CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

Tamanho: px
Começar a partir da página:

Download "CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano."

Transcrição

1 CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano

2 Aula 4 09/2014 Zeros reais de funções Parte 1

3 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60

4 Motivação Você está projetando um tanque esférico para armazenar a água para uma pequena vila em uma região em desenvolvimento. O volume de líquido que ele armazena pode ser calculado por: V h 3R 3 2 h onde V é o volume [m 3 ], h é a profundidade da água no tanque [m], R é o raio do tanque. Cálculo Numérico 4/60

5 Motivação Se R = 3 m, até que profundidade o tanque deve estar cheio para que ele armazene 30 m 3? Cálculo Numérico 5/60

6 Motivação A equação a ser resolvida será: f h Rh h V 0 Onde V = 30m 3. Como determinar h? Cálculo Numérico 6/60

7 Motivação A solução eata de pode ser encontrada apenas em alguns casos: f 0 Polinômios de grau menor ou igual a quatro; Algumas funções trigonométricas. Mesmo quando a solução analítica está disponível, sua determinação pode ser complicada. Cálculo Numérico 7/60

8 Em alguns casos, por eemplo, de equações polinomiais, os valores de que anulam f () podem ser reais ou compleos. Estamos interessados somente nos zeros reais de f (). Graficamente, os zeros reais são representados pelas abscissas dos pontos onde uma curva intercepta o eio. Cálculo Numérico 8/60

9 Cálculo Numérico 9/60

10 A ideia central dos métodos que iremos aprender é partir de uma aproimação inicial para a raiz e em seguida refinar essa aproimação através de um processo iterativo. Cálculo Numérico 10/60

11 Assim, os métodos constam de duas fases: Fase I: Localização ou isolamento das raízes Consiste em obter um intervalo que contém a raiz. Fase II: Refinamento Consiste em, escolhidas aproimações iniciais para o intervalo da Fase I, melhorá-las sucessivamente até se obter uma aproimação para a raiz dentro de uma precisão e préestabelecida. Cálculo Numérico 11/60

12 FASE I: Isolamento das Raízes Nesta fase é feita uma análise teórica e gráfica da função f (). O sucesso da Fase II depende fortemente da precisão desta análise. Cálculo Numérico 12/60

13 Fase I: Isolamento das Raízes Na análise teórica, usa-se: TEOREMA 1 Seja f () uma função contínua em [a, b]. Se f (a) f (b) < 0, então eiste pelo menos um ponto = ξ entre a e b que é zero de f (). Esta é uma consequência do Teorema do Valor Intermediário. Cálculo Numérico 13/60

14 Fase I: Isolamento das Raízes TEOREMA 1 Cálculo Numérico 14/60

15 Fase I: Isolamento das Raízes TEOREMA 1 Cálculo Numérico 15/60

16 Fase I: Isolamento das Raízes TEOREMA 1 Cálculo Numérico 16/60

17 Fase I: Isolamento das Raízes Sob as hipóteses do Teorema 1, se f () eistir e preservar o sinal em ]a, b[, então este intervalo contém um único zero de f (). Cálculo Numérico 17/60

18 Fase I: Isolamento das Raízes f ' ( ) > 0, " Î a,b [ ] Cálculo Numérico 18/60

19 Fase I: Isolamento das Raízes f ' ( ) < 0, " Î a,b [ ] Cálculo Numérico 19/60

20 Fase I: Isolamento das Raízes Uma forma de isolar as raízes de f () usando os conceitos anteriores é tabelar f () para vários valores de e analisar as mudanças de sinal de f () e o sinal da derivada nos intervalos em que f () mudou de sinal. Cálculo Numérico 20/60

21 Fase I: Isolamento das Raízes EXEMPLO 1: Seja f () = Vamos analisar o sinal desta função. Construindo uma tabela de valores para f () e considerando apenas os sinais, temos: f() Cálculo Numérico 21/60

22 Fase I: Isolamento das Raízes Sabendo que f () é contínua para qualquer real e observando as variações de sinal, podemos concluir que cada um dos intervalos I 1 = [-5, -3], I 2 = [0, 1], I 3 = [2, 3], contém pelo menos um zero de f (). Como f () é um polinômio de terceiro grau, podemos afirmar que cada intervalo contém um único zero de f () e, assim localizamos todas as raízes de f () = 0. Cálculo Numérico 22/60

23 Fase I: Isolamento das Raízes Se f (a) f (b) > 0, então podemos ter várias situações no intervalo [a, b], conforme mostram os gráficos a seguir. Cálculo Numérico 23/60

24 Fase I: Isolamento das Raízes Nenhuma raiz Cálculo Numérico 24/60

25 Fase I: Isolamento das Raízes Várias raízes Cálculo Numérico 25/60

26 Fase I: Isolamento das Raízes Uma única raiz Cálculo Numérico 26/60

27 Fase I: Isolamento das Raízes A análise gráfica da função f () ou da equação f () = 0 é fundamental para se obter aproimações para a raiz. Temos três processos de análise de gráficos. Cálculo Numérico 27/60

28 Processos Gráficos ESBOÇAR O GRÁFICO: Análise do comportamento da função, que envolve: domínio da função, pontos de descontinuidade, intervalos de crescimento e decrescimento, pontos de máimo e mínimo, concavidade, ponto de infleão e assíntotas da função. Através da EQUAÇÃO EQUIVALENTE g () = h (): A partir da equação f () = 0, obter a equação equivalente g () = h (), esboçar os gráficos das funções g () e h () no mesmo eio cartesiano e localizar os pontos onde as duas curvas se interceptam, pois neste caso: f ( ) = 0 g ( ) = h ( ). GRÁFICOS COMPUTACIONAIS. Cálculo Numérico 28/60

29 Equação Equivalente g() = h() EXEMPLO 2: Suponha f () = log 1, então queremos encontrar tal que: log 1 0 log 1 Chamando: e g h log 1 Cálculo Numérico 29/60

30 Equação Equivalente g() = h() y h() 2 3 g() Verificou-se que [2, 3] Cálculo Numérico 30/60

31 Gráficos computacionais EXEMPLO 3: Os gráficos computacionais podem tornar mais rápidos e melhores seus esforços para localizar as raízes de equações. A função: sen10 cos f 3 tem diversas raízes no intervalo de = 0 a = 5. Use gráficos computacionais para adquirir percepção do comportamento dessa função. Cálculo Numérico 31/60

32 Fase II: Refinamento Veremos vários métodos de refinamento de raízes. A forma como se efetua o refinamento é que diferencia os métodos. Um método iterativo consiste em uma sequência de instruções que são eecutadas passo a passo, algumas das quais são repetidas em ciclos. Os métodos iterativos para refinamento da aproimação inicial para a raiz eata podem ser colocados em um diagrama de fluo. Cálculo Numérico 32/60

33 Início Dados Iniciais Cálculo Iniciais k = 1 Calcular a nova aproimação Essa aproimação está próima o suficiente da raiz eata? Cálculos Intermediários Sim Cálculos Finais Fim k = k+1 Cálculo Numérico 33/60

34 Critério de Parada TESTE: k está suficientemente próimo da raiz eata? Eistem duas interpretações para raiz aproimada que nem sempre levam ao mesmo resultado: é raiz aproimada com precisão e se: i) e ou ii) f e Cálculo Numérico 34/60

35 Critério de Parada Como efetuar o teste (i) se não conhecemos o valor eato da raiz? Usamos frequentemente os conhecimentos de erro absoluto e erro relativo para determinarmos o critério de parada. ERRO ABSOLUTO: k k 1 e ERRO RELATIVO: k k 1 k e Cálculo Numérico 35/60

36 Critério de Parada Cálculo Numérico 36/60

37 Nem sempre é possível ter as eigências (i) e (ii) satisfeitas simultaneamente. Cálculo Numérico 37/60

38 Cálculo Numérico 38/60

39 Cálculo Numérico 39/60

40 Cálculo Numérico 40/60

41 Em programas computacionais, além do teste de parada usado para cada método, deve-se ter o cuidado de estipular um número máimo de iterações, para se evitar que o programa entre em looping. Cálculo Numérico 41/60

42 Métodos Iterativos Métodos iterativos para a obtenção de zeros reais de funções: Bissecção; Falsa posição; Ponto fio; Newton-Raphson; Secante. Cálculo Numérico 42/60

43 Método da Bissecção Suponha que f () seja uma função contínua definida em [a,b], tal que f (a) f (b) < 0. De acordo com o Teorema do Valor Intermediário, eiste um número c em ]a, b[ para o qual f (c) = 0. Vamos supor, para simplificar, que ]a, b[ contenha uma única raiz da equação f () = 0. Cálculo Numérico 43/60

44 Método da Bissecção O objetivo deste método é reduzir a amplitude do intervalo que contém a raiz até se atingir a precisão requerida: (b a) < e ou usando, para isto, a sucessiva divisão f de [a, b] ao meio. e Cálculo Numérico 44/60

45 Método da Bissecção Graficamente: 1 = (a + 0 )/2 f() f() a = a 1 0 = (a + b)/2 1 0 = b 1 a = a 0 2 = ( )/2 0 b = b 0 f() 1 =a 2 Repete-se o processo até que o valor de atenda às condições de parada. 2 0 =b 2 Cálculo Numérico 45/60

46 Cálculo Numérico 46/60 Método da Bissecção As iterações são realizadas da seguinte forma: , b a a a f b f a f b a , b b a b f b f a f b a

47 EXEMPLO 4 Considerando o método da bissecção com e = 0,002 e adotando [2, 3] como intervalo inicial, obtenha uma aproimação para a função: f log1 Cálculo Numérico 47/60

48 EXEMPLO 4 y h() 2 3 g() Verificou-se que [2, 3] Cálculo Numérico 48/60

49 EXEMPLO 4 k a k b k f(a k ) f(b k ) k+1 f( k+1 ) 0 2, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,00136 b - a = 0,0156 > e = 0,002 2,50781 f() < e = 0,002 Cálculo Numérico 49/60

50 EXEMPLO 4 k a k b k f(a k ) f(b k ) k+1 f( k+1 ) 0 2, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,5000 2, , , , , , , , , , , , , , , , ,00055 b - a = 0,0008 < e =0,002 2,50684 Cálculo Numérico 50/60

51 Método da Bissecção ESTIMATIVA DO NÚMERO DE ITERAÇÕES: Dada uma precisão e e um intervalo inicial [a, b], vamos determinar quantas iterações serão efetuadas pelo método da bissecção até b k a k < e. Cálculo Numérico 51/60

52 Cálculo Numérico 52/60 Método da Bissecção a 0 b 0 a 1 b 1 b 2 a a b a b a b a b a b a b a b a b b 3 a 3

53 Método da Bissecção Então temos que: b k a k b a 2 b k 1 k 1 0 k 2 a 0 b k a k e Devemos obter o valor de k tal que, ou seja: b 0 a k 2 0 e Cálculo Numérico 53/60

54 Método da Bissecção Portanto, se k satisfaz a relação anterior, ao final da iteração k, teremos o intervalo [a, b] que contém a raiz, tal que:, a b b a e Cálculo Numérico 54/60

55 Algoritmo do Método da Bissecção Seja f () contínua em [a, b] e tal que f (a) e f (b) têm sinais opostos: ENTRADA: função f, etremidades a, b; precisão erro, número máimo de iterações ma. SAÍDA: solução aproimada Passo 1: Faça i = 1; ou mensagem de erro. Passo 2: Enquanto i < ma, eecute os passos 3 a 6. Passo 3: Faça p = (a + b) / 2; ( ) Cálculo Numérico 55/60

56 Algoritmo do Método da Bissecção Passo 4: Se f (p) = 0 ou b a < erro, então: SAÍDA (); ( ). PARE. Passo 5: Faça i = i + 1. Passo 6: Se f (a) * f (p) < 0, então faça b = p; ( ). senão faça a = p. SAÍDA ( ( ). PARE., ma); Cálculo Numérico 56/60

57 Outros procedimentos de parada podem ser aplicados no Passo 4 do algoritmo ou em qualquer das técnicas iterativas que aprenderemos. Por eemplo, podemos selecionar uma precisão e > 0 e gerar 1, 2,..., n até que uma das condições a seguir seja satisfeita: n n 1 e n n 1 f n e n e Cálculo Numérico 57/60

58 CUIDADO!!!! Podem ocorrer sequências em que as diferenças n n1 convergem para zero, enquanto a própria sequência diverge. f Podem ocorrer de estar próimo de zero, mesmo quando n for significativamente diferente de. n Sem outras informações sobre f ou, o melhor critério é: n n 1 n e por ser o que mais se aproima da ideia de testar o. Cálculo Numérico 58/60

59 Método da Bissecção VANTAGENS: Facilidade de implementação; Estabilidade e convergência para a solução procurada; Desempenho regular e previsível. O número de iterações é dependente da tolerância considerada. Cálculo Numérico 59/60

60 Método da Bissecção DESVANTAGENS: Lentidão do processo de convergência (requer o cálculo de f () em um elevado número de iterações); Necessidade de conhecimento prévio da região na qual se encontra a raiz de interesse (o que nem sempre é possível); Compleidade da etensão do método para problemas multivariáveis. Cálculo Numérico 60/60

61 Eercício Seja f () = ; I = [0, 1]; e = k a k b k f(a k ) f(b k ) k+1 f( k+1 ) b - a ,5-1, ,5 3-1,375 0,25 0, ,5 2 0,25 0,5 0, ,375 0,375-0, , ,25 0,375 0, , ,3125 0, , ,3125 0,375 0, , , , , ,3125 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Cálculo Numérico 61/60

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 Voltando ao eemplo da aula anterior, vemos que o ponto médio da primeira iteração 1 = 2,5

Leia mais

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante Matemática Computacional 4) Equações e Sistemas Não Lineares Carlos Alberto Alonso Sanches Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson, Secante Introdução Ponto Fio Introdução Ponto Fio Raízes

Leia mais

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 EXEMPLO 6 Aula anterior Aplicação do método da bissecção para: f ( ) = log 1, em[ 2,3] com

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração

Leia mais

Resolução Numérica de Equações Parte I

Resolução Numérica de Equações Parte I Cálculo Numérico Resolução Numérica de Equações Parte I Prof Reinaldo Haas Cálculo Numérico Objetivos 2 Estudar métodos numéricos para a resolução de equações não lineares (determinar a(s) raiz(es) de

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAIS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.

Leia mais

Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros: Introdução Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Um número real é um zero da função f(x) ou uma raiz da equação f(x)=0, se f( )=0. 2 Os zeros de uma função

Leia mais

Cálculo Numérico. Zeros de funções reais

Cálculo Numérico. Zeros de funções reais Cálculo Numérico Zeros de funções reais Agenda Introdução Isolamento de raízes Refinamento Bissecção Posição Falsa Método do ponto fixo (MPF) Método de Newton-Raphson Método da secante Introdução Um número

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim

Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim Cálculo Numérico Aula 4 Zeros de Funções 2014.1-09/04/2014 Prof. Rafael mesquita rgm@cin.ufpe.br Adpt. por Prof. Guilherme Amorim gbca@cin.ufpe.br Últimas aulas... Aritmética de máquina Erros Sistema de

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Resolução Numérica de Equações (Parte II)

Resolução Numérica de Equações (Parte II) Cálculo Numérico Módulo III Resolução Numérica de Equações (Parte II) Prof: Reinaldo Haas Cálculo Numérico Bissecção Métodos Iterativos para a Obtenção de Zeros Reais de Funções Bissecção Newton-Raphson

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Isolamento de Raízes Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Definição Um número real ξ é um zero da função f (x) ou uma raiz da equação f (x) = 0 se f (ξ) = 0. Etapas para

Leia mais

Semana 5 Zeros das Funções_2ª parte

Semana 5 Zeros das Funções_2ª parte 1 CÁLCULO NUMÉRICO Semana 5 Zeros das Funções_2ª parte Professor Luciano Nóbrega UNIDADE 1 2 LOCALIZAÇÃO DAS RAÍZES PELO MÉTODO GRÁFICO Vejamos dois procedimentos gráficos que podem ser utilizados para

Leia mais

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Proa. Dra. Yara de Souza Tadano yaratadano@utpr.edu.br Revisão Zeros de Funções A ideia central dos métodos que iremos aprender é partir de uma aproimação inicial para a raiz e em seguida

Leia mais

Métodos Numéricos Zeros Newton-Raphson e Secante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros Newton-Raphson e Secante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros Newton-Raphson e Secante Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Método Newton Raphson 2 Método Newton-Raphson Dada uma função f( contínua num intervalo fechado

Leia mais

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Equações Não Lineares 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Um tipo de problema bastante comum é o de achar raízes de equações da forma f() = 0, onde f() pode ser um

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 4) Equações e Sistemas Não Lineares Biss ã P si ã F ls P nt Fi Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson,

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a,

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a, - SOLUÇÃO DE EQUAÇÕES NÃO LINEARES INTRODUÇÃO Um dos problemas que ocorrem mais reqüentemente em trabalhos cientíicos é calcular as raízes de equações da orma: () 0. A unção () pode ser um polinômio em

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Aula 12. Interpolação Parte 1

Aula 12. Interpolação Parte 1 CÁLCULO NUMÉRICO Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura: Temperatura ( o C) 20 25 30 35 40 Densidade (g/m

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

4. Resolução Numérica de Equações (Zero de Funções)

4. Resolução Numérica de Equações (Zero de Funções) Curso de CNC º Semestre de 5 Engenaria de Controle e Automação UD Sorocaa UNESP 4. Resolução Numérica de Equações Zero de Funções 4. Introdução No eemplo usado na introdução desta apostila, vimos que ao

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano aratadano@utfpr.edu.br Aula 2 08/2014 Noções Básicas sobre Erros A resolução de problemas numericamente envolve várias fases que podem ser assim estruturadas:

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano aratadano@utfpr.edu.br Aula 2 Noções Básicas sobre Erros A resolução de problemas numericamente envolve várias fases que podem ser assim estruturadas:

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 13 04/2014 Sistemas de Equações Lineares Parte 3 MÉTODOS ITERATIVOS Cálculo Numérico 3/44 MOTIVAÇÃO Os métodos iterativos

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

Equações Algébricas e Transcendentes

Equações Algébricas e Transcendentes Notas de aula de Cálculo Numérico c Departamento de Computação/ICEB/UFOP Equações Algébricas e Transcendentes Marcone Jamilson Freitas Souza, Departamento de Computação, Instituto de Ciências Eatas e Biológicas,

Leia mais

Método de Newton para polinômios

Método de Newton para polinômios Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.

Leia mais

C alculo Num erico Ra ızes de Equa c oes Ana Paula Ana Paula C alculo Num erico

C alculo Num erico Ra ızes de Equa c oes Ana Paula Ana Paula C alculo Num erico Raízes de Equações Sumário 1 Introdução 2 3 Revisão Introdução Introdução Introdução Introdução Serão estudados aqui métodos numéricos para a resolução do problema de determinar as raízes de uma equação

Leia mais

Interpretação Geométrica

Interpretação Geométrica .. Método da Iteração Linear MIL Seja uma unção contínua em [a, com α [ a, tal que α. O Método de Iterações Lineares consiste em: a transormar a equação numa unção de iteração ϕ ; b adotar um valor inicial

Leia mais

Método de Newton. 1.Introdução 2.Exemplos

Método de Newton. 1.Introdução 2.Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Determinação de raízes de funções: Marina Andretta/Franklina Toledo ICMC-USP 18 de outubro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina Toledo (ICMC-USP)

Leia mais

Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1

Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1 Raízes de uma função Laura Goulart UESB 16 de Março de 2016 Laura Goulart (UESB) Raízes de uma função 16 de Março de 2016 1 / 1 Aproximação de uma raíz Dado uma precisão ɛ > 0, diremos que um ponto c R

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO Departamento de Computação Cálculo Numérico - BCC760 Lista 3 - Raízes de Equações Não Lineares

UNIVERSIDADE FEDERAL DE OURO PRETO Departamento de Computação Cálculo Numérico - BCC760 Lista 3 - Raízes de Equações Não Lineares UNIVERSIDADE FEDERAL DE OURO PRETO Departamento de Computação Cálculo Numérico - BCC760 Lista 3 - Raízes de Equações Não Lineares 1. Localize graficamente as raízes das equações a seguir: a) f(x) = x 2

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

Pretende-se calcular uma aproximação para a menor raiz positiva da equação

Pretende-se calcular uma aproximação para a menor raiz positiva da equação 1 Prete-se calcular uma aproimação para a menor raiz positiva da equação, pelos métodos de Newton-Raphson e ponto fio. a) Localize um intervalo que contenha a menor raiz positiva da equação dada Determinar

Leia mais

Capítulo 06. Raízes: Métodos Abertos

Capítulo 06. Raízes: Métodos Abertos Capítulo 06 Raízes: Métodos Abertos Objetivos do capítulo Reconhecer a diferença entre os métodos intervalares e os métodos abertos para localização de raízes. Compreender o método de iteração de ponto

Leia mais

Raízes de uma função. Laura Goulart. 14 de Março de 2019 UESB. Laura Goulart (UESB) Raízes de uma função 14 de Março de / 17

Raízes de uma função. Laura Goulart. 14 de Março de 2019 UESB. Laura Goulart (UESB) Raízes de uma função 14 de Março de / 17 Raízes de uma função Laura Goulart UESB 14 de Março de 2019 Laura Goulart (UESB) Raízes de uma função 14 de Março de 2019 1 / 17 Aproximação de uma raíz Dado uma precisão ɛ > 0, diremos que um ponto c

Leia mais

SME0300 Cálculo Numérico Aula 4

SME0300 Cálculo Numérico Aula 4 SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a

Leia mais

Equações não lineares

Equações não lineares DMPA IM UFRGS Cálculo Numérico Índice 1 Método da bissecção 2 Método Newton-Raphson 3 Método da secante Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real

Leia mais

Semana 4 Zeros das Funções

Semana 4 Zeros das Funções 1 CÁLCULO NUMÉRICO Semana 4 Zeros das Funções Professor Luciano Nóbrega UNIDADE 1 Eixo das ordenadas www.professorlucianonobrega.wordpress.com 2 ZEROS DAS FUNÇÕES INTRODUÇÃO Nas diversas áreas científicas,

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Aula 10. Integração Numérica

Aula 10. Integração Numérica CÁLCULO NUMÉRICO Aula Integração Numérica Integração Numérica Cálculo Numérico 3/4 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Equações Não-Lineares Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Localização

Leia mais

Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná Cálculo Numérico - Zeros de Funções Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Zeros de Funções 1/81 Problema Velocidade do pára-quedista

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura:

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura:

Leia mais

Modelagem Computacional. Parte 2 2

Modelagem Computacional. Parte 2 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 2 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 2 e 3] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO Departamento de Computação Cálculo Numérico - BCC760 Lista 4 - Raízes de Equações Não Lineares

UNIVERSIDADE FEDERAL DE OURO PRETO Departamento de Computação Cálculo Numérico - BCC760 Lista 4 - Raízes de Equações Não Lineares UNIVERSIDADE FEDERAL DE OURO PRETO Departamento de Computação Cálculo Numérico - BCC760 Lista 4 - Raízes de Equações Não Lineares 1. Localize graficamente as raízes das equações: a) f(x) = x 2 + x 6 b)

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Zeros de Função Conteúdo específico Aspectos básicos

Leia mais

Solução aproximada de equações de uma variável

Solução aproximada de equações de uma variável Cálculo Numérico de uma variável Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Parte I Localização de zeros e Método da bissecção Motivação: Queda de um

Leia mais

Resolução Numérica de Equações Parte I

Resolução Numérica de Equações Parte I Cálculo Numérico Resolução Numérica de Equações Parte I Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

1. Calcule a derivada da função dada usando a definição. (c) f(x) = 2x + 1. (a) f(x) = 2. (b) f(x) = 5x. (d) f(x) = 2x 2 + x 1

1. Calcule a derivada da função dada usando a definição. (c) f(x) = 2x + 1. (a) f(x) = 2. (b) f(x) = 5x. (d) f(x) = 2x 2 + x 1 Lista de Eercícios de Cálculo I para os cursos de Engenharia - Derivadas 1. Calcule a derivada da função dada usando a definição. (a) f() = (b) f() = 5 (c) f() = + 1 (d) f() = + 1. O limite abaio representa

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade 1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais

CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.

CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial

Leia mais

Método da Secante Para Resolução de equações do tipo f(x)=0

Método da Secante Para Resolução de equações do tipo f(x)=0 Método da Secante Para Resolução de equações do tipo 0 Narã Vieira Vetter Guilherme Paiva Silva Santos Raael Pereira Marques naranvetter@walla.com guilherme.pss@terra.com.br rp_marques5@yahoo.com.br Associação

Leia mais

3. Equações Algébricas

3. Equações Algébricas 3. Equações Algébricas 3.1 Introdução Em muitos problemas de Ciência e Engenharia há necessidade de se determinar um número ξ para o qual um número ξ para o qual uma função f(x) seja zero, ou seja, f(ξ)

Leia mais

Exercícios sobre zeros de funções Aula 7

Exercícios sobre zeros de funções Aula 7 Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais