Algoritmos de Busca de Palavras em Texto

Tamanho: px
Começar a partir da página:

Download "Algoritmos de Busca de Palavras em Texto"

Transcrição

1 Revisdo 08Nov12 A busc de pdrões dentro de um conjunto de informções tem um grnde plicção em computção. São muits s vrições deste problem, desde procurr determinds plvrs ou sentençs em um texto té procurr um determindo objeto dentro de um sequênci de bits que representm um imgem. Todos eles se resumem procurr cert sequênci de bits ou bytes dentro de um sequênci mior de bits ou bytes. Vmos considerr versão de procurr um sequênci de bytes dentro de outr sequenci, ou ind, procurr um plvr dentro de um texto. Plvr deve ser entendid como um sequênci qulquer de crcteres. Assim, formulção do problem fic: Dd um sequênci de m>0 bytes ([1],..., [m] ou [1..m]) verificr qunts vezes el ocorre em um sequênci b de n elementos (b[1],..., b[n] ou b[1..n]). O lgoritmo trdicionl Nos lgoritmos bixo vmos considerr os índices começndo do 1 e não do 0. Os elementos [0] e b[0] serão ignordos. A solução mis trivil deste problem consiste então em comprr: [1] com b[1]; [2] com b[2];... [m] com b[m] [1] com b[2]; [2] com b[3];... [m] com b[m+1]... [1] com b[n-m+1]; [2] com b[n-m+2];... [m] com b[n] b n-1 n

2 Revisdo 08Nov12 N primeir comprção em que [i] diferente de b[j], pss-se pr o próximo psso. Exemplos: b - O linhmento do pensmento provoc csmento mento Ocorre 3 vezes n Ocorre 5 vezes cs Ocorre 1 vez ovo Ocorre 1 vez prov Ocorre 0 vezes b bbbb bb Ocorre 3 vezes bb Ocorre 3 vezes bbb Ocorre 2 vezes Abixo est primeir solução: int cspdro1(chr [], int m, chr b[], int n) { int i, j, k, cont=0; if (m<=0) return 0; for (k=1; k<=n-m+1; k++) { for (j=k, i=1; i<=m; j++, i++) if ([i]!= b[j]) brek; if (i>m) cont++; return cont; N solução cim, i e j cminhm d esquerd pr direit. Tmbém se desloc d esquerd pr direit cd nov tenttiv. b j i Podemos ter lgums vrições, tods equivlentes: Procurndo em b d direit pr esquerd:

3 Revisdo 08Nov12 b j i int cspdro2(chr [], int m, chr b[], int n) { int i, j, k, cont=0; if (m<=0) return 0; for (k=m; k<=n; k++) { for (j=k, i=m; i>0; j--, i--) if ([i]!= b[j]) brek; if (i==0) cont++; return cont; Vrrendo b d direit pr esquerd e procurndo em b d direit pr esquerd: b j i int cspdro3(chr [], int m, chr b[], int n) { int i, j, k, cont=0; if (m<=0) return 0; for (k=n; k>=m; k--) { for (j=k, i=m; i>0; j--, i--) if ([i]!= b[j]) brek; if (i==0) cont++; return cont; Exercícios: 1) Adpte o lgoritmo cim, vrrendo b d direit pr esquerd e procurndo em b d esquerd pr direit. 2) Qunts comprções são feits no mínimo e no máximo? Encontre sequêncis e b onde o mínimo e o máximo ocorrem. 3) Por que complexidde dos lgoritmos cim é O(n 2 )?

4 Revisdo 08Nov12 4) Explique porque s versões cim são tods equivlentes. 5) Adpte os lgoritmos cim, devolvendo o índice inicil em b d primeir ocorrênci de ou -1 se não encontrr. Algoritmo de Boyer-Moore versão 1 [1977] Esse lgoritmo tent fzer menos comprções usndo um crcterístic do pdrão ser procurdo. Qundo se compr [1..m] com b[i..k] (k=i+m-1 pr i=1,..., n-m+1), isto é, qundo se compr com um segmento qulquer dentro de b, próxim comprção não precis ser com b[i+1..k+1]. Pode ser com b[i+d..k+d] onde d é clculdo de form que b[k+1] coincid com últim ocorrênci de b[k+1] em. Assim, podemos deslocr comprção com o próximo segmento em mis de um elemento. Não import o resultdo d comprção nterior. Exemplo: Procurr bcd em bccbbcdcdbd Vej como podemos fzer busc vnçndo no modo proposto: b c c b b c d c d b d b c d b c d b c d b c d Outro exemplo Procurr b: b c c b b c d c d b d b b b b b b O problem então consiste em sber qul últim ocorrênci de b[k+1] em. Se soubermos todos os vlores possíveis de b[k+1], podemos clculr este vlor pr cd elemento de. Aqui está prticulridde do lgoritmo: é necessário conhecer o lfbeto. Como estmos lidndo com crcteres, o lfbeto são todos os crcteres de Podemos então previmente clculr qul últim ocorrênci de cd um dos crcteres de.

5 Revisdo 08Nov12 Exemplo Qul últim ocorrênci de cd crctere n sequênci bixo e qul o deslocmento necessário? b c b e c d Crctere Últim Ocorrênci Deslocmento 7 3 b 5 5 c 8 2 d 9 1 e 6 4 Todos os demis 0 10 Observe que: Deslocmento = Tmnho - Últim Ocorrênci + 1 Embor o objetivo sej encontrr o último [i] que coincid com b[k+1], o lgoritmo só depende de. No entnto, é necessário conhecer-se o lfbeto de. Vej bixo o lgoritmo. int boyermoore1(unsigned chr [], int m, unsigned chr b[], int n) { int ult[256]; int i, j, k, cont=0; if (m <= 0) return 0; /* verific últim ocorrênci de cd letr em */ for (i = 0; i < 256; i++) ult[i] = 0; for (i = 1; i <= m; i++) ult[[i]] = i; /* procur em b d direit pr esquerd */ for (k = m; k <= n; k = k + m - ult[b[k+1]] + 1) { for (j = k, i = m; i > 0; j--, i--) if ([i]!= b[j]) brek; if (i==0) cont++; /* pode ser que já tenh chegdo o fim de b e neste cso */ /* não dá pr usr [b[k+1]] como índice de ult[] */ if (k+1 > n) brek; return cont; Este lgoritmo é O(n.m). A fse de pré-processmento é O(m+K), onde K depende do lfbeto.

6 Revisdo 08Nov12 A fse de busc é O(n.m). Entretnto, no cso gerl se comport melhor que o lgoritmo trdicionl. Exercícios: 1) Porque declrção de e b tem que ser unsigned chr e não chr simplesmente? 2) Usndo mesm idei do lgoritmo cim, é possível vnçr comprção mis do que b[k+1]? E menos? 3) Adpte o lgoritmo cim pr fzer busc de em b d direit pr esquerd, isto é, comprndo com b[n-m+1..n], b[n-m-2..n-1],..., b[1..m]. 4) No lgoritmo cim é necessário conhecer o lfbeto, ou os vlores possíveis de b[k+1]. Se e b fossem do tipo int, como ficri o lgoritmo? 5) Qundo b[k+1] não coincide com nenhum de [1..m] já vimo que o deslocmento será de m+1. Um pequen vrição é procurr primeiro b[p] (p>k+1) tl que b[p]=[1]. Ou sej, vmos umentr o deslocmento. Algoritmo de Boyer-Moore versão 2 A versão 2 do lgoritmo é intuitiv, ms tem um implementção mis engenhos. Não é necessário conhecer-se o lfbeto de. Tmbém só depende de. Neste lgoritmo é necessário que comprção de com b, sej feit d direit pr esquerd: Pr i=m, m+1,..., n Comprr [m] com b[i]; [m-1] com b[i-1];...; [1] com b[i-m+1] A idei básic é seguinte: Suponh que num ds comprções já descobrimos que [h..m] é igul b[k-m+h..k], ou sej, descobrimos que existe um trecho (prcil ou totl) no meio de b que é igul um trecho corresponde dente de. Só hverá csmento se tiver um trecho igul em [1..m-1]. Se não houver tl trecho em, podemos deslocr de m elementos. Exemplos: : B A B b: A B A B C B A B C A B A B C B A B C B A B B A B

7 Revisdo 08Nov12 B A B B A B : b: B C A B A B C C A B A D D B C A B A B C C A B A D D B A B A B Portnto é necessário loclizr últim ocorrênci de [h..m] em [1..m-1]. Vmos chmr ess ocorrênci de lcnce[h] e vmos defini-l como o último índice onde houve coincidênci. Assim, se [h..m] = [p..q] (h,p >=1 e q<=m-1) e [p..q] é últim ocorrênci de [h..m] em [1..m-1], então lcnce[h] = q. Um cso prticulr ocorre qundo o início de coincide com o finl. Neste cso temos que considerr como se houvesse o csmento no restnte d cdei. Vej exemplos: h C B A B A lcnce h lcnce h A B C A B B C A B lcnce

8 Revisdo 08Nov12 Vej bixo outros exemplos de deslocmento: b x x x x x x x x x x x x x x b b deslocmento b b b x x x x x x x b x x x x x x b b deslocmento b b b x x x x x x b x x x x x x b b deslocmento b b b x x x x x b b x x x x x x b b deslocmento b b b x x x x x x x x x x x x x x b deslocmento b b x x x x x x c x x x x x x x x b c deslocmento b c b x x x x x x x x x x x x x x deslocmento b x x x x x x b x x x x x x x deslocmento b x x x x x x x x x x x x x x deslocmento

9 Revisdo 08Nov12 b x x x x x x x x x x x x x deslocmento b x x x x x x x x x x x x deslocmento b x x x x x x x x x x x deslocmento D mesm form que o lgoritmo nterior temos que fzer um pré-processmento em pr determinr o lcnce[h]. Determindo lcnce[h], ele será usdo como deslocmento pr próxim tenttiv de fzer-se o csmento. A determinção de h é seguinte: for (h = m; h >= 1; h--) { mm = m-1; ii = mm; i = m; while (ii >= 1 && I >= h) if ([ii] == [i]) { --ii; --i; /* continu comprndo */ else { --mm; /* reduz o cndidto lcnce[h] */ ii = mm; i = m; /* reinici comprção */ lcnce[h] = mm; O lgoritmo completo com um versão mis otimizd d determinção de lcnce[h] está bixo: #define MAXm 100 /* mior vlor de m */ int boyermoore2(unsigned chr [], int m, unsigned chr b[], int n) { int lcnce[maxm]; int i, j, k, h, mm, ii, cont=0, d=0; if (m <= 0) return 0;

10 Revisdo 08Nov12 /* pré-processmento de - versão mis otimizd */ h = mm = m; do { ii = --mm; i = m; while (ii >= 1 && [ii] == [i]){ ii--; i--; while (h > i) lcnce[h--] = mm; while (ii >= 1); while (h >= 1) lcnce[h--] = mm; /* procur em b */ k = m; while (k <= n) { for (i = m, j = k; i >= 1; i--, j--) if ([i]!= b[j]) brek; if (i < 1) ++cont; if (i == m) k++; /* desloc pens 1 */ /* o último que coincidiu foi [i] */ else k = k + m - lcnce[i+1]; return cont; Este lgoritmo tmbém é O(n.m). Neste cso, tnto fse de pré-processmento qunto fse de busc são O(n.m). D mesm form que versão 1, no cso gerl se comport melhor que o lgoritmo trdicionl. Esse lgoritmo se comport melhor qundo há muit repetição de trechos em, o que pode ocorrer com mior frequênci se m é grnde. Entretnto qundo não há coincidênci o deslocmento é de pens 1 enqunto que n versão 1 o deslocmento é em gerl mior. Versão 1 versus Versão 2 Finlmente, reforçmos que n versão 1 é necessário conhecer o lfbeto enqunto que n versão 2 não é necessário. Ambs s versões só dependem de. Exercício versão híbrid Qundo o lfbeto é conhecido, é possível usr s dus versões o mesmo tempo. A cd repetição do lgoritmo, clcul-se o deslocmento referente cd versão e us-se o mior deles. Fic como exercício.

11 Revisdo 08Nov12 Outr versão (um pequen vrição) Um pequen vrição ds versões 1 e 2. Deslocndo-se pr o próximo crctere de diferente dquele que não houve coincidênci. Exemplo: b b c b b b b b Pr isso é necessário construir-se um tbel ult_dif[i] (i=1,2,..,m) tl que ult_dif[i]=k onde k é o mior índice menor que i e [k] é diferente de [i]. Exemplo: b b c i ult_dif Há 2 csos prticulres: 1) Qundo não há diferentes à esquerd. Neste cso o deslocmento deve ser igul o índice do elemento. 2) Qundo coincide totlmente. Neste cso o deslocmento deve ser 1 Outros lgoritmos Existem outros lgoritmos de complexidde mis bix que os nteriores. O mis conhecido é o lgoritmo de Knuth-Morris-Prtt [KNUTH D.E., MORRIS (Jr) J.H., PRATT V.R., 1977, Fst pttern mtching in strings, SIAM Journl on Computing 6(1): ].

12 Revisdo 08Nov12 Su complexidde é O(m) n fse de pré-processmento e de O(m+n) n fse de busc. Portnto um lgoritmo liner. Outrs referêncis pr este ssunto: No site há informções sobre vários lgoritmos de busc de plvrs em texto e tmbém um simulção do seu funcionmento.

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturs de Ddos, Análise de Algoritmos e Complexidde Estruturl Crlos Alberto Alonso Snches CT-234 7) Busc de pdrões Knuth-Morris-Prtt, Boyer-Moore, Krp-Rbin Pdrões e lfbetos Pdrões (ptterns ou

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

Alocação sequencial - Pilhas

Alocação sequencial - Pilhas Alocção seqüencil - pilhs Alocção sequencil - Pilhs Pilhs A estrutur de ddos Pilh é bstnte intuitiv. A nlogi é um pilh de prtos. Se quisermos usr um pilh de prtos com máxim segurnç, devemos inserir um

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Aula 8: Gramáticas Livres de Contexto

Aula 8: Gramáticas Livres de Contexto Teori d Computção Segundo Semestre, 2014 ul 8: Grmátics Livres de Contexto DINF-UTFPR Prof. Ricrdo Dutr d Silv Veremos gor mneir de gerr s strings de um tipo específico de lingugem, conhecido como lingugem

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Regras. Resumo do Jogo Resumo do Jogo. Conteúdo. Conteúdo. Objetivo FRENTE do Jogo

Regras. Resumo do Jogo Resumo do Jogo. Conteúdo. Conteúdo. Objetivo FRENTE do Jogo Resumo do Jogo Resumo do Jogo Regrs -Qundo for seu turno, você deve jogr um de sus crts no «ponto n linh do tempo» que estej correto. -Se você jogr crt corretmente, terá um crt menos à su frente. -Se você

Leia mais

EXAME DE INGRESSO 2014 3º Período

EXAME DE INGRESSO 2014 3º Período PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ÁREA DE ENGENHARIA DE COMPUTAÇÃO (141) ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO EXAME DE INGRESSO 2014 º Período NOME: Oservções Importntes: 1. Não

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Busca Digital (Trie e Árvore Patrícia) Estrutura de Dados II Jairo Francisco de Souza

Busca Digital (Trie e Árvore Patrícia) Estrutura de Dados II Jairo Francisco de Souza Busc Digitl (Trie e Árvore Ptríci) Estrutur de Ddos II Jiro Frncisco de Souz Introdução No prolem de usc, é suposto que existe um conjunto de chves S={s 1,, s n } e um vlor x correspondente um chve que

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Progrmção II Ordenção (sort) Bruno Feijó Dept. de Informátic, PUC-Rio Bule Sort Bule Sort Apens de interesse didático e de referênci A idéi é ir comprndo dois vizinhos e trocndo o menor pelo mior té que

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Serviços de Acção Social da Universidade de Coimbra

Serviços de Acção Social da Universidade de Coimbra Serviços de Acção Socil d Universidde de Coimbr Serviço de Pessol e Recursos Humnos O que é o bono de fmíli pr crinçs e jovens? É um poio em dinheiro, pgo menslmente, pr judr s fmílis no sustento e n educção

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

Algoritmos de Busca em Tabelas

Algoritmos de Busca em Tabelas Dentre os vários algoritmos fundamentais, os algoritmos de busca em tabelas estão entre os mais usados. Considere por exemplo um sistema de banco de dados. As operações de busca e recuperação dos dados

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1 DCC-UFRJ Lingugens Formis Primeir Prov 28/. Constru um utômto finito determinístico que ceite lingugem L = {w ( ) w contém pelos menos dois zeros e no máximo um }. 2. Use o lgoritmo de substituição pr

Leia mais

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações // Aul : Revisão de Probbilidde e sttístic Prof. Leonrdo Menezes Tóicos em Telecomunicções Sumário O que é esttístic O que é robbilidde Vriáveis letóris Distribuição de Probbilidde Alicções Mementos O

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc.

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc. LADRILHAMENTOS Elvi Mureb Sllum Mtemtec-IME-USP A rte do ldrilhmento consiste no preenchimento do plno, por moldes, sem superposição ou burcos. El existe desde que o homem começou usr pedrs pr cobrir o

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) PU-Rio Lingugens Formis e Autômtos (LFA) omplemento d Aul de 21/08/2013 Grmátics, eus Tipos, Algums Proprieddes e Hierrqui de homsky lrisse. de ouz, 2013 1 PU-Rio Dic pr responder Pergunts finis d ul lrisse.

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Pckrd PORCENTAGEM Auls 01 04 Elson Rodrigues, Gbriel Crvlho e Pulo Luiz Rmos Sumário PORCENTAGEM... 1 COMPARANDO VALORES - Inspirção... 1 Porcentgem Definição:... 1... 1 UM VALOR PERCENTUAL DE

Leia mais

Casos Latinos 1ª Declinação Latina 2ª Declinação Latina

Casos Latinos 1ª Declinação Latina 2ª Declinação Latina Csos Ltinos 1ª Declinção Ltin 2ª Declinção Ltin 1 Csos Ltinos 1. Em um orção podemos encontrr seis elementos: sujeito, voctivo, djunto dnominl restritivo, objeto indireto, djunto dverbil e objeto direto.

Leia mais

Fluxo Gênico. Desvios de Hardy-Weinberg. Estimativas de Fluxo gênico podem ser feitas através de dois tipos de métodos:

Fluxo Gênico. Desvios de Hardy-Weinberg. Estimativas de Fluxo gênico podem ser feitas através de dois tipos de métodos: Desvios de Hrdy-Weinberg cslmento preferencil Mutção Recombinção Deriv Genétic Fluo gênico Fluo Gênico O modelo de Hrdy-Weinberg consider pens um únic populção miori ds espécies tem váris populções locis

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

9.2 Integração numérica via interpolação polinomial

9.2 Integração numérica via interpolação polinomial Cpítulo 9 Integrção Numéric 9. Introdução A integrção numéric é o processo computcionl cpz de produzir um vlor numérico pr integrl de um função sobre um determindo conjunto. El difere do processo de ntidiferencição,

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yr de Souz Tdno yrtdno@utfpr.edu.br Aul 0 0/04 Sistems de Equções Lineres Prte MÉTODOS ITERATIVOS Cálculo Numérico /9 MOTIVAÇÃO Os métodos itertivos ou de proimção fornecem um

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 - CAPES SISTEMAS LINEARES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic r

Leia mais

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao Cpítulo 6 Integrl Nosso objetivo qui é clculr integrl definid I = f(x)dx. (6.1) O vlor de I será ssocido um áre, e usremos est idéi pr desenvolver um lgoritmo numérico. Ao contrário d diferencição numéric,

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto Lingugens ormis Cpítulo 5: Lingugens e grmátics livres de contexto José Lucs Rngel, mio 1999 5.1 - Introdução Vimos no cpítulo 3 definição de grmátic livre de contexto (glc) e de lingugem livre de contexto

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Autômatos determinísticos grandes

Autômatos determinísticos grandes Autômtos determinísticos grndes Arnldo Mndel 27 de outubro de 2009 A construção dos subconjuntos implic n seguinte firmtiv: se um lingugem é reconhecid por um utômto não-determinístico com n estdos, então

Leia mais

Álgebra Linear Tema # 3. Resolução de problema que conduzem a S.E.L. de infinita solução. Introdução aos problemas com infinitas soluções

Álgebra Linear Tema # 3. Resolução de problema que conduzem a S.E.L. de infinita solução. Introdução aos problemas com infinitas soluções Álgebr Liner Tem # 3. Resolução de problem que conduzem S.E.L. de infinit solução Assunto: Resolução de problems modeld trvés Sistem de Equções Lineres utilizndo comndo Solve no Derive. Introdução os problems

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

LINGUAGEM DE PROGRAMAÇÃO ESTRUTURADA CAPÍTULO 6 ARRAYS (VETORES E MATRIZES)

LINGUAGEM DE PROGRAMAÇÃO ESTRUTURADA CAPÍTULO 6 ARRAYS (VETORES E MATRIZES) LINGUGEM DE PROGRMÇÃO ESTRUTURD CPÍTULO 6 RRYS VETORES E MTRIZES trdução do termo rry pr língu portugues seri rrnjo. Em progrmção, empreg-se este termo pr representção de um vriável com diversos elementos

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

x x x 1,8 2,5 2,5 1,89 2,1 1,89 1,956 2,04 2,04 1,9934 2,015 1,956 1,9995 2,007 2,007 1, ,0003 1,9995

x x x 1,8 2,5 2,5 1,89 2,1 1,89 1,956 2,04 2,04 1,9934 2,015 1,956 1,9995 2,007 2,007 1, ,0003 1,9995 Mtemátic II Prof: Luiz Gonzg Dmsceno E-mils: dmsceno@yhoocombr dmsceno@uolcombr dmsceno@hotmilcom Site: http://wwwdmscenoinfo wwwdmscenoinfo dmscenoinfo Limites Considere função y f ) f ) é definid no

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que: MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

WWW.escoladoeletrotecnico.com.br

WWW.escoladoeletrotecnico.com.br USOPE USO PEPAATÓIO PAA ONUSOS EM ELETOTÉNIA PE ELETIIDADE (Ligções SÉI E E PAALELA. EDE DELTA E ESTELA) AULA Prof.: Jen WWW.esoldoeletrotenio.om.r 0 de Setemro de 007 LIGAÇÕES SÉIES E PAALELAS USOPE.

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (II Determinntes) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Determinntes Índice 2 Determinntes 2

Leia mais

Casamento de Strings e Tries

Casamento de Strings e Tries Csmento de Strings e Tries Após estudr este cpítulo, você deverá ser cpz de: hh Definir os seguintes conceitos no contexto de csmento de strings: Pdrão Texto Jnel de texto Alfeto Sustring Bord Slto FB

Leia mais

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação Pontifíci Universidde Ctólic de Cmpins Centro de Ciêncis Exts, Ambientis e de Tecnologis Fculdde de Engenhri de Computção LINGUAGENS FORMAIS E AUTÔMATOS List de Exercícios 1 1. Que lingugem grmátic ger?

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais