RELATIVIDADE ESPECIAL

Tamanho: px
Começar a partir da página:

Download "RELATIVIDADE ESPECIAL"

Transcrição

1 1 RELATIVIDADE ESPECIAL AULA N O 06 (Noções de Cosmologia Métrica Constante de Hubble ) Vamos entrar ligeiramente no campo da Relatividade Geral, para vermos o que é Cosmologia e o que de fato é o espaço-tempo. Abordaremos o espaço-tempo em epansão, que não pode ser descrito pela relatividade restrita, pois requer uma estrutura mais complea, dada pela Relatividade Geral. A Teoria da Relatividade A Teoria da Relatividade estrita pode ser resumida por uma ideia muito simples, dada pela geometria do espaço-tempo, determinada pela distância entre dois eventos vizinhos no espaço-tempo. Este é um fato geral da Geometria de Riemann (Geometria Riemanniana), segundo a qual, se soubermos a distância entre dois pontos vizinhos do espaço, então podemos, em princípio, reconstruir toda a geometria do espaço em questão. Na Relatividade Restrita, esta distância é representada pela epressão: d dt d d dz ; ou d d d ; ou ainda d d d t.sendo que representa uma matriz simples, dada por: dτ μ d μ μ μ Um dos princípios da Relatividade Restrita é que a distância ou tempo próprio,, deve ser um invariante, de modo que todos os observadores, apesar de verem diferentes componentes para, irão ver o mesmo, segundo a transformação de Lorentz, que é de fato, como se pode provar, a única transformação que mantém invariante o tempo próprio ( ). Nestas condições, então, segue o princípio de que todas as leis da física devem ser idênticas em todos em todos os sistemas de referência, segundo a Transformação de Lorentz. Nem todas as distâncias, porém, são epressas da mesma forma. Por eemplo: ds = d d Rotação Simples No plano, a rotação simples não altera a forma da distância. No entanto, se fizermos uma transformação na qual alteramos a escala de um dos eios, tomando, por eemplo, em metros e em centímetros, então a distância entre dois pontos não terá mais a mesma forma, mas terá que receber um fator de conversão para obter uma unidade comum. (m) ds 4 ds cm d 10 d 4 ds m 10 d d (cm) Nós poderíamos também escolher coordenadas não ortogonais:

2 Certamente, neste caso,. Assim, teríamos uma distância acrescentada de fatores, contando também com um termo etra, que contém o produto, de modo que: ds P =. P Nós poderíamos escrever esta equação de outra forma: =. Sendo que, neste caso, = =, de modo que assim poderíamos epressar os coeficientes por uma matriz, chamada de a11 a1 MÉTRICA : a1 a. Esta matriz contém completamente as propriedades métricas deste sistema de coordenadas. Se estamos lidando com um espaço ordinário (plano) e com uma escala uniforme para cada uma das coordenadas diagonais, então os coeficientes da matriz métrica serão simplesmente constantes. É lógico que, se utilizarmos coordenadas com escala variável, por eemplo, coordenadas curvas, os coeficientes da matriz métrica não serão mais constantes, tornando-se funções das coordenadas utilizadas, conforme o ponto em questão: Métrica: ', ' ', ' ', ' ', ' a11 a1 a1 a Independente do tipo de coordenadas, portanto da métrica utilizada, a geometria básica do plano é determinada pela forma da distância entre todos os pares de pontos vizinhos. A mesma coisa é válida para a teoria da relatividade especial, de modo que, se utilizarmos coordenadas que se transformam segundo as equações de Lorentz, então o tempo próprio (distância ou métrica) permanece invariante. Assim, se utilizarmos um sistema de coordenadas arbitrário, a fórmula geral para a distância (métrica) ou tempo próprio será: d g d d Esta é a forma geral da epressão para a distância, de modo que, se conhecermos a métrica g, então conheceremos a geometria do espaço-tempo. Porém a geometria do espaço-tempo não determina necessariamente a respectiva métrica, pois, para cada sistema de coordenadas, teremos uma métrica diferente, ainda que permaneçamos no mesmo espaço. Vamos voltar agora ao espaço ordinário, mas a um espaço ordinário curvo. Vejamos primeiramente o que curvo não significa! Se nós tomarmos uma folha de papel, colocada sobre uma mesa, então todos concordam que temos uma superfície plana. Assim a relação entre os pontos desta superfície, formando figuras e linhas, é determinada pela distância métrica entre os pontos vizinhos. Se nós curvarmos a folha de papel, sem esticar ou contrair seus espaços, ela não representará uma superfície curva! Quando modificamos a forma da folha de papel, sem esticar ou contrair suas dimensões, nós não alteramos a distância entre seus pontos vizinhos (sua métrica), ou seja, não alteramos a distância ao longo do papel. Um inseto que se deslocasse sobre uma linha no papel iria andar a mesma distância, independente de curvarmos ou não a folha, de modo que ele não seria capaz de perceber que curvamos a folha de papel, pois todas a relações geométricas permaneceriam inalteradas. Com isso, queremos demonstrar o que não é curvatura, matematicamente falando. Curvatura é uma forma que não pode ser planificada sem sofrer uma deformação. Uma superfície curva não pode ser esticada ou contraída sem ser esticada ou contraída, ou seja, sem sofrer uma modificação na distância entre seus pontos vizinhos (na sua métrica). Esta é então a distinção entre dobrar (entortar) e curvar uma superfície. Uma esfera é um eemplo muito bom de superfície curva. Nós não podemos planificar a esfera sem estica-la e contraí-la. Esta é a razão pela qual os mapas apresentam distorções da superfície terrestre, sendo esta distorção dependente da projeção utilizada. Nós podemos colocar coordenadas na superfície esférica:

3 Desse modo, podemos epressar a distância entre pontos vizinhos com θ estas coordenadas. No entanto, seja qual for o sistema de coordenadas que empreguemos, nenhum deles poderá ser reduzido a uma matriz de coeficientes constantes. Necessariamente a métrica terá componentes que serão uma função da posição no espaço. r Na verdade, este é o teste que define se uma superfície é ou não curva. Assim, se houver um sistema de coordenadas no qual a métrica tem seus componentes constantes, então a superfície não é curva. Em outras palavras, se encontrarmos para a superfície uma métrica de coeficientes constantes, então a superfície é plana. Vamos ver um eemplo de coordenadas que podemos utilizar no plano. Trata-se das coordenadas polares, dadas pela distância do ponto à origem e pelo ângulo desta distância: 3 r dr θ 1 0 Neste caso teremos: =, ou g. 0 r Este é, então, um eemplo de coordenadas cuja métrica tem componentes dependentes da posição. Neste caso, porém, nós podemos encontrar uma transformação para um sistema de coordenadas cuja métrica tem apenas componentes constantes: rcos 1 0 ds d d g rsen 0 1 Se, no entanto, tomarmos uma esfera (em particular de raio unitário), teremos o seguinte. Ao longo da coordenada, encontramo-nos sobre um círculo máimo de raio unitário. Portanto o intervalo corresponde à distância percorrida na superfície. Por outro lado, com relação à coordenada, vemos que, para um mesmo intervalo, correspondem distâncias diferentes, que diminuem à medida que nos aproimamo-nos dos polos. Na verdade, a distância correspondente a é uma função de, dada por. Temos então que a distância entre pontos vizinhos na superfície da esfera é dada por: =. Isto resulta na seguinte métrica para a superfície esférica: d sen dθ No caso da esfera não ser unitária, teríamos como métrica a epressão: =, ou: r 0 0 r sen Esta métrica não pode ser planificada. Não há nenhum sistema de coordenadas no qual os coeficientes da métrica sejam apenas constantes. O fato de esta superfície ser verdadeiramente curva poderia ser observado por criaturas que vivessem imersas no mundo bidimensional da superfície esférica, mesmo não sendo possível para elas saírem do seu mundo! Por eemplo, elas iriam constatar que a soma dos ângulos internos de um triângulo não seria 180 o, como se pode observar no triângulo abaio, construído sobre a superfície esférica, cuja soma dos ângulos seria maior do que 180 o. Dessa maneira, mesmo sem sair da superfície esférica, elas poderiam saber A que seu mundo é curvo. B C Todos estes conceitos são verdadeiros também para o espaço-tempo, e este foi o novo ingrediente introduzido por Einstein na Teoria da Relatividade Generalizada. Com isso, ele viu que o tempo próprio (a métrica do espaçotempo) poderia ser representada por um tensor métrico que varia ao longo da posição no espaço-tempo. Porém a novidade era que o espaço-tempo pode ser curvado, de modo que, nesta condição, não há nenhum sistema de coordenadas que possa tornar constantes as componentes do tensor métrico. Não vamos aqui nos aprofundar na Relatividade Geral, mas vamos apenas ver alguns eemplos que se aplicam à Cosmologia.

4 4 O tipo de cosmologia que iremos ver aqui é daquele que são dependentes do tempo, ou seja, que não variam de lugar para lugar no espaço de uma maneira geral, considerando o espaço homogêneo. Portanto, como um todo, o universo é homogêneo. Isto não significa, porém, que ele seja plano (não seja curvado). Por eemplo, a superfície da esfera é homogênea, apresentando as mesmas características em toda a superfície, no entanto é uma superfície curva. Portanto o universo é homogêneo ao longo do espaço, de acordo com as observações feitas até agora pela ciência. Outro fato da cosmologia é que o espaço, em grande escala (escala astronômica) é plano, ou seja, não é curvo. Isto significa que, num dado instante de tempo, a soma dos ângulos de um triângulo é de 180 o, mantendo as relações geométricas de um espaço plano (euclidiano). Assim o espaço é homogêneo e plano, porém depende do tempo. Se seguirmos dois pontos no espaço (no caso de duas galáias), veremos que a distância entre elas aumenta com o tempo. Esta característica é descrita pelo tempo próprio no espaço-tempo, utilizando-se as mesmas coordenadas que utilizamos até aqui ( ). Trata-se da mesma estrutura da Relatividade Restrita, eceto pelo fato do tensor métrico ser um pouco mais complicado. Uma vez que o universo é homogêneo e plano, devemos ter em qualquer instante de tempo um sistema de coordenadas cujo tensor métrico tem coeficientes constantes para as componentes espaciais. No entanto a escala de medida contém um fator que depende do tempo, pois, se estamos medindo uma distância com unidades determinadas, por eemplo, pela distância entre duas galáias vizinhas, o número de unidades permanece constante, mas a distância total, uma vez que a distância entre duas galáias vizinhas aumenta com o tempo, também irá aumentar com o tempo. Disto resulta para a métrica: = ( ) ( ). Nesta epressão, temos o fator ( ), que é chamado de fator de escala e que representa os efeitos da epansão do universo na unidade de escala. Vemos então que temos um determinado fator de escala em cada tempo. Vamos considerar duas galáias separadas por um intervalo ao longo da coordenada. Notemos que não é a distância entre as galáias, mas sim o intervalo da coordenada que corresponde a esta distância num determinado instante, sendo que esta relação varia ao longo do tempo. Por eemplo, se a distância entre as duas galáias é de quatro unidades de escala, que devem ser multiplicadas pelo fator de escala ( ).: = 4 = = 5 = = ( ) Assim a velocidade com que elas se afastam uma da outra é dada pela derivada de V D a t Note-se que permanece sempre constante! (velocidade de afastamento) at at Podemos escrever esta epressão de outro modo: at D at at at O termo at at constante de maneira geral: V D D. H ( LeideHublle). at em relação ao tempo. é chamado de Epansão de Hublle ou Constante de Hublle, apesar de não se tratar de uma Assim a velocidade de afastamento entre duas galáias é proporcional à distância entre elas, multiplicada pelo fator de Hublle. Na relatividade, o intervalo de tempo próprio da luz é zero: = =. Sabemos que essa condição é verdadeira também na Relatividade Geral, assim teremos, para a equação do movimemto de um raio de luz, a seguinte epressão dt dt atd, ou d. at Isto significa que, para percorrer o mesmo intervalo da escala, será necessário um intervalo de tempo maior, devido ao fator de epansão de Hublle. Esta é a geometria básica da Cosmologia. Vamos ver agora, em um eemplo, como o fator de Hublle varia com o tempo.

5 Se a velocidade de afastamento das galáias fosse constante, então o tempo retroativo correspondente ao D D 1 instante em que estas galáias estavam sobrepostas seria dado por: t. V H D H Assim, vemos que este intervalo de tempo não depende da distância entre as galáias, mas é uma constante, dada pelo inverso da constante de Hublle. Nós podemos medir aproimadamente como o fator de Hublle varia no tempo, através de medidas astronômicas e estimativas, mas o método empregado é mais sofisticado. Vejamos qual a variação prevista para o fator de Hublle, segundo a física newtoniana básica, relativa à gravitação. Considerando o universo homogêneo, podemos imaginar as galáias espaçadas em certo volume, como as partículas de um gás, mas cujo movimento se dá apenas no sentido de epansão do volume do gás. Apesar de a epansão do universo, como veremos, ser independente da posição no espaço vamos tomar um sistema de referência para analisar o fenômeno. Todas as galáias eercem atração sobre a galáia na coordenada. Se nós tivermos uma distribuição esfericamente simétrica de massas, então a força eercida sobre uma determinada massa é devida somente ao total da massa contida na esfera cujo centro está no sistema de referência e cujo raio é dado pela a distância do centro ou origem do sistema de referência até à posição da massa em questão. Todas as massas situadas fora desta esfera, não contribuem para a força = eercida sobre aquela massa. Além disso, também segundo Newton, a força eercida sobre aquela massa é eatamente a mesma daquela força eercida por uma partícula situada no centro do sistema de referência, cuja massa seja igual àquela contida na esfera referida. Portanto, para estudarmos o movimento da galáia na posição, basta estudarmos um problema fictício, no qual toda a massa contida na esfera de raio está concentrada na origem do sistema. 5

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIVIDADE ESPECIAL AULA N O 4 ( Tensor Eletromagnético Equação de Onda ) Vamos buscar entender o conceito de força, não eatamente sobre a sua origem, mas sim sobre um mais profundo conceito de força.

Leia mais

INTRODUÇÃO À RELATIVIDADE GERAL - Aula 2 p. 1

INTRODUÇÃO À RELATIVIDADE GERAL - Aula 2 p. 1 INTRODUÇÃO À RELATIVIDADE GERAL - Aula 2 Victor O. Rivelles Instituto de Física Universidade de São Paulo rivelles@fma.if.usp.br http://www.fma.if.usp.br/ rivelles/ XXI Jornada de Física Teórica 2006 INTRODUÇÃO

Leia mais

Aula 7: Geometria das superfícies bidimensionais II; gravitação e geometria

Aula 7: Geometria das superfícies bidimensionais II; gravitação e geometria Aula 7: Geometria das superfícies bidimensionais II; gravitação e geometria A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 18 de Maio de 2010 Tort (IF

Leia mais

FIS Cosmologia e Relatividade

FIS Cosmologia e Relatividade FIS02012 - Cosmologia e Relatividade Profa. Thaisa Storchi Bergmann Bibliografia de consulta: Capítulo 3 do livro de Barbara Ryden, Introduction to Cosmology, e Cap. 3 do livro de Ronaldo de Souza, Introdução

Leia mais

INTRODUÇÃO À GRAVITAÇÃO E À COSMOLOGIA

INTRODUÇÃO À GRAVITAÇÃO E À COSMOLOGIA INTRODUÇÃO À GRAVITAÇÃO E À COSMOLOGIA Victor O. Rivelles Aula 1 Instituto de Física da Universidade de São Paulo e-mail: rivelles@fma.if.usp.br http://www.fma.if.usp.br/~rivelles Escola Norte-Nordeste

Leia mais

INTRODUÇÃO À GRAVITAÇÃO E À COSMOLOGIA

INTRODUÇÃO À GRAVITAÇÃO E À COSMOLOGIA INTRODUÇÃO À GRAVITAÇÃO E À COSMOLOGIA Victor O. Rivelles Aula 2 Instituto de Física da Universidade de São Paulo e-mail: rivelles@fma.if.usp.br http://www.fma.if.usp.br/~rivelles Escola Norte-Nordeste

Leia mais

INTRODUÇÃO À RELATIVIDADE GERAL p. 1

INTRODUÇÃO À RELATIVIDADE GERAL p. 1 INTRODUÇÃO À RELATIVIDADE GERAL Victor O. Rivelles Instituto de Física Universidade de São Paulo rivelles@fma.if.usp.br http://www.fma.if.usp.br/ rivelles/ XXI Jornada de Física Teórica 2006 INTRODUÇÃO

Leia mais

A Geometria Euclidiana

A Geometria Euclidiana A Geometria Euclidiana Euclides foi um dos maiores matemáticos gregos da antiguidade. Não se sabe com certeza a data do seu nascimento, talvez tenha sido por volta do ano 35 antes de Cristo. Sabe-se que

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Cosmologia Básica: 2 - as equações de Friedmann-Lemaitre

Cosmologia Básica: 2 - as equações de Friedmann-Lemaitre 1 Cosmologia Básica: 2 - as equações de Friedmann-Lemaitre Laerte Sodré Jr. August 15, 2011 Cosmologia Relativística equações de Einstein: estabelecem uma relação entre a geometria do espaço-tempo e a

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

Notas de aula - Espaço Tempo

Notas de aula - Espaço Tempo Notas de aula - Espaço Tempo Prof. Ronaldo Carlotto Batista 5 de abril de 019 1 Revisão da Mecânica Newtoniana Quantidade elementares: posição: r t) = x t), y t), z t)) velocidade: v = d dt r momento linear

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

FIS Cosmologia e Relatividade Thaisa Storchi Bergmann

FIS Cosmologia e Relatividade Thaisa Storchi Bergmann FIS02012 - Cosmologia e Relatividade Thaisa Storchi Bergmann Relatividade Restrita: Postulados: 1) Princípio da relatividade: As leis da física são as mesmas em todos os referenciais inerciais. Nenhum

Leia mais

LISTA 5 DE GEOMETRIA RIEMANNIANA 2007

LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 RICARDO SA EARP (1) Considere S 3 = {(z 1, z 2 ) C 2 ; z 1 2 + z 2 2 = 1}. seja q um inteiro q > 1. Seja Γ = {1, e 2π1/q,..., e 2π(q 1)/q }, o grupo finito agindo

Leia mais

A métrica de Eddington Finkelstein. Rodrigo Rodrigues Machado & Alexandre Carlos Tort

A métrica de Eddington Finkelstein. Rodrigo Rodrigues Machado & Alexandre Carlos Tort UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Programa de Pós-Graduação em Ensino de Física Mestrado Profissional em Ensino de Física A métrica de Eddington Finkelstein Rodrigo Rodrigues Machado

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

Física Moderna. Gravitação e Curvatura

Física Moderna. Gravitação e Curvatura Física Moderna Gravitação e Curvatura Tópicos Introdução O pensamento mais feliz da minha vida Gravitação e Curvatura Componentes Introdução 1905- Einsten publica vários artigos explorando as conseqüências

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão) Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial

Leia mais

Curso de Geomática Aula 2. Prof. Dr. Irineu da Silva EESC-USP

Curso de Geomática Aula 2. Prof. Dr. Irineu da Silva EESC-USP Curso de Geomática Aula Prof. Dr. Irineu da Silva EESC-USP Sistemas de Coordenadas Determinar a posição de um ponto, em Geomática, significa calcular as suas coordenadas. Calcular as coordenadas de um

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

Física. Física Módulo 1 Trabalho e Energia Cinética

Física. Física Módulo 1 Trabalho e Energia Cinética Física Módulo 1 Trabalho e Energia Cinética Trabalho, trabalho e mais trabalho! Um bom modo de gastar energia Trabalho e energia estão entre os conceitos mais importantes da física e no nosso dia-a-dia.

Leia mais

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA TÓPICOS A SEREM ABORDADOS O que é cinemática? Posição e Deslocamento

Leia mais

Aula 2: Cosmologia Relativística

Aula 2: Cosmologia Relativística Aula 2: Cosmologia Relativística Primeira Escola de Ciências Física Brasil-Cabo Verde 3-13 de abril 2017 Oliver F. Piattella Universidade Federal do Espírito Santo Vitória, Brasil Abordagem matemática

Leia mais

Robótica Experimental

Robótica Experimental UNVERSDADE FEDERAL DO RO GRANDE DO NORTE Universidade Federal do Rio Grande do Norte Centro de Tecnologia Dept o de Engenharia de Computação e Automação DCA Robótica Eperimental Material didático Adelardo

Leia mais

Relatividade Especial & Geral

Relatividade Especial & Geral Relatividade Especial & Geral Roteiro Relatividade Especial: Conceitos básicos e algumas conseqüências Paradoxo dos gêmeos Relatividade Geral: Conceitos básicos, conseqüências e aplicabilidade. Relatividade

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Seja ( ) ( ) g ( z1z 2 ) é um número real. ( )

Seja ( ) ( ) g ( z1z 2 ) é um número real. ( ) . Seja n natural e n ³. Se S (0) é: 5000 57650 600 606700 67670 QUESTÃO ÚNICA 0,000 pontos distribuídos em 0 itens S ( n + ) = S ( n ) + n e S () =, então o valor de. A negação de A Matemática é fácil

Leia mais

MECÂNICA CLÁSSICA. AULA N o 2. Princípio da Mínima Ação Cálculo Variacional Lagrangeano

MECÂNICA CLÁSSICA. AULA N o 2. Princípio da Mínima Ação Cálculo Variacional Lagrangeano 1 MECÂNICA CLÁSSICA AULA N o Princípio da Mínima Ação Cálculo Variacional Lagrangeano Vamos ver a Conservação da Energia em relação às Equações de Newton. Naturalmente, a conservação da energia tem um

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

CENTRO DE MASSA E MOMENTO LINEAR

CENTRO DE MASSA E MOMENTO LINEAR CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I CENTRO DE MASSA E MOMENTO LINEAR Prof. Bruno Farias Introdução Neste módulo vamos discutir

Leia mais

Aula 18. Teoria da Relatividade Restrita (1905) Física Geral IV - FIS503. Parte I

Aula 18. Teoria da Relatividade Restrita (1905) Física Geral IV - FIS503. Parte I Aula 18 Teoria da Relatividade Restrita (1905) Parte I Física Geral IV - FIS503 1 Documentário - National Geographic Nesta aula: Relatividade das velocidades Próxima aula: Efeito Doppler da Luz Momento

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

Instituto de Fıśica UFRJ Mestrado em Ensino profissional

Instituto de Fıśica UFRJ Mestrado em Ensino profissional Instituto de Fıśica UFRJ Mestrado em Ensino profissional Tópicos de Fıśica Clássica II 3 a Lista de Exercıćios Segundo Semestre de 2008 Prof. A C Tort Problema 1 Transformação de Lorentz I. Em aula vimos

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-458 Álgebra Linear para Engenharia II Terceira Lista de Eercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Seja V um espaço vetorial

Leia mais

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo.

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. Lista 3 - FIS 404 - Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. 2 quadrimestre de 2017 - Professor Maurício Richartz Leitura sugerida: Carroll (seções 3.1-3.4,3.6-3.8),

Leia mais

Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel Aula 10 Relatividade Física 4 Ref. Halliday Volume4 ...RELATIVIDADE RESTRITA Sumário A relatividade das distâncias Contração do Espaço Transformada de Lorenz A transformação das velocidades Relembrando...

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT5 - Cálculo Diferencial e Integral para Engenharia II a lista de eercícios - 0 I - Polinômio de Talor. Utilizando o polinômio de Talor de ordem, calcule um valor aproimado e avalie o erro: (a) 8, (b)

Leia mais

A Relatividade Geral de Einstein e suas aplicações à Geometria Riemanniana. Carlos Matheus Silva Santos

A Relatividade Geral de Einstein e suas aplicações à Geometria Riemanniana. Carlos Matheus Silva Santos A Relatividade Geral de Einstein e suas aplicações à Geometria Riemanniana Carlos Matheus Silva Santos 15 de setembro de 2006 Matemática ajudando a Física Newton (1642): 1. Mecânica Newtoniana: movimento

Leia mais

Cap. 0. Cálculo tensorial

Cap. 0. Cálculo tensorial Cap. 0. Cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos em D simétricos

Leia mais

Transformações Geométricas

Transformações Geométricas Transformações Geométricas 2D Carolina Watanabe Referências Bibliográficas FOLEY, J. D, DAM, A. V.; HUGHES, J. F. Computer Graphics Principle and dpractice, 2 a edição Material elaborado por Marcela X.

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2 Lista Cálculo II -B- 007- Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 007- Domínio, curva de nível e gráfico de função real de duas variáveis

Leia mais

Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais

Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taas de Variação:

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com:

Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com: Avaliação 0 ) Médicos ligados aos desportos de desenvolveram empiricamente a seguinte fórmula para calcular a área da superfície de uma pessoa em função do seu peso e sua Altura. 0,45 0,75 S( P, A) 0,007P

Leia mais

Aula 5: Gravitação e geometria

Aula 5: Gravitação e geometria Aula 5: Gravitação e geometria A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 12 de Abril de 2010 Tort (IF UFRJ) IF-UFRJ Informal 1 / 20 Massa Inercial

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

REVISÃO DE NÚMEROS COMPLEXOS

REVISÃO DE NÚMEROS COMPLEXOS REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2012-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

PARTE 4. ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa)

PARTE 4. ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa) PARTE 4 REVISÃO DE PLANOS, CILINDROS, SUPERFÍCIES DE REVOLUÇÃO, ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa) Vamos agora faer uma revisão de planos, cilindros, superfícies de revolução,

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

GEOMETRIAS NÃO- EUCLIDIANAS E SUAS MÉTRICAS

GEOMETRIAS NÃO- EUCLIDIANAS E SUAS MÉTRICAS GEOMETRIAS NÃO- EUCLIDIANAS E SUAS MÉTRICAS Fernando da Costa Gomes (bolsista do PIBIC/UFPI), Newton Luís Santos (Orientador, Depto. de Matemática UFPI) RESUMO Neste trabalho, exibimos os modelos clássicos,

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas

Leia mais

Forma Canônica de Matrizes 2 2

Forma Canônica de Matrizes 2 2 Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

LABORATÓRIO DE GEOPROCESSAMENTO DIDÁTICO. Professora: Selma Regina Aranha Ribeiro

LABORATÓRIO DE GEOPROCESSAMENTO DIDÁTICO. Professora: Selma Regina Aranha Ribeiro LABORATÓRIO DE GEOPROCESSAMENTO DIDÁTICO Professora: Selma Regina Aranha Ribeiro Estagiários: Ricardo Kwiatkowski Silva / Carlos André Batista de Mello ESCALAS - AULA 3 Precisão Gráfica É a menor grandeza

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 RICARDO SA EARP (1) Considere a esfera unitária S 2 = {x 2 + y 2 + z 2 = 1} em R 3. (a) Mostre que a projeção estereográfica usual do pólo norte é dada por Π N (x,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

37 a Aula AMIV LEAN, LEC Apontamentos

37 a Aula AMIV LEAN, LEC Apontamentos 37 a Aula 4.1.15 AMIV EAN, EC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 37.1 Equação das ondas-modos de vibração Vimos na última aula que a solução do problema u Equação das ondas t = c u tem a solução

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-1 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada

Leia mais

2 Integrais Duplas em Coordenadas Polares

2 Integrais Duplas em Coordenadas Polares Lista 3: CDCI2 Turmas: 2AEMN e 2BEMN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Mudança de Variáveis em Integrais Duplas Exercício 1: Calcule a integral dupla transformando a região de integração

Leia mais

UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP LABTOP Topografia 1. Coordenadas Aula 1

UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP LABTOP Topografia 1. Coordenadas Aula 1 UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP LABTOP Topografia 1 Coordenadas Aula 1 Recife, 2014 Sistema de Coordenadas Um dos principais objetivos da Topografia é a determinação

Leia mais

Sobre a Relatividade Total e o significado da 5ª Dimensão para o Ponto Material

Sobre a Relatividade Total e o significado da 5ª Dimensão para o Ponto Material Sobre a Relatividade Total e o significado da 5ª Dimensão para o Ponto Material Pereyra, P. H. pereyraph.com Resumo É feita uma introdução à teoria da Relatividade Total como campos potenciais com distribuição

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA TRANSFORMAÇÕES Cláudio Martins Mendes Segundo Semestre de 2005 Sumário 1 Transformações 2 1.1 Transformações................................... 2 1.1.1 Campos Vetoriais..............................

Leia mais

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis Á lgebra para intermedia rios Ma imos, mí nimos e outras ideias u teis 0) O que veremos na aula de hoje? Máimos e mínimos em funções do º grau Máimos e mínimos por trigonometria Máimos e mínimos por MA

Leia mais

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

O espectro medido da maior parte das galáxias, em todas as direções no céu, apresenta linhas com deslocamento para s

O espectro medido da maior parte das galáxias, em todas as direções no céu, apresenta linhas com deslocamento para s LEI DE HUBBLE O espectro medido da maior parte das galáxias, em todas as direções no céu, apresenta linhas com deslocamento para s maiores em relação ao em repouso (REDSHIFT). Efeito observado em grandes

Leia mais

Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel Aula 10 Relatividade Física 4 Ref. Halliday Volume4 ...RELATIVIDADE RESTRITA Sumário A relatividade das distâncias Contração do Espaço Transformada de Lorenz A transformação das velocidades Relembrando...

Leia mais

Introdução à Cosmologia Física

Introdução à Cosmologia Física Introdução à Cosmologia Física Desafio: encontrar o z desta galáxia: Resposta: Hoje: Relatividade Restrita (revisão rápida) O Princípio da Equivalência A Relatividade Geral de Einstein Coordenadas generalizadas

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

3. FUNÇÃO. NOÇÕES FUNDAMENTAIS

3. FUNÇÃO. NOÇÕES FUNDAMENTAIS 7 3. FUNÇÃO. NOÇÕES FUNDAMENTAIS 3.1. INTRODUÇÃO Observamos, no dia a dia, que muitos objetos ou grandezas estão relacionados. Por eemplo, trabalhando com números reais estamos sempre comparando uns com

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS

Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica LEI DE GAUSS Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica mehl@ufpr.br LEI DE GAUSS Lei de Gauss AGENDA Revisão: Produto escalar Quem foi Gauss? Lei de Gauss Analogia

Leia mais

ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq.

ˆLψ(x) = f(x), (1) Se for possível encontrar a função de Green G(x, x ) que satisfaz a equação acima, então a solução da Eq. Notas sobre Funções de Green FMA 43 Prof. Luís Raul Weber Abramo Departamento de Física Matemática Instituto de Física USP Introdução geral às funções de Green A função de Green (G. Green, c. 828) é uma

Leia mais

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Parábolas Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Introdução ω Nesta aula vamos revisar o conceito

Leia mais

Coordenadas Geográficas

Coordenadas Geográficas Coordenadas Geográficas Coordenadas Geográficas É a posição exata no globo terrestre Intersecção entre latitude e longitude Paralelos Linhas paralelas a Linha do Equador Trópico de Capricórnio Hemisfério

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. 4º Teste de avaliação versão Grupo I As cinco questões deste grupo

Leia mais

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado).

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado). Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Um cavalo pua uma carroça para cima num plano inclinado, com velocidade constante. A força de atrito entre a carroça e o plano inclinado é desprezível.

Leia mais

Fundamentos de Mecânica

Fundamentos de Mecânica Fundamentos de Mecânica 43151 Gabarito do estudo dirigido 3 (Movimento em uma dimensão) Primeiro semestre de 213 1. Um elevador sobe com uma aceleração para cima de 1, 2 m/s 2. No instante em que sua velocidade

Leia mais

VETORES + O - vetor V 2 vetor posição do ponto P 2

VETORES + O - vetor V 2 vetor posição do ponto P 2 Objetivo VETORES Estudar propriedades de vetores e a obtenção de resultantes. Introdução Para localizar um ponto P em uma reta, três elementos são necessários: uma referência R, escolhida arbitrariamente,

Leia mais

Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas

Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais

Leia mais

MATEMÁTICA. A é a matriz inversa de A.

MATEMÁTICA. A é a matriz inversa de A. MATEMÁTICA 41 - O estado do Paraná tem uma área de aproximadamente 200.000 km 2. Atualmente, em quatro milhões de hectares do estado se planta soja, sendo que um grão de soja ocupa um volume de 1 cm 3.

Leia mais

A camada eletrônica dos átomos forma a seguinte série:

A camada eletrônica dos átomos forma a seguinte série: Vamos retornar ao problema da constante cosmológica. Riemann percebeu que é possível estender a função zeta para todos os números complexo, exceto para s = 1. E é aqui que está fincada a relação entre

Leia mais