2018 Dr. Walter F. de Azevedo Jr. Séries de Fourier

Tamanho: px
Começar a partir da página:

Download "2018 Dr. Walter F. de Azevedo Jr. Séries de Fourier"

Transcrição

1 208 Dr. Walter F. de Azevedo Jr

2 Cristalografia Etapas para resolução da estrutura 3D de macromoléculas biológicas por cristalografia 3. Interpretação do padrão de difração de raios X 2. Coleta de dados de difração de raios X.. Cristalização. 4. Resolução da estrutura. 5. Análise. 2

3 Esfera de Ewald Vimos na aula 6 que podemos repretar o fenômeno de difração de raios X por um cristal, como a passagem de um ponto do retículo recíproco pela esfera de Ewald, como indicado na animação ao lado. Fonte: 3

4 Esfera de Ewald As refleões registradas na imagem de difração podem ser interpretadas como resultado da refleão de um plano de índice hkl, onde hkl são os índices de Miller da família de plano. Placa de imagem Padrão registrado na placa de imagem Retículo recíproco Fonte de raios X Esfera de Ewald Cristal Cabeça goniométrica 4

5 Veremos hoje que sistemas periódicos, como cristais, podem ser repretados por funções simples, como o ou coso. Não iremos fazer da dedução matemática de tal afirmação, simplesmente veremos como podemos somar funções simples que geram repretações compleas repetitivas. A melhor forma de entendermos é através de um eemplo prático. As funções matemáticas, que fazem uso de o e coso para repretação de sistemas periódicos, são chamadas de séries de Fourier. Densidade eletrônica de uma cristal de proteína 5

6 Com um pouco de abstração, podemos imaginar um cristal unidimensional, que usaremos como eemplo para repretar a densidade eletrônica, a partir da soma de funções o e coso. Veja o trecho de uma densidade eletrônica dehado abaio, onde temos a repetição da cadeia lateral da fenilalanina. 6

7 Podemos aproimar a densidade eletrônica, dehada com um gradeado azul, como uma função degrau, sobreposta à imagem. A preça de densidade eletrônica da cadeia lateral da fenilalanina, pode ser aproimada por uma caia que a envolve, dehada pela linha branca. 7

8 A altura da linha branca é o valor da função da posição, ou seja, f(), como repretado abaio. Podemos considerar que o período da função f() é 2, ou seja, para cada 2 a função f() se repete. Assim podemos reduzir o problema da repretação matemática do nosso cristal unidimensional, a uma repretação de f(). f() 2 8

9 Abaio temos nossa função f(). Podemos repretar nosso eio cortando os degraus pela metade, como repretado abaio. A função f() varia entre um máimo e um mínimo, por conveniência fiaremos o máimo em e o mínimo em -, como indicado abaio. f() 0-2 9

10 Por último, podemos repretar nosso sistema, considerando só a parte que se repete, como indicada abaio. A função f() não tem relação óbvia com as funções o e coso, mas podemos repretá-la como uma soma dessas funções, ou seja, podemos aproimar a função degrau com um soma de os. f() 0-2 0

11 Consideremos que a função f() varia entre - e e tem período de 2, ou seja, ela é periódica. Podemos repretar esta função periódica f() na forma de soma de os (série de Fourier), como segue: Se eplicitarmos os primeiros termos da série de Fourier para a função degrau, teremos a seguinte epressão: Observe que a soma restringe-se aos n ímpares. O número de termos que usarmos na função, influenciará diretamente na qualidade de aproimação, ou seja, quanto mais termos usarmos, melhor será a repretação da função degrau pela soma de os. Nos próimos slides veremos alguns casos. = =,..,, ) ( n n n f...} { ) (,..,, = = = n n f n

12 Vejamos quando só somamos os dois primeiros termos da série de Fourier, como indicado abaio. n 4 3 f ( ) = = { + } n n= 0 2 2

13 3 Vejamos quando só somamos os cinco primeiros termos da série, como indicado abaio. }... { ) ( = = = n n f n

14 Vejamos quando só somamos os 0 primeiros termos da série, como indicado abaio. f n ( ) = = { } n n= 0 2 4

15 Vejamos quando só somamos os 20 primeiros termos da série, como indicado abaio. f n ( ) = = { } n n= 0 2 5

16 Vejamos quando só somamos os 50 primeiros termos da série, como indicado abaio. f n ( ) = = { } n n= 0 2 6

17 Vejamos quando só somamos os 00 primeiros termos da série, como indicado abaio. f n ( ) = = { } n n= Vemos claramente uma aproimação com a função degrau, conforme aumentamos o número de termos na série de Fourier 0 2 7

18 Referências Drenth, J. (994). Principles of Protein X-ray Crystallography. New York: Springer- Verlag. Rhodes, G. (2000). Crystallography Made Crystal Clear. 2 nd ed.san Diego: Academic Press. Stout, G. H. & Jen,. H. (989). X-Ray Structure Determination. A Practical Guide. 2nd ed. New York: John Wiley & Sons. Última atualização em 8 de outubro de

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Espaço Recíproco e a Esfera de Ewald Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Índices de Miller Índices de Direções Espaço Recíproco Esfera de Ewald Esfera Limite Número de

Leia mais

Biologia Estrutural. Cálculo dos Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Cálculo dos Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Cálculo dos Fatores de Estrutura Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Extinção Sistemática para Cela Unitária de Face Centrada (F) Fator de Estrutura na Forma Complexa Cálculo

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Biologia Estrutural Cálculo da Densidade Eletrônica Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Introdução Cálculo da densidade eletrônica Densidade eletrônica de um cristal unidimensional Densidade

Leia mais

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Ondas e Lei de Bragg Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Fenômenos Ondulatórios Pulso de Ondas Ondas Onda Eletromagnética Radiação Eletromagnética Interferência Representação

Leia mais

2015 Dr. Walter F. de Azevedo Jr.

2015 Dr. Walter F. de Azevedo Jr. 015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Biologia Estrutural. Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Fatores de Estrutura Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Fator de Espalhamento Atômico Fator de Estrutura Cálculo Computacional do Fator de Estrutura Arquivos PDB Fator

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Fatores de Estrutura

2015 Dr. Walter F. de Azevedo Jr. Fatores de Estrutura 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Problema da Fase

2018 Dr. Walter F. de Azevedo Jr. Problema da Fase 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Biologia Estrutural. Solução do Problema da Fase. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Biologia Estrutural. Solução do Problema da Fase. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr. Biologia Estrutural Solução do Problema da Fase Prof. Dr. Walter Filgueira de Azevedo Jr. Resumo Introdução Problema da fase Função de Patterson Aplicação da função de Patterson Método da Substituição

Leia mais

BOTUCATU, SP - RUBIÃO JUNIOR Fone (0xx14) fax

BOTUCATU, SP - RUBIÃO JUNIOR Fone (0xx14) fax Universidade Estadual Paulista Instituto de Biociências Seção de Pós-Graduação BOTUCATU, SP - RUBIÃO JUNIOR - 18618-000 - Fone (0xx14) 68026148 - fax 68023744 e-mail:posgraduacao@ibb.unesp.br Curso de

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Campus de Botucatu PLANO DE ENSINO

Campus de Botucatu PLANO DE ENSINO PLANO DE ENSINO I - IDENTIFICAÇÃO CURSO: Física Médica MODALIDADE: Bacharelado DISCIPLINA: Biofísica Molecular (X) OBRIGATÓRIA ( ) OPTATIVA DEPARTAMENTO: Física e Biofísica DOCENTE RESPONSÁVEL: Prof. Dr.

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

Biofísica. Métodos Experimentais em Biofísica - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr.

Biofísica. Métodos Experimentais em Biofísica - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr. 2019 Dr. Walter F. de Azevedo Jr. Biofísica Métodos Experimentais em Biofísica - Cristalografia de Proteínas Prof. Dr. Walter F. de Azevedo Jr. 1 Cristalografia de Proteínas Etapas para resolução da estrutura

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

DIFRAÇÃO DE RAIOS X BIOLOGIA ESTRUTURAL Aula 8 Prof. Dr. Valmir Fadel

DIFRAÇÃO DE RAIOS X BIOLOGIA ESTRUTURAL Aula 8 Prof. Dr. Valmir Fadel Raios X são radiações eletromagnética com energias na faixa de 100 ev - 100 kev. Para aplicações em difração, são usados os raios X de comprimento de ondas curtos (hard x-rays) na faixa de poucos angstroms

Leia mais

Álgebra. Progressão geométrica (P.G.)

Álgebra. Progressão geométrica (P.G.) Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica

Leia mais

Ondas. Objetivos: Usar o programa Mathematica para representação de ondas. Simular ondas e fenômenos ondulatórios no Mathematica.

Ondas. Objetivos: Usar o programa Mathematica para representação de ondas. Simular ondas e fenômenos ondulatórios no Mathematica. Ondas Objetivos: Usar o programa Mathematica para representação de ondas. Simular ondas e fenômenos ondulatórios no Mathematica. Ondas Podemos representar os fenômenos ondulatórios por funções periódicas

Leia mais

Biofísica Molecular. Métodos Experimentais em Biofísica - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr.

Biofísica Molecular. Métodos Experimentais em Biofísica - Cristalografia de Proteínas. Prof. Dr. Walter F. de Azevedo Jr. Biofísica Molecular Métodos Experimentais em Biofísica - Cristalografia de Proteínas Prof. Dr. Walter F. de Azevedo Jr. 1 2017 Dr. Walter F. de Azevedo Jr. Biofísica e sua Relação com Outras Disciplinas

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Disciplina Análi Matemática II Curso Engenharia do Ambiente º Semestre º Ficha nº : Funções de várias variáveis: derivadas parciais, dierenciais e regra da cadeia DERIVADAS PARCIAIS

Leia mais

Mecânica Newtoniana: Sistema de Partículas

Mecânica Newtoniana: Sistema de Partículas Mecânica Newtoniana: Sistema de Partículas 218 Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. E-mail: walter@azevedolab.net 1 Centro de Massa Considere um sistema de duas partículas de

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo Gabarito parcial da 11 a lista de eercícios 1. Crescente em [ 1, 1]. Crescente

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Exercícios sobre Polinômios

Exercícios sobre Polinômios uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga

Leia mais

Integrais Múltiplas. Integrais duplas sobre retângulos

Integrais Múltiplas. Integrais duplas sobre retângulos Integrais Múltiplas Integrais duplas sobre retângulos Vamos estender a noção de integral definida para funções de duas, ou mais, variáveis. Da mesma maneira que a integral definida para uma variável, nos

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição

Leia mais

2018 Dr. Walter F. de Azevedo Jr.

2018 Dr. Walter F. de Azevedo Jr. 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 3 Limites Considere a função f definida por: Qual o domínio dessa função? Se 1, então f () é dada por: (2 + 3)( 1). 1 2 +

Leia mais

Traçado do gráfico de uma função; otimização

Traçado do gráfico de uma função; otimização 15 Traçado do gráfico de uma função; otimização Sumário 15.1 Traçado do gráco de uma função.......... 15. Problemas de otimização............... 15 1 Unidade 15 Traçado do gráfico de uma função 15.1 Traçado

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

INTEGRAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis.

INTEGRAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis. INTEGAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis INTEGAIS DUPLAS Consideremos o problema de determinar o volume V do sólido compreendido entre

Leia mais

Limite e continuidade

Limite e continuidade Limite e continuidade Noção intuitiva de ite Considere a função f qualquer que seja o número real o Eemplo Se f ( ) Esta função está definida para todo R, isto é, f está bem definido, o valor ( ) o então

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Aprete o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando, para

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

a 22, nesta ordem, apresentam a seguinte propriedade: Os três primeiros

a 22, nesta ordem, apresentam a seguinte propriedade: Os três primeiros PROCESSO SELETIVO/2004 CGE GAB. 1 1 o DIA 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. A soma das raízes das equações + 1 log 5 ( 4 ) + log 5 ( 4 7) = 1 e 7 7 = 294 vale: a) 4 b) c) 2 d) 5 e) 6 02. Na matriz quadrada

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Pro: Lauro Cesar Galvão Campus Curitiba Departamento Acadêmico de Matemática Cálculo Numérico Entrega: unto com a a parcial DATA DE ENTREGA: dia da a PROVA (em

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

Distribuições Amostrais

Distribuições Amostrais Estatística II Antonio Roque Aula Distribuições Amostrais O problema central da inferência estatística é como fazer afirmações sobre os parâmetros de uma população a partir de estatísticas obtidas de amostras

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Substituição Molecular

2015 Dr. Walter F. de Azevedo Jr. Substituição Molecular 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

2018 Dr. Walter F. de Azevedo Jr.

2018 Dr. Walter F. de Azevedo Jr. 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

Parte III Alguns modos de operação. II Encontro da Rede Mineira de Química - UFSJ - Maio de 2012

Parte III Alguns modos de operação. II Encontro da Rede Mineira de Química - UFSJ - Maio de 2012 Parte III Alguns modos de operação 64 Modos de operação Amostra cristalina λ Padrão de difração θ θ Plano imagem Plano focal (Espaço recíproco) (Espaço direto) 65 d A difração só ocorre quando λ = 2dsenθ

Leia mais

Inferência Estatística. Medidas de Tendência Central Medidas de Variação Medidas de Posição

Inferência Estatística. Medidas de Tendência Central Medidas de Variação Medidas de Posição Inferência Estatística Medidas de Tendência Central Medidas de Variação Medidas de Posição Notações Estatísticas Característica amostra população Somatório de um conjunto de valores Valores individuais

Leia mais

Prisma óptico. Reflexão total. D = (n-1)a. Espelho esférico. Lente fina ÓPTICA DOS RAIOS.

Prisma óptico. Reflexão total. D = (n-1)a. Espelho esférico. Lente fina ÓPTICA DOS RAIOS. Refleão total sen θ = ma n n 2 ÓPTICA DOS RAIOS Prisma óptico sin i = n sin r sin i 2 = n sin r 2 r + r 2 = A D = i + i 2 -A D = (n-)a Espelho esférico Lente fina p + q = 2 R = f p + q = ( n ) R + R 2

Leia mais

Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS. Aula 2 Limites. Professor Luciano Nóbrega

Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS. Aula 2 Limites. Professor Luciano Nóbrega Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS Aula 2 Limites Professor Luciano Nóbrega O LIMITE DE UMA FUNÇÃO 2 2,5,9 Inicialmente, vamos analisar o comportamento da função f definida por

Leia mais

Equação de Schrödinger

Equação de Schrödinger Maria Inês Barbosa de Carvalho Equação de Schrödinger Apontamentos para a disciplina Física dos Estados da Matéria 00/0 Licenciatura em Engenharia Electrotécnica e de Computadores Faculdade de Engenharia

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

Aula 12. Interpolação Parte 1

Aula 12. Interpolação Parte 1 CÁLCULO NUMÉRICO Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura: Temperatura ( o C) 20 25 30 35 40 Densidade (g/m

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ;

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ; Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/004 Ficha Prática nº. 5: Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas Paridade das Funções Seno e Cosseno Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II

Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II Tema : Cálculo diferencial de funções de duas variáveis Este teto foi retirado do manual de apoio à

Leia mais

2018 Dr. Walter F. de Azevedo Jr. Produção e Propriedades dos Raios X

2018 Dr. Walter F. de Azevedo Jr. Produção e Propriedades dos Raios X 2018 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

CMS Física do Estado sólido

CMS Física do Estado sólido CMS-301-4 Física do Estado sólido Engenharia e Tecnologia Espaciais ETE Ciência e Tecnologia de Materiais e Sensores 09.10.008 L.F.Perondi Engenharia e Tecnologia Espaciais ETE Ciência e Tecnologia de

Leia mais

Derivadas e suas Aplicações

Derivadas e suas Aplicações Capítulo 4 Derivadas e suas Aplicações Ao final deste capítulo você deverá: Compreender taa média de variação; Enunciar a definição de derivada de uma função interpretar seu significado geométrico; Calcular

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia PARTE 5 LIMITE 5.1 Um Pouco de Topologia Vamos agora nos preparar para definir ite de funções reais de várias variáveis reais. Para isto, precisamos de alguns conceitos importantes. Em primeiro lugar,

Leia mais

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis Á lgebra para intermedia rios Ma imos, mí nimos e outras ideias u teis 0) O que veremos na aula de hoje? Máimos e mínimos em funções do º grau Máimos e mínimos por trigonometria Máimos e mínimos por MA

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

UCS - CCET: CENTRO DE CIÊNCIAS EXATAS E DA TECNOLOGIA MAT PRÉ-CÁLCULO Funções potência

UCS - CCET: CENTRO DE CIÊNCIAS EXATAS E DA TECNOLOGIA MAT PRÉ-CÁLCULO Funções potência ) n m a n.m a UCS - CCET: CENTRO DE CIÊNCIAS EXATAS E DA TECNOLOGIA MAT0 - PRÉ-CÁLCULO Funções potência ADAMI, A. M. et al. Pré-cálculo: capítulo - p.. DEMANA, F. D. et al. Pré-cálculo: capítulo 9 - p.

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIVIDADE ESPECIAL AULA N O 06 (Noções de Cosmologia Métrica Constante de Hubble ) Vamos entrar ligeiramente no campo da Relatividade Geral, para vermos o que é Cosmologia e o que de fato é o espaço-tempo.

Leia mais

Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com:

Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com: Avaliação 0 ) Médicos ligados aos desportos de desenvolveram empiricamente a seguinte fórmula para calcular a área da superfície de uma pessoa em função do seu peso e sua Altura. 0,45 0,75 S( P, A) 0,007P

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 6 o ANO DO ENSINO FUNDAMENTAL DATA: 20/11/2013

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 6 o ANO DO ENSINO FUNDAMENTAL DATA: 20/11/2013 QUESTÃO 0 (0,4 ) RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 6 o ANO DO ENSINO FUNDAMENTAL DATA: 0//03 PROFESSORA: TINA Qual o cubo de, sabendo que 7 : 0 7 4 3 :? o 7 7 7 : 0 7 4 3 :? = ( : 0 + 7 + 7) 3 : = =

Leia mais

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas ac C Á L C U L O D I F E R E N C I A L E I N T E G R A L I 02 Prof. ADRIANO CATTAI Apostila 02: Assíntotas NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

M. Eisencraft 2.5 Outros exemplos de distribuições e densidades 29. Densidade e distribuição uniforme. 0 a b x. 0 a b x

M. Eisencraft 2.5 Outros exemplos de distribuições e densidades 29. Densidade e distribuição uniforme. 0 a b x. 0 a b x M. Eisencraft 2.5 Outros eemplos de distribuições e densidades 29 Densidade e distribuição uniforme /(b a) () a b.8 ().6.4.2.2 a b 2.5.2 Eponencial Figura 2.8: Funções densidade e distribuição uniforme.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Gráfico da função quadrática e inequações de segundo grau. Primeiro Ano do Ensino Médio

Gráfico da função quadrática e inequações de segundo grau. Primeiro Ano do Ensino Médio Material Teórico - Módulo Função Quadrática Gráfico da função quadrática e inequações de segundo grau Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha

Leia mais

Richard J. D. Tilley. tradução Fábio R. D. de Andrade. cristais e estruturas cristalinas

Richard J. D. Tilley. tradução Fábio R. D. de Andrade. cristais e estruturas cristalinas Richard J. D. Tilley tradução Fábio R. D. de Andrade Cristalografia cristais e estruturas cristalinas Crystal and crystal structures Copyright original 2006 John Wiley & Sons Ltd, Sussex, Inglaterra Copyright

Leia mais

2.1 O problema das áreas - método de exaustão

2.1 O problema das áreas - método de exaustão Capítulo 2 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo de construção surge historicamente a partir de problemas geométricos

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Parábolas Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Introdução ω Nesta aula vamos revisar o conceito

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

Capítulo 3 Limite de uma função

Capítulo 3 Limite de uma função Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 3 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Sistemas de inequações Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5

Leia mais

Capítulo 7 Transformação de deformação no plano

Capítulo 7 Transformação de deformação no plano Capítulo 7 Transformação de deformação no plano Resistência dos Materiais I SLIDES 08 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Transformar as componentes

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

lim f ( x) Limites Limites

lim f ( x) Limites Limites UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I 1. O ite de uma função

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:

Leia mais

Concentração de medicamento no sangue

Concentração de medicamento no sangue Universidade de Brasília Departamento de Matemática Cálculo Concentração de medicamento no sangue função Suponha que a concentração de medicamento no sangue de um paciente seja dada pela C(t) = 3t 2t 2

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares

Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares Notas de Aulas - Retas e Circunferências Prof Carlos A S Soares Preliminares O Plano Cartesiano e o Ponto Você certamente está familiarizado com o plano cartesiano desde o término do seu ensino fundamental

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Mais funções polinomiais 10.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Mais funções polinomiais 10.º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 00/0 Mais funções polinomiais 0º Ano Nome: Nº: Turma: Tem-se uma folha rectangular de cartolina com as dimensões de 0 cm por

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

Tranformada de Fourier. Guillermo Cámara-Chávez

Tranformada de Fourier. Guillermo Cámara-Chávez Tranformada de Fourier Guillermo Cámara-Chávez O que é uma série de Fourier Todos conhecemos as funções trigonométricas: seno, cosseno, tangente, etc. O que é uma série de Fourier Essa função é periódica,

Leia mais

Estatística Descritiva

Estatística Descritiva Probabilidade e Estatística Prof. Dr.Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Estatística Descritiva Distribuição de frequência Para obter informações de interesse sobre a característica

Leia mais

A função y = ax + b. Na Aula 9, tivemos um primeiro contato

A função y = ax + b. Na Aula 9, tivemos um primeiro contato A UA UL LA A função = a + b Introdução Na Aula, tivemos um primeiro contato com a equação = a + b e aprendemos que seu gráfico é uma reta. Vamos então recordar algumas coisas. l Se a = 0, a nossa equação

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais