1 Fórmulas de Newton-Cotes

Tamanho: px
Começar a partir da página:

Download "1 Fórmulas de Newton-Cotes"

Transcrição

1 As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como determinr x e x dx? ) Como clculr f(x)dx qundo f(x) é conhecid pens em lguns pontos? Idéi: Substituir f(x) por um polinômio que proxime rzovelmente bem no intervlo de integrção considerdo e então integrr o tl polinômio. Fórmuls de Newton-Cotes Aqui trblhmos com interpolção sobre nós igulmente espçdos no intervlo [, b]. Sendo ssim: (b ) x =, x i = i +, x n = b, i =,,..., n. n e teremos o psso h = b n = x i+ x i. As fórmuls fechds de Newton-Cotes são fórmuls de integrção do tipo f(x)dx = xn x f(x)dx A f(x ) + A f(x ) + + A n f(x n ) onde fizemos x = e x n = b, e sendo os coeficientes A i determindos de cordo com o gru do polinômio interpoldor.. Regr dos Trpézios Usndo fórmul de Lgrnge pr interpolr f(x) em x e x, chmos p (x) e então f(x)dx p (x)dx = h (f(x ) + f(x )) = I T O ERRO! Sbemos que E (x) = f (α) (x x )(x x ), sendo ssim o erro cometido n! Regr dos Trpézios (E T ) será: E T (x) = f (α) (x x )(x x )dx,! que, usndo o teorem do vlor médio pr integris teremos: E T (x) = f (c)! =x =x (x x )(x x )dx = h3 f (c), onde c (x, x ) e depende de x e h. Cso o intervlo de integrção sej muito grnde, o erro tmbém será grnde. Pr se usr ess regr, será mis vntjoso dividirmos o intervlo [, b] em vários subintervlos e então plicrmos regr em cd um deles. Então n Regr do Trpézios Repetid:

2 teremos x =, x i = + h i, x n = b, h = b n, e ssim I r = h {f(x ) + [f(x ) f(x n )] + f(x n )}, e do erro será: E r = mh3 f (α), pr lgum α (, b)... Limitnte pr o erro Sendo f (x) contínu então existe M =máx f (x), x [, b] e ssim E r mh3 M = b h3 M.. Sej I = exp(x)dx. Clcule um proximção pr I usndo subintervlos e Regr dos Trpézios repetid. Estime o erro. Clcule o número de mínimo de subdivisões de modo que o erro sej inferior 3?. Sej I = 4 (x)dx. Clcule um proximção pr I usndo subintervlos e Regr dos Trpézios repetid. Estime o erro. Clcule o número de mínimo de subdivisões de modo que o erro sej inferior 3?. Regr 3 de Simpson Usndo form de Lgrnge pr encontrr o polinômio interpoldor p (x) pr x, x, x teremos: x =, x = + h, x = + h = b, h = b e ssim f(x)dx x e o erro cometido será E S = h5 9 f (iv) (c), c (x, x ). x p (x)dx = h 3 [f(x ) + 4f(x ) + f(x )] = I S D mesm form que no cso d Regr dos Trpézios, se o intervlo [,b] for grnde h = b tmbém será e o erro, que depende de h 5, será desconselhável. A lterntiv que se present, de novo, é subdivisão do intervlo [,b] e plicção d Regr 3 de Simpson em cd um deles. Teremos então : m subintervlos, sendo m pr pois Regr 3 de Simpson us intervlos de cd vez, os nós d interpolção serão x =, x i = e em cd subintervlo: xk (b ) m i +, x m = b, i =,,..., m, x k p (x)dx = h 3 [f(x k ) + 4f(x k ) + f(x k )], k =,,..., m/.

3 Então xm x f(x)dx = h 3 {[f(x ) + f(x m )] + 4[f(x ) + f(x 3 ) + + f(x m )]+ +[f(x ) + f(x 4 ) + + f(x m )]} mh5 9 f (iv) (α), α (x, x m ), e ind E r mh5 8 máx{ f (iv) (x) ; x [x, x m ]}.. Sej I = exp(x)dx. Clcule um proximção pr I usndo subintervlos e Regr dos 3 de Simpson repetid. Estime o erro. Clcule o número de mínimo de subdivisões de modo que o erro sej inferior 3?. Sej I = 4 (x)dx. Clcule um proximção pr I usndo subintervlos e Regr dos 3 de Simpson repetid. Estime o erro. Clcule o número de mínimo de subdivisões de modo que o erro sej inferior 3?.3 Regr 3 8 de Simpson Se f(x) for proximd por um polinômio interpoldor de gru 3 em x, x, x, então onde h = b. f(x)dx x3 x p 3 (x)dx = 3h 8 [f(x ) + 3f(x ) + 3f(x ) + f(x 3 )] = I 3 Exercício: Clculr 4 dx x : )pel Regr 3 8 b)pel Regr 3 c)pel Regr dos Trpézios. Verificr que proximção melhor conforme cresce o gru do polinômio interpoldor..3. Regr 3 8 de Simpson repetid 3 8 Subdividindo o intervlo [,b] em m (múltiplo de 3) subintervlos iguis e plicndo Regr de Simpson repetid cd 4 pontos, tem-se: xm x f(x)dx = 3h 8 [f(x ) + 3f(x ) + 3f(x ) + f(x 3 ) + + f(x m 3 ) + 3f(x m ) + 3f(x m ) + f( Pr Regr 3 8 de Simpson repetid o erro cometido será E 3r = Exercício: Clculr 4 ln(x3 + e x + )dx pel Regr (b )5 8m 4 f (iv) (c), c (, b). de Simpson repetid, com m = 6.

4 Comprndo s fórmuls nteriores, not-se que s fórmuls de Newton-Cotes presentm form gerl: I n = nh n c i y i d n onde os c is são os coeficientes de Cotes. Por exemplo, pr n =,,..., 8: i= n d n c c c c 3 c 4 c 5 c 6 c 7 c A regr dos trpézios plicd f(x) dx dá o vlor 4, e regr 3 de Simpson dá o vlor. Qul é o vlor de f()?. A fórmul de qudrtur f(x) dx = c f( )+c f()+c f() é ext pr polinômios de gru menor ou igul. Determine c, c, c. 3. Aproxime s integris bixo usndo: regr dos trpézios com n = 4; regr 3 regr 3 8 de Simpson com n = 6; de Simpson com n = 9.,5 x 4 dx,,6 x,5 x 4 dx, x ln(x) dx, π/ x sin(x) dx 4. Determine o número mínimo n de subintervlos pr proximr I = de 5 e clcule proximção. Use regr dos trpézios. Use regr 3 Use regr 3 8 dx x+4 com precisão 4

5 Qudrtur Gussin De form gerl, um fórmul de Newton-Cotes que proxim f(x) por um polinômio interpoldor em x, x,..., x n é ext pr polinômios de gru menor ou igul n. (Note que E n = Af (n+) (c) onde f (n+) (x) = se f(x) é um polinômio de gru n.) Vmos deduzir outrs fórmuls do tipo f(x)dx = n i= A n f(x i ), onde x, x,..., x n são (n + ) pontos distintos quisquer, e que são exts pr polinômio de gru menor ou igul (n + ). São chmds de Qudrtur Gussin. f(x)dx = [f(x )L (x) + + f(x n )L n (x)]dx + E n, ou sej, f(x)dx A f(x )+ +A n f(x n ) onde A i = Ln i (x)dx, i =,,..., n e Ln i (x), i =,,..., n são os polinômios de Lgrnge ssocidos os nós ddos. A título de exemplo, vmos construir fórmul d Qudrtur Gussin pr n =, ou sej, queremos determinr x, x, A e A tis que f(x)dx A f(x ) + A f(x ) sej ext pr polinômios de gru menor ou igul 3 = +. Por simplicidde fçmos [, b] = [, ]. Sej β =, t, t, t 3 um bse do espço vetoril P 3 (t), desse modo qulquer polinômio p(t) pode ser escrito como combinção liner dos elementos de β. Nosso interesse então se volt pr o cálculo dos coeficientes nesses polinômios d bse. g(t)dt = A g(t ) + A g(t ) g(t) = A + A = dt = g(t) = t A t + A t = tdt = g(t) = t A t + A t = t dt = 3 g(t) = t 3 A t 3 + A t 3 = t3 dt = Resolvendo o sistem cim teremos t = 3, t = t, A = A =, e então f(x)dx f( 3 ) + f( 3 ). No cso de um intervlo genérico devemos efetur um mudnç de vriáveis: pr t [, ] temos x [, b] qundo x = b [ + b + t(b )] e dx = dt.. Clculr um proximção pr e x dx usndo Qudrtur Gussin.. Aproxime s seguintes integris usndo: regr dos trpézios; s regrs de Simpson; qudrtur gussin com n =.,5 x 4 dx,,6 x,5 x 4 dx, x ln(x) dx, π/ x sin(x) dx 5

6 3 Extrpolção de Richrdson A extrpolção de Richrdson é um método utilizdo pr melhori do resultdo obtido n plicção ds fórmuls de integrção de Newton- Cotes e se bsei n plicção repetid de tis fórmuls. 3. Pr Regr do Trpézios O resultdo obtido n plicção d regr dos trpézios pode ser escrito d seguinte form: I = I + E, onde I é o vlor exto d integrl, I é o resultdo que se obtem de um primeir plicção d regr dos trpézios utilizndo-se n subintervlos e E é o erro cometido com esses n subintervlos. E = (b )3 n f (α). Aplicndo-se novmente regr com um novo número de subintervlos n (onde n > n ), tem-se: I = I + E, onde E é o erro cometido com esses n subintervlos. E = (b )3 n f (β). Comprndo-se os vlores de I teremos I = I + n (I n I ) que é fórmul d Extrpolção n de Richrdson pr regr dos trpézios. Exercício: Clculr o vlor d integrl I = π sin x dx plicndo regr dos trpézios, pr n = e n = 4, respectivmente. resposts: ) I =, 57. b) I =, 896. c) I =, Pr Regr de Simpson O cálculo pr determinção d fórmul de extrpolção de Richrdson pr s regrs de Simpson é feito de modo semelhnte àquele pr regr dos trpézios. Dí I = I + n n 4 (I I ). n4 Est fórmul é válid pr qulquer um ds fórmuls de Simpson, pois o erro ds fórmuls nels é inversmente proporcionl n 4. É bom observr que pr de cálculr I e I deve-se usr mesm fórmul.. Clculr o vlor d integrl I = 4 dx plicndo regr /3 de Simpson, pr (7 5x) /3 n = 4, n = 8 e extrpolção de Richrdson pr melhorr o resultdo. 6

7 . Sej função f(x) conhecid pens nos pontos tbeldos bixo: i x i y i plique regr /3 de Simpson, pr n =, n = 4 e extrpolção de Richrdson pr melhorr o resultdo. 3. Aproxime integrl I = π/ x sin(x) dx usndo: regr dos trpézios com n = e n = 4; regr 3 de Simpson com n = 4 e n = 6; regr 3 8 de Simpson com n = 6 e n = 9. Em cd cso melhore proximção usndo Extrpolção de Richrdson referente à regr. Compre com o vlor exto d integrl. Referêncis [] RUGGIERO, M.A.G. e ROCHA LOPES, V.L. Cálculo Numérico - Aspectos Teóricos e Computcionis. MAKRON Books,996 [] CUNHA, M.C.C. Métodos Numéricos. Cmpins, Editor d Unicmp,. [3] CAMPOS Filho,F.F. Algorítmos Numéricos. [4] SPERANTIO,D.,MENDES,J.T.,SILVA,L.H.M. Cálculo Numérico. São Pulo, Prentice Hll, 3. [5] BURDEN,R.L.,FAIRES,J.D. Análise Numéric. São Pulo, Pioneir Thomson Lerning, 3. 7

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

9.2 Integração numérica via interpolação polinomial

9.2 Integração numérica via interpolação polinomial Cpítulo 9 Integrção Numéric 9. Introdução A integrção numéric é o processo computcionl cpz de produzir um vlor numérico pr integrl de um função sobre um determindo conjunto. El difere do processo de ntidiferencição,

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Lista de Exercícios: Integração Numérica. xe x 2 dx. x f(x) t(min.) v(km/h)

Lista de Exercícios: Integração Numérica. xe x 2 dx. x f(x) t(min.) v(km/h) Instituto de Ciêncis Mtemátics de São Crlos - USP Deprtmento de Mtemátic Aplicd e Esttístic Prof: Murilo List de Exercícios: Integrção Numéric. Obtenh fórmul de integrção de Newton-Cotes do tipo fechdo,

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004 Integrção Numéric Prof. Doherty Andrde- DMA/UEM DMA-UEM-4 Preliminres Nests nots o nosso interesse é clculr numericmente integris f(x)dx. A idéi d integrção numéric reside n proximção d função integrnd

Leia mais

Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2

Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2 Introdução o Cálculo Numérico 25 List de Exercícios 2 Observção importnte: Resolv o proplem pr o di d prov com função f(x) = cos(πx/2) e não com f(x) = sin(πx)! Problem 1. Sejm {x i, y i } n i= números

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Integrção Numéric Métodos Numéricos e Esttísticos Prte I-Métodos Numéricos Integrção numéric Luís Morgdo Lic. Eng. Biomédic e Bioengenhri-009/010 Luís Morgdo Integrção numéric Integrção Numéric Recorrendo

Leia mais

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i =

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i = Cpítulo 7 Integrção numéric 71 Qudrtur por interpolção O método de qudrtur por interpolção consiste em utilizr um polinômio interpolnte p(x) pr proximr o integrndo f(x) no domínio de integrção [, b] Dess

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL MAT 103 - Complementos de Mtemátic pr Contbilidde - FEAUSP 1 o semestre de 011 Professor Oswldo Rio Brnco de Oliveir INTEGRAL Suponhmos um torneir bert em um recipiente e com velocidde de escomento d águ

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo MAT46 - Cálculo I - Teorems Fundmentis do Cálculo Alexndre Mirnd Alves Anderson Tigo d Silv Edson José Teixeir Os Teorems Fundmentis do Cálculo Os próximos teorems fzem conexão entre os conceitos de ntiderivd

Leia mais

FÓRMULA DE TAYLOR USP MAT

FÓRMULA DE TAYLOR USP MAT FÓRMULA DE TAYLOR USP MAT 5 SEVERINO TOSCANO DO REGO MELO. Polinômios de Tylor A ret tngente o gráfico de um função f derivável em um ponto define função de primeiro gru que melhor proxim função em pontos

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

4.2. ME TODO DE LAGRANGE

4.2. ME TODO DE LAGRANGE Cpítulo 4 Interpolção 4. Introdução Ddos n + pontos do plno P 0 = (x 0, y 0 ), P = (x, y ),, P n = (x n, y n ), tis que x i x j se i j, nosso principl objetivo neste cpítulo é encontrr um função f (x)

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Sistemas Lineares Exercício de Fixação

Sistemas Lineares Exercício de Fixação Sistems Lineres Eercício de Fição Por: Griel Gutierre P Sores Instituto Federl de Educção, Ciênci e Tecnologi Prí Disciplin: Mtemátic Professor: Amrósio Elis Aluno: Mtrícul: Curso: Série: Turno: Sistems

Leia mais

Métodos Numéricos. (Integração numérica) Miguel Moreira DMAT

Métodos Numéricos. (Integração numérica) Miguel Moreira DMAT Métodos Numéricos (Integrção numéric) Miguel Moreir DMAT 1 Introdução Em muits situções, colocds à engenhri, é necessário conhecer o integrl definido I = f (x) dx sem que o mesmo poss ser cálculdo nliticmente:

Leia mais

Mudança de variável na integral dupla

Mudança de variável na integral dupla UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 6 Assunto: Mudnç de Vriável n Integrl Dupl Plvrs-chves: mudnç de vriável, integris dupls, jcobino Mudnç de vriável n integrl dupl Vmos ntes

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

Integração Numérica. Leonardo F. Guidi. Cálculo Numérico DMPA IME UFRGS

Integração Numérica. Leonardo F. Guidi. Cálculo Numérico DMPA IME UFRGS Qudrtur por interpolção DMPA IME UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 4 Qudrtur por interpolção Qudrtur por interpolção

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

1 Limite - Revisão. 1.1 Continuidade

1 Limite - Revisão. 1.1 Continuidade 1 Limite - Revisão O conceito de limite de um função contribui pr nálise do comportmento d função n vizinhnç de um determindo ponto. Intuitivmente, dd um função f(x) e um ponto b que pertence o domínio

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

x n dx = xn+1 n k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = tan(x) + k, k R

x n dx = xn+1 n k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = tan(x) + k, k R Algums primitivs Simples... c dt = cx + k, k R x n dx = xn+ n + + k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = rctn(x) + k, dx = SetSh(x)

Leia mais

Homero Ghioti da Silva. 9 de Junho de 2016 FACIP/UFU. Homero Ghioti da Silva (FACIP/UFU) 9 de Junho de / 16

Homero Ghioti da Silva. 9 de Junho de 2016 FACIP/UFU. Homero Ghioti da Silva (FACIP/UFU) 9 de Junho de / 16 Homero Ghioti d Silv FACIP/UFU 9 de Junho de 216 Homero Ghioti d Silv (FACIP/UFU) 9 de Junho de 216 1 / 16 Integrção Numéric Motivção Estudr métodos numéricos pr se resolver integris denids do tipo I =

Leia mais

Cálculo a uma Variável

Cálculo a uma Variável Cálculo um Vriável Sinésio Pesco CAP 9 - A Integrl (Integrção Numéric) Som de Riemnn Podemos usr som de Riemnn pr clculr um proximção pr integrl dx. Pr isso em cd suintervlo [x i,x i ] sustituimos integrl

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

Aula 29 Aplicações de integrais Áreas e comprimentos

Aula 29 Aplicações de integrais Áreas e comprimentos Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento

Leia mais

Termodinâmica e Estrutura da Matéria 2013/14

Termodinâmica e Estrutura da Matéria 2013/14 Termodinâmic e Estrutur d Mtéri 3/4 (LMAC, MEFT, MEBiom Responsável: João P Bizrro Prátics: Edurdo Cstro e ítor Crdoso Deprtmento de Físic, Instituto Superior Técnico Resolução de exercícios propostos

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo.

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo. Cálculo Univrido List numero integrl trcisio@sorlmtemtic.org T. Prcino-Pereir Sorl Mtemátic lun@: 7 de setemro de 7 Cálculo Produzido com L A TEX sis. op. Dein/GNU/Linux www.clculo.sorlmtemtic.org/ Os

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao Cpítulo 6 Integrl Nosso objetivo qui é clculr integrl definid I = f(x)dx. (6.1) O vlor de I será ssocido um áre, e usremos est idéi pr desenvolver um lgoritmo numérico. Ao contrário d diferencição numéric,

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

Algoritmos de Busca de Palavras em Texto

Algoritmos de Busca de Palavras em Texto Revisdo 08Nov12 A busc de pdrões dentro de um conjunto de informções tem um grnde plicção em computção. São muits s vrições deste problem, desde procurr determinds plvrs ou sentençs em um texto té procurr

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

José Miguel Urbano. Análise Infinitesimal II Notas de curso

José Miguel Urbano. Análise Infinitesimal II Notas de curso José Miguel Urbno Análise Infinitesiml II Nots de curso Deprtmento de Mtemátic d Universidde de Coimbr Coimbr, 2005 Conteúdo Primitivs 3 2 O integrl de Riemnn 8 2. Proprieddes do integrl de Riemnn..............

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA ECO 3 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: JA Minimizção de Custos. Conts com Co-Dougls. Considere um firm que produz o produto

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Notas Teóricas de Análise Matemática

Notas Teóricas de Análise Matemática Nots Teórics de Análise Mtemátic Rui Rodrigues Deprtmento de Físic e Mtemátic Instituto Superior de Engenhri de Coimbr Índice Primitivção de funções reis de vriável rel. Primitivção...................................2

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais