Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Tamanho: px
Começar a partir da página:

Download "Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental"

Transcrição

1 Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 3 Limites Considere a função f definida por: Qual o domínio dessa função? Se 1, então f () é dada por: (2 + 3)( 1) , com o respectivo gráfico: 1? O que acontece com a função quando se aproima de 1, por valores menores do que 0,9 0,99 0,999 0,9999 0,99999 f () 4,8 4,98 4,998 4,9998 4,99998 Vejamos agora, o que acontece com a função quando se aproima de 1, por valores maiores do que 1. 1,1 1,01 1,001 1,0001 1,00001 f () 5,2 5,02 5,002 5,0002 5,00002 Pode-se notar que em ambas as tabelas, quando se aproima de 1, f () se aproima de 5. E ainda, é possível fazer o valor f () tão próimo de 5 quanto desejarmos, bastando, para isso, fazer o valor de suficientemente próimo de 1. Observe, 1

2 4,8 < f () < 5,2 sempre que 0,9 < < 1,1 4,98 < f () < 5,02 sempre que 0,99 < < 1,01 4,998 < f () < 5,002 sempre que 0,999 < < 1,001 4,9998 < f () < 5,0002 sempre que 0,9999 < < 1,0001 4,99998 < f () < 5,00002 sempre que 0,99999 < < 1, Desse modo, 5 ε < f () < 5 + ε sempre que 1 δ < < 1 + δ, ou ainda, f () 5 < ε sempre que 0 < 1 < δ. Por eemplo, a primeira epressão acima ocorre fazendo-se ε = 0,2 e δ = 0,1. A segunda epressão corresponde a ε = 0,02 e δ = 0,01 e assim por diante. Note que o tamanho de δ depende do tamanho de ε. Dizemos que o ite de f () quando se aproima de 1 é igual a 5, ou em símbolos, 5. 1 Definição: Seja f uma função definida num intervalo aberto contendo a (eceto possivelmente o próprio a) e seja L um número real. Então, se para todo ε > 0, eiste um δ > 0, tal que L f () L < ε sempre que 0 < a < δ. Nota: f () pode tornar-se tão proimo de L quanto se deseja, escolhendo-se suficientemente próimo de a, mas não igual a a. Teorema (da unicidade): Se L 1 e L 2, então L 1 = L Propriedades dos ites de funções P1 Se m e b são constantes quaisquer, então: (m + b) = ma + b. C1 Se c é uma constante, então c = c. 2

3 C2 = a Eemplos: (a) 1 8 (b) 8 2 (c) (d) 4 (3 5) (e) (13 + 2) 2 P2 Se L e g() = M, então, [ f () ± g()] = f () ± g() = L ± M. C Se f 1 () = L 1, f 2 () = L 2,..., f n () = L n, então, P3 Se L e g() = M, então, [ f 1() ± f 2 () ±... ± f n ()] = L 1 ± L 2 ±... ± L n. [ f () g()] = L M. C1 Se f 1 () = L 1, f 2 () = L 2,..., f n () = L n, então, [ f 1() f 2 ()... f n ()] = L 1 L 2... L n. C2 Se L e n for um número inteiro positivo qualquer, então, [ ] n [ f ()]n = L n. P4 Se L e g() = M e M 0, então, f () g() = f () g() = L M. P5 Se L, então, n n Se L > 0 e n for um inteiro positivo qualquer, ou n L, Se L < 0 e n for um inteiro positivo ímpar qualquer. 3

4 P6 Se g é uma função tal que g() = f () é válida para todos os valores de pertencentes a algum intervalo ao redor de a, eceto = a, então, g() = f (), se os ites eistirem. Eemplos: Nos eercícios abaio, ache cada ite. (a) ( ) (b) π (c) π + π 2 49 (d) 7 7 (e) Limites Laterais Definição 1: Seja f definida em um intervalo (a, c). Então, o ite de f () quando tende a a pela direita será L, escrito L, + se, para qualquer ε > 0, eiste um δ > 0, tal que, f () L < ε sempre que 0 < a < δ. Definição 2: Seja f definida em um intervalo (d, a). Então, o ite de f () quando tende a a pela esquerda será L, escrito L, se, para qualquer ε > 0, eiste um δ > 0, tal que, f () L < ε sempre que δ < a < 0. 4

5 Então, L significa que podemos fazer f () L tão pequeno quanto desejarmos, tomando suficientemente próimo de a, porém maior do que a. + Analogamente, L significa que podemos fazer f () L tão pequeno quanto desejarmos, fazendo suficientemente próimo a a, porém menor do que a. Teorema: f () é igual a L se e somente se f () e f () eistirem e forem + ambos iguais a L. Eemplos: Em cada eemplo, trace o gráfico da função, ache os ites laterais da função quando a e quando a + e determine o ite da função quando a, se eistir. { + 1, se < 1 (a) a = , se 1 {, se 0 (b) a = 0. 2, se = 0 (c) {, se 0 1, se = 0 a = Limites no Infinito Considere a função f definida por: Com o seguinte esboço do gráfico: Na tabela a seguir, podemos observar alguns valores da função: 5

6 , ,9998 1, , ,9998 1, Observe que, a medida que cresce iitadamente através dos valores positivos ( + ), ou decresce iitadamente através dos valores negativos ( ), os valores da função f () se aproimam cada vez mais de 2. Logo, = 2 e = 2. Definição: Suponha que a função f esteja definida em um intervalo (a, + ) [respectivamente (, a)]. Dizemos que, [ L respectivamente + ] L, se para todo ε > 0, eiste um número positivo N [respectivamente, um número negativo N], tal que f () L < ε sempre que > N [respectivamente, < N]. Teorema: Se r é um numero inteiro positivo qualquer, então = 1 + r = 0 e 1 r = 0. Eemplos: Calcule os ites: (a) (b) (c) (d) Limites Infinitos Observe o gráfico da função 3 ( 2) 2. 6

7 Escrevemos, Portanto, 3 3 = + e 2 ( 2) ( 2) 2 = ( 2) 2 = +. Definição 1: Seja f definida num intervalo aberto contendo a, eceto possivelmente no próprio a. Dizemos que: +, se para qualquer N > 0 eistir um δ > 0 tal que f () > N sempre que 0 < a < δ. Observação análoga pode ser feita para, se para qualquer N < 0 eistir um δ > 0 tal que f () < N sempre que 0 < a < δ. Observações: (i) Definições semelhantes podem ser feitas ao trocarmos a por a. a + ou (ii) Limites infinitos no infinito podem ser considerados Propriedades: P1 Se ± e g() = c, c constante qualquer, então 7

8 (i) [ f () + g()] = ± (ii) Se c > 0, então [ f () g()] = ± (iii) Se c < 0, então [ f () g()] = g() (iv) 0 P2 Se 0 e g() = c, c constante não nula, então: (i) Se c > 0 e se f () 0 através de valores positivos de f (), g() + (ii) Se c > 0 e se f () 0 através de valores negativos de f (), g() (iii) Se c < 0 e se f () 0 através de valores positivos de f (), g() (iv) Se c < 0 e se f () 0 através de valores negativos de f (), g() + As propriedades acima continuam válidas se a for substituído por a +, a, + ou. Eemplos: 2 (a) (b) + 1 (c) (d) (e)

9 3.5 Assíntotas Horizontais e Verticais Observe o gráfico da função Note que, 5 + e. + 5 A reta vertical, = 5, é chamada assíntota vertical. Definição: Diz-se que a reta vertical = a é uma assíntota vertical do gráfico da função f se pelo menos uma das afirmações seguintes for verdadeira: (i) (ii) (iii) (iv) De modo análogo, no eemplo, a linha horizontal y = 2 é chamada assíntota horizontal do gráfico, pois 2 e 2. + Definição: Diz-se que a reta horizontal y = b é uma assíntota horizontal do gráfico de uma função f se pelo menos uma das afirmações seguintes for verdadeira: (i) + b (ii) b 9

10 Eemplos Nos eemplos abaio, ache as assíntotas horizontais e verticais do gráfico de f (se houverem) e trace o gráfico: (a) (b) (c) Teoremas Adicionais Sobre ites de Funções Teorema do confronto ou do sanduíche : Se f () g() h() para todo em um intervalo aberto contendo a, eceto possivelmente em a, e se h() = L, então g() = L. 1 o Limite Fundamental: sin = 1. Eemplos Calcule os ites abaio: (a) tan (b) sin5 (c) sin5 sin2 2 o Limite Fundamental: em que e = 2, Observação: Sendo y = 1 ( ) = e, +in fty e observando que y 0 quando ±, temos que, (1 + y) 1 y = e. y 0 Eemplos (a) Calcule os ites abaio: ( ) + 10

11 (b) (c) (d) ( ) +5 + ( 1 ) Continuidade Definição: Diz-se que f é contínua em um ponto a se são satisfeitas as três condições seguintes: (i) eiste f (a) (ii) eiste f () (iii) f (a). Se uma ou mais destas três condições não for verificada em a, dizemos que a função f é descontínua em a. Eercícios 1. Seja f definida por: { (2+1)( 2) 2 se 2 0 se = 2 2. Estude a continuidade de f no ponto = Seja a função definida por { 3 + se 1 3 se > 1 4. Seja f definida por { se < se > geq1 Estude a continuidade de f em = 1. 11

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

Limites: Noção intuitiva e geométrica

Limites: Noção intuitiva e geométrica Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

Lista de Exercícios de Calculo I Limites e Continuidade

Lista de Exercícios de Calculo I Limites e Continuidade Lista de Eercícios de Calculo I Limites e Continuidade ) O gráfico a seguir representa uma função f de [ 6, 9] em Determine: ) Dada a função f definida por:, se f ( ), se, se Esboce o gráfico de f e calcule

Leia mais

2.1 O problema das áreas - método de exaustão

2.1 O problema das áreas - método de exaustão Capítulo 2 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo de construção surge historicamente a partir de problemas geométricos

Leia mais

Capítulo 3 Limite de uma função

Capítulo 3 Limite de uma função Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 3 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo

Leia mais

Concentração de medicamento no sangue

Concentração de medicamento no sangue Universidade de Brasília Departamento de Matemática Cálculo Concentração de medicamento no sangue função Suponha que a concentração de medicamento no sangue de um paciente seja dada pela C(t) = 3t 2t 2

Leia mais

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016 1 Roteiro Atividades Mat146 Semana4: /08/16 a 6/08/016 1. Matéria dessa semana de acordo com o Plano de ensino oicial: Assíntotas Horizontais e Verticais. Continuidade. Material para estudar: Assíntotas

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández Lista 3: Introdução à Derivada, Limites e continuidade. Ano 207. Determine a função derivada e seu domínio para a função

Leia mais

Professor Dr. Jair Silvério dos Santos 1 LIMITES INFINITOS NO INFINITO Figura 1

Professor Dr. Jair Silvério dos Santos 1 LIMITES INFINITOS NO INFINITO Figura 1 CONTNUIDADE E DERIVADAS 1 Professor Dr Jair Silvério dos Santos 1 LIMITES INFINITOS NO INFINITO Definition 01 Dada f : (a, ) R, dizemos que f o ite de f quando aproima-se do infinito é infinito se dado

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Limite e Continuidade

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Limite e Continuidade Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Limite e Continuidade Professora Renata Alcarde Sermarini Notas de aula do professor Idemauro

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Campus Pato Branco

Universidade Tecnológica Federal do Paraná UTFPR Campus Pato Branco Universidade Tecnológica Federal do Paraná UTFPR Campus Pato Branco Eercícios sobre Limites 1. O gráfico a seguir representa uma função f de [ 6,9] em R. Determine: (a) f() f() +f() f() (e) f( ) (f) f(7).

Leia mais

Limite e continuidade

Limite e continuidade Limite e continuidade Noção intuitiva de ite Considere a função f qualquer que seja o número real o Eemplo Se f ( ) Esta função está definida para todo R, isto é, f está bem definido, o valor ( ) o então

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

LIMITES E CONTINIDADE

LIMITES E CONTINIDADE MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

Notas de Aula de Cálculo Diferencial e Integral

Notas de Aula de Cálculo Diferencial e Integral Notas de Aula de Cálculo Diferencial e Integral Volume I Fábio Henrique de Carvalho Copright c 03 Publicado por Fundação Universidade Federal do Vale do São Francisco Univasf) www.univasf.edu.br Todos

Leia mais

Cálculo - James Stewart - 7 Edição - Volume 1

Cálculo - James Stewart - 7 Edição - Volume 1 Cálculo - James Stewart - 7 Edição - Volume. Eercícios. Eplique com suas palavras o significado da equação É possível que a equação anterior seja verdadeira, mas que f? Eplique.. Eplique o que significa

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites www.cursoeduardochaves.com Cálculo I ª Lista de Eercícios Limites Calcule os ites: a (4 7 +5 b + 5 c ( 5 ++4 d + 5 4 e 5 + 4 + ++ f 6 4 Resp. : a b 0 c /8 d / e 9 5 f Calcule os ites abaio: a 4 b + c +5

Leia mais

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia PARTE 5 LIMITE 5.1 Um Pouco de Topologia Vamos agora nos preparar para definir ite de funções reais de várias variáveis reais. Para isto, precisamos de alguns conceitos importantes. Em primeiro lugar,

Leia mais

lim f ( x) Limites Limites

lim f ( x) Limites Limites UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I 1. O ite de uma função

Leia mais

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital. Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Observação: Faça os exercícios 5, 6, 7, 8b-c), 9, 10, 11, 12, 13, 15, 19, 22, 27

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Observação: Faça os exercícios 5, 6, 7, 8b-c), 9, 10, 11, 12, 13, 15, 19, 22, 27 UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ 3a Lista de Eercícios - Limites Prof. Wellington D. Previero Observação: Faça os eercícios 5, 6, 7, 8b-c), 9, 10, 11, 12, 13, 15, 19, 22, 27 1. Eplique com suas

Leia mais

Limites e Continuidade de Funções Reais de Uma Variável Real

Limites e Continuidade de Funções Reais de Uma Variável Real Limites e Continuidade de Funções Reais de Uma Variável Real Carla Montorfano João César Guirado João Roberto Gerônimo Jorge Ferreira Lacerda Rui Marcos de Oliveira Barros Valdeni Soliani Franco Apresentação

Leia mais

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

, quando h se aproxima de zero ou, usando notação matemática, precisamos calcular o. = lim

, quando h se aproxima de zero ou, usando notação matemática, precisamos calcular o. = lim Capítulo 6 Limite de Funções 6. O conceito de ite No Capítulo 5, determinamos a inclinação da reta tangente à parábola y = f() = a +b +c num ponto ( 0, f( 0 )). O método empregado consistiu em obter esta

Leia mais

Limites e Continuidade

Limites e Continuidade GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CAMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA Discente CPF Limites e Continuidade A Importância

Leia mais

Notas de Aulas 5 - Funções Elementares e Cálculo de Limites - Parte II Prof Carlos A S Soares

Notas de Aulas 5 - Funções Elementares e Cálculo de Limites - Parte II Prof Carlos A S Soares Notas de Aulas 5 - Funções Elementares e Cálculo de Limites - Parte II Prof Carlos A S Soares Noção Intuitiva de ites. O Conceito de Limites Através de Gráficos Nesta subseção estaremos apresentando o

Leia mais

1 Faça um esboço do gráfico de suas respectivas funções e ache o limite indicado, se existir; caso não exista, justifique o porquê.

1 Faça um esboço do gráfico de suas respectivas funções e ache o limite indicado, se existir; caso não exista, justifique o porquê. Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão Wellington José Corrêa ā Lista de Cálculo Diferencial e Integral I Curso: Licenciatura em Química DAMAT, 5 Nome: Faça

Leia mais

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas ac C Á L C U L O D I F E R E N C I A L E I N T E G R A L I 02 Prof. ADRIANO CATTAI Apostila 02: Assíntotas NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 06 Universidade Federal do Rio

Leia mais

Aula 3 Propriedades de limites. Limites laterais.

Aula 3 Propriedades de limites. Limites laterais. Propriedades de ites. Limites laterais. MÓDULO - AULA 3 Aula 3 Propriedades de ites. Limites laterais. Objetivos Estudar propriedades elementares de ites, tais como: soma, produto, quociente e confronto.

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO .0 LIMITES ite (latim es, -itis, caminho, raia, fronteira, atalho). Linha que separa superfícies ou terrenos contíguos (Mais usado no plural.) = ESTREMA, FRONTEIRA, RAIA. Momento ou espaço que corresponde

Leia mais

Limites infinitos e limites no infinito Aula 15

Limites infinitos e limites no infinito Aula 15 Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014

Leia mais

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE Teorema 0.. Dadas f,g, : A R funções e 0 ponto de acumulação de A. (i) Supona eiste ǫ >

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada.

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada. ANEXO A: Critérios para determinar o comportamento de uma unção através do estudo da derivada. Vamos relembrar critérios que permitem determinar o comportamento de uma unção nas proimidades de um ponto

Leia mais

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso Universidade Federal Fluminense Matemática I Professora Maria Emilia Neves Cardoso Notas de Aula / º semestre de Capítulo : Limite de uma função real O conceito de ite é o ponto de partida para definir

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Limites e Continuidade. Departamento de Matemática

Limites e Continuidade. Departamento de Matemática Limites e Continuidade Mariana Dias Júlia Justino Departamento de Matemática Conteúdo Limites. Noção Intuitiva.... Definição... 3.3 PropriedadesdosLimitesFinitos... 5. Limites Laterais... 7.5 Limites Infinitos...

Leia mais

Polinômios e Funções Racionais

Polinômios e Funções Racionais Capítulo 7 Polinômios e Funções Racionais 7. Polinômios Ao iniciarmos nosso estudo sobre funções, consideramos o problema de construir uma caia sem tampa a partir de um pedaço quadrado de plástico maleável

Leia mais

Fundamentos de Matem[atica I LIMITES. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matem[atica I LIMITES. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques LIMITES Gil da Costa Marques. O cálculo. Definição de limite. Funções contínuas e descontínuas.4 Limites quando a variável independente cresce indefinidamente em valor absoluto.5 Limites infinitos.6 Limites

Leia mais

Unidade F. Limites. Débora Bastos IFRS CAMPUS RIO GRANDE

Unidade F. Limites. Débora Bastos IFRS CAMPUS RIO GRANDE 9 Unidade F Limites Débora Bastos IFRS CAMPUS RIO GRANDE 9. Noção de ites Quando queremos saber a ordenada do ponto em uma função, cuja lei é y= f(), em que = a, basta calcularmos f(a). O ponto (a,f(a))

Leia mais

CONTINUIDADE E LIMITES INFINITOS

CONTINUIDADE E LIMITES INFINITOS MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas-CCE Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas-CCE Departamento de Matemática Monitor: Renno Santos Guedes Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas-CCE Departamento de Matemática MAT 40-CÁLCULO Lista de Eercícios. Para a função g(), encontrar os seguintes

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico

Leia mais

Exercícios sobre Polinômios

Exercícios sobre Polinômios uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.

CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial

Leia mais

Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS. Aula 2 Limites. Professor Luciano Nóbrega

Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS. Aula 2 Limites. Professor Luciano Nóbrega Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS Aula 2 Limites Professor Luciano Nóbrega O LIMITE DE UMA FUNÇÃO 2 2,5,9 Inicialmente, vamos analisar o comportamento da função f definida por

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

CÁLCULO I. 1 Regra de l'hôspital. Objetivos da Aula. Aula n o 14: Regra de L'Hospital. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. 1 Regra de l'hôspital. Objetivos da Aula. Aula n o 14: Regra de L'Hospital. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof Marcos Diniz Prof Edilson Neri Júnior Prof André Almeida Aula n o 4: Regra de L'Hospital Objetivos da Aula Apresentar e aplicar a Regra de L'Hospital Regra de l'hôspital A regra de l'hôspital,

Leia mais

5.7 Aplicações da derivada ao estudo das funções.

5.7 Aplicações da derivada ao estudo das funções. Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +

Leia mais

Primeiro Teste de Cálculo Infinitesimal I

Primeiro Teste de Cálculo Infinitesimal I Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5

Leia mais

Comecemos por relembrar as propriedades dos limites das sucessões: b n = K e c IR então: lim. lim

Comecemos por relembrar as propriedades dos limites das sucessões: b n = K e c IR então: lim. lim .. Limites e Continuidade... Limites em IN Comecemos por relembrar as propriedades dos ites das sucessões: Propriedades dos Limites das Sucessões: Sejam n a n = L e n b n = K e c IR então: n [a n ± b n

Leia mais

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10 Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Profa. Dra. Andreia Adami deiaadami@terra.com.br Limite Limites infinitos: resultado é +

Leia mais

matemática Antes de chegarmos a uma definição precisa deste conceito vamos observar alguns exemplos simples:

matemática Antes de chegarmos a uma definição precisa deste conceito vamos observar alguns exemplos simples: Matemática I 1 Limites O conceito de limite é fundamental para o estudo de funções de variável real. Uma das situações em que ele aparece naturalmente é o do estudo do comportamento assintótico de uma

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

LIMITE E CONTINUIDADE DE

LIMITE E CONTINUIDADE DE CAPÍTULO 4 LIMITE E CONTINUIDADE DE FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS 4.1 Um Pouco de Topologia Vamos agora nos preparar para definir ite de funções reais de várias variáveis reais. Para isto, precisamos

Leia mais

CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 05: Limite e Continuidade

CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 05: Limite e Continuidade CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Limite e Continuidade Objetivos da Aula Denir ite de funções; Calcular o ite de uma função; Utilizar as propriedades

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2 2. Em cada caso abaio calcule o ite de f ), quando a. a) f ) = 2 + 5; a = 7 b) f ) = c) f ) = 2 + 3 0 + 5 e) f ) = 3 3 + + ; a = 0 ; a = 5 d) f ) = 2 4 3 + 2 2 ; a = 2 2 + 8 3 ; a = + 3 h) f ) = 9 ; a

Leia mais

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1 MATEMATICA APLICADA A NEGÓCIOS 3, 0 (200) Cálculo Cálculo Diferencial e Integral I LIMITES LATERAIS Jair Silvério dos Santos * Professor Dr Jair Silvério dos Santos Teorema 0 x x 0 Dada f : A R R uma função

Leia mais

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 01: Introdução ao Limite e Funções Contínuas

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 01: Introdução ao Limite e Funções Contínuas D I F E R E N C I A L E I N T E G R A L I ac C Á L C U L O 0 Prof. ADRIANO CATTAI Apostila 0: Introdução ao Limite e Funções Contínuas NOME: DATA: / / Não há ciência que fale das harmonias da natureza

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4

Leia mais

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8

Leia mais

Gabarito Primeira Prova Unificada de Cálculo /2. Engenharia e Engenharia Química. ), (1c) lim 12 x 3 x

Gabarito Primeira Prova Unificada de Cálculo /2. Engenharia e Engenharia Química. ), (1c) lim 12 x 3 x MUniversidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Gabarito Primeira Prova Unificada de Cálculo - 0/ a Questão: Calcule: (a Engenharia e Engenharia Química 4 (,

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

MAT Cálculo I - POLI Gabarito da P2 - A

MAT Cálculo I - POLI Gabarito da P2 - A MAT 45 - Cálculo I - POLI - 006 Gabarito da P - A Questão A) Calcule (.0) (a) lim ( cos() ) / (.0) (b) 0 ( ( π ) ) cos + e d (a) Tem-se, ( π/4, π/4) \ {0}: (cos ) / = ep( ln(cos )). Pondo f() =. ln(cos

Leia mais

Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como

Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites

Leia mais

Semana 2 Limites Uma Ideia Fundamental

Semana 2 Limites Uma Ideia Fundamental 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 2 Limites Uma Ideia Fundamental Professor Luciano Nóbrega UNIDADE 1 2 O LIMITE DE UMA FUNÇÃO Inicialmente, vamos analisar o comportamento da função f definida

Leia mais

x 1 f(x) f(a) f (a) = lim x a

x 1 f(x) f(a) f (a) = lim x a Capítulo 27 Regras de L Hôpital 27. Formas indeterminadas Suponha que desejamos traçar o gráfico da função F () = 2. Embora F não esteja definida em =, para traçar o seu gráfico precisamos conhecer o comportamento

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Neste momento do curso de Elementos de Cálculo, estamos interessados em rever algumas funções já estudadas no Ensino Médio de forma

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Limites, Assíntotas Horizontais e Assíntotas Verticais [0] (2006.2) Considere a função f() =

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira

MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira 4 de novembro de 2015 Vimos que a derivada de uma função em um ponto é a inclinação da reta tangente

Leia mais

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D A Prática Leva à Perfeição Cálculo William D. Clark, P.D e Sandra Luna McCune, P.D Rio de Janeiro, 01 Para Sirley e Donice. Vocês estão sempre em nossos corações. Sumário Prefácio i I Limites 1 1 O conceito

Leia mais

Cálculo 1 Lista 03 Limites

Cálculo 1 Lista 03 Limites Cálculo Lista 0 Limites Professor: Daniel Pinguim Definições intuitivas iniciais ) Considere a função f: A R, f() = 4 a) Dê o domínio máimo possível para essa função. b) G Faça um esboço do gráfico da

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais