimento retilíneo, s=-t 3 +3t 2 +2 obtenha: a) A velocidade média entre 1 e 4 segundos; e) A velocidade máxima;

Leia mais

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações:

FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1 FUNÇÕES DE 1º GRAU 0) Determine f() cujo gráfico está ilustrado abaio. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1) O fator a determina o crescimento da função: se y 1, então

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER ANÁLISE Quantitativa e Lógica Utilize as informações a seguir para as questões 01 e 02. Uma estação de trens é constituída por dois galpões cujas fachadas têm a forma de dois semicírculos que se tangenciam,

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

UFJF CONCURSO VESTIBULAR 2012-2 GABARITO DA PROVA DE MATEMÁTICA

UFJF CONCURSO VESTIBULAR 2012-2 GABARITO DA PROVA DE MATEMÁTICA UFJF CONCURSO VESTIBULAR 0- GABARITO DA ROVA DE MATEMÁTICA Questão Uma construtora, para construir o novo prédio da biblioteca de uma universidade, cobra um valor fixo para iniciar as obras e mais um valor,

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Telecurso 2000 Junho 2012. Instrução: Todas as trinta questões desta prova devem ser respondidas assinalando a alternativa adequada ao enunciado.

Telecurso 2000 Junho 2012. Instrução: Todas as trinta questões desta prova devem ser respondidas assinalando a alternativa adequada ao enunciado. Instrução: Todas as trinta questões desta prova devem ser respondidas assinalando a alternativa adequada ao enunciado. QUESTÃO 1 Leia o texto a seguir. A companhia aérea canadense Discovery Air comprometeu-se

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

(1) FÍSICA (2) (3) PROVA A 1

(1) FÍSICA (2) (3) PROVA A 1 FÍSICA 0 - O gráfico ao lado apresenta a superposição de três gráficos de uma grandeza (z) em função do tempo (t). A grandeza (z) pode representar: (0) no caso (), o espaço em um movimento uniforme. (0)

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

Grupo I... 70 Cada resposta certa...10 Grupo II...130 1...35 3...30 1.1...15 3.1...10 1.2...10 3.2...20 1.3...10 4...35 2...30 4.1...5 2.1...

Grupo I... 70 Cada resposta certa...10 Grupo II...130 1...35 3...30 1.1...15 3.1...10 1.2...10 3.2...20 1.3...10 4...35 2...30 4.1...5 2.1... Material necessário: Material de escrita. Máquina de calcular científica (não gráfica). A prova é constituída por dois grupos, I e II. O grupo I inclui 7 questões de escolha múltipla. Para cada uma delas,

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais