Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Tamanho: px
Começar a partir da página:

Download "Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc."

Transcrição

1 Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri Médi, Vriânci e Desvio Pdrão Julho de 7 Vriáveis Aletóris Muits vezes o espço mostrl não é um conjunto de vlores numéricos. Por exemplo, se jogmos um moed vezes, o espço mostrl é S = { HHH, HHT, HTH, THH, HTT, THT, TTH, TTT }, onde cd resultdo tem mesm probbilidde, e T indic coro, H indic cr. Sej S o espço mostrl e X um função que "peg" elementos deste espço (resultdos d experiênci) e os lev num subconjunto dos números reis. Est função X é chmd de vriável vel letóri ri. Atenção: usremos qui X (miúscul) pr denotr vriável vel letóri e x (minúscul) pr indicr um vlor específico d vriável vel,, isto é,, um número. n Vriáveis Aletóris S espço mostrl X 4 χ espço d vriável letóri Sej X um vriável letóri definid num espço mostrl S e sej ℵ o espço de X. Sej A um subconjunto de ℵ e S um subconjunto de S (espço mostrl).

2 Vriáveis Aletóris Vriável Aletóri Discret Já definimos probbilidde de um evento S S (espço mostrl), e gor gostrímos de estender est definição e flr d probbilidde de um evento A ℵ. O nosso objetivo gor é definir probbiliddes prtir de vlores possíveis d vriável letóri, sem referênci explícit os pontos do espço mostrl que derm origem queles vlores d vriável letóri. Como definir Pr (X A)? A mneir mis nturl de fzer isso é ssocir probbilidde do evento X A à probbilidde do evento S no espço mostrl S. 5 Not: freqüentemente iremos brevir vriável letóri por v.. Vriável letóri discret pode ssumir pens vlores num conjunto finito ou contável, por exemplo, número inteiros ou inteiros positivos. s Número de expectdores em um sessão de cinem, Resultdo do lnçmento de um ddo, Número de ligções recebids por um centrl de telemrketing num intervlo de tempo especificdo, número de ssltos num esquin. 6 Função de Probbilidde É um função que ssoci cd possível vlor de um vriável letóri discret su probbilidde de ocorrênci. A função de probbilidde deve stisfzer: ( X = x) = Pr( X = x) = Pr pr = Tmbém, probbilidde de qulquer subconjunto A de vlores d v.. é pens o somtório de f(x) pr os vlores d v.. contidos em A. 7 Vriável Aletóri Discret - Sej X um vriável letóri discret com espço ℵ = {X: x =,,,,4}. Sej 4 4! = Pr( X = x) =. = x x! Note que f(x) é um função de probbilidde, pois: i) f (x) pr ℵ, isto é, x =,,,, 4 Tmbém: ii) f( x) 4 = 4 ℵ x= x( x) 4 4! = = ! 4! x= x! ( 4 x)! 4!!!( )!! 4! = + + = 8 4 = 4 4 = 4 ( 4 x)! 6 x =,,,,4 8

3 Vriável Aletóri Discret - Sej A = {,}. Então: Pr (X A) = f () + f () = Pr(X=) + Pr(X=)= 4 4 4! = + 4! 4 = 5!!!! 6 Veremos depois que este é um cso prticulr d função de probbilidde Binomil, com prâmetros n = 4 e p = /. Vriável Aletóri Discret - Um fábric produz fusíveis. A probbilidde de um fusível produzido ser defeituoso é %. Testse fusíveis encerrndo o teste ssim que o primeiro fusível defeituoso é encontrdo. Sej X o número de testes relizdos té encontrr o primeiro fusível defeituoso. Ache função de probbilidde de X. 9 Vriável Aletóri Discret - Solução O espço mostrl é constituído por seqüêncis como: D BD BBD BBBD BBBBD... Onde B indic que o fusível está perfeito, e D indic que o fusível tem defeito. Vriável Aletóri Discret - Logo, os vlores possíveis de X são:,,..., n,... (não há um vlor máximo). Ms, X = n se, e somente se, os (n-) primeiros fusíveis testdos estão OK e o n-ésimo tem defeito. Isto é, X = n corresponde à seqüênci: BBBBB...BD, que tem n- fusíveis OK e com defeito. Se o estdo de um fusível não fetr condição do próximo podemos supor que: f(n) = Pr(X = n) = (.9) n-.(.) pr n =,,...

4 n= Vriável Aletóri Discret - Note que f(n) > pr todo n e tmbém: { } n n f( n) = (. ).(. ) =. (. ) = (. ) +... = = n= n= Logo, f(n) = Pr(X = n) ssim definid é um função de probbilidde válid. Veremos mis trde que vriável X que surge neste exemplo é chmd de v.. Geométric. Vriável Aletóri Discret - Not: Neste exemplo empregmos série geométric pr demonstrr que o somtório ds probbiliddes pr todos os vlores de X er um. A série geométric é: k = = desde que < k = Alterntivmente, se começrmos série em k=: k = = k= k= = = -= desde que < k 4 Vriável Aletóri Contínu nu Se um vriável puder ssumir qulquer vlor num intervlo rel, é um vriável letóri contínu. s Tempo de tendimento em um cix de bnco, Peso rel de um pcote de Kg de çúcr, Custo de construção de um fábric, Custo de lnçmento de um cmpnh publicitári, Altur dos homens brsileiros com iddes entre 8 e nos, Retorno diário de um ção, Proporção de eleitores fvor d reeleição do prefeito. 5 Vriável Aletóri Contínu nu Como já foi dito, vriáveis letóris contínus são quels que podem ssumir quisquer vlores dentro de um intervlo. Pr vriáveis letóris discrets, nós podímos tribuir um probbilidde um determindo vlor d vriável. Pr vriáveis letóris contínus situção é bem diferente. Como um vriável contínu pode ssumir qulquer vlor em um intervlo, n relidde el pode ssumir infinitos vlores. 6

5 Vriável Aletóri Contínu nu Portnto, não podemos flr d probbilidde de ocorrênci de um vlor em prticulr. Ao invés disso, devemos pensr n probbilidde de ocorrênci ssocid um intervlo. N discussão nterior sobre distribuições discrets de probbiliddes introduzimos o conceito de função de probbilidde (f(x)). No cso contínuo, nuo, utilizremos função densidde de probbilidde, tmbém m representd por f(x). Vriável Aletóri Contínu nu Nesse cso, função densidde de probbilidde fornece um vlor pr cd possível vlor (infinitos) d vriável X. No entnto, os vlores de f(x) não representm s probbiliddes ssocids x. Ao invés disso, áre (isto é, integrl!) sob função de densidde de probbilidde em um determindo intervlo fornece probbilidde de ocorrênci de um vlor dentro desse intervlo. 7 8 Função Densidde de Probbilidde É um função que stisfz: pr P dx = ( < X < b) = P( X b) = D definição de densidde, segue que, pr um v.. contínu, probbilidde de um único ponto é zero, isto é: P(X = ) = pr qulquer número. b dx Distribuições contínus nus de probbilidde - exemplo Considere seguinte função de densidde de probbilidde: f(x) = (x + )/4 pr x. Verifique se est é um função de densidde de probbilidde válid pr o intervlo considerdo. Clcule probbilidde de X f(x) /4 /4 (x + )/4 x 9

6 Distribuições contínus nus de probbilidde - exemplo Solução ) Pr que f(x) sej um função de densidde de probbilidde válid, devemos ter su áre = no domínio d função. Neste cso, devemos clculr áre sob função no intervlo de. A áre dess região é dd por: f () + f () Áre = ( ) = / 4 + / 4 = Logo, f(x) é um função de densidde de probbilidde válid, pois su integrl é no seu domínio de definição e f(x) é sempre mior ou igul zero. Distribuições contínus nus de probbilidde - exemplo Solução (b) A probbilidde pr um determindo intervlo de x é dd pel áre sob função de densidde de probbilidde nesse intervlo. P(X ) corresponde à áre sob função pr x f () + f () / 4 + / 4 Áre = ( ) = () =.65 Distribuições contínus nus de probbilidde - exemplo Sej X um vriável letóri contínu com espço ℵ = {x: < x < }. Sej f(x) = cx pr ℵ, onde c é um constnte determinr. Qul o vlor de c? Solução cx cx dx = c = = c = Logo c = é constnte necessári pr fzer de f(x) um densidde em ℵ, isto é, pr fzer com que densidde integre um no intervlo (,). Função de Distribuição Pr cd vlor x d vriável letóri, Função de Distribuição (ou Função de Distribuição Acumuld, ou Função de Distribuição Cumultiv) é probbilidde de estr nquele vlor, ou bixo dele, isto é: F(x ) = Pr( X x ) pr Note que, como F(x ) é um probbilidde, el está limitd o intervlo (,). Um ponto importnte qui é: definição de Função de Distribuição é mesm pr vriáveis veis contínus nus ou discrets. 4

7 Função de Distribuição Algums funções de distribuição são tbelds, por exemplo, d distribuição Norml (,). O Excel normlmente fornece opção de clculr função de probbilidde (ou densidde) ou função de distribuição cumuld, trvés de um rgumento lógico ns sus diverss funções esttíss por exemplo, vide o help d função dist.binom. Função de Distribuição Proprieddes d Função de Distribuição i) F (x) pois Pr (X x) ii) F(x) é um função não decrescente lim F(x) iii) = x + lim F(x) iv) = x 5 6 Função de Distribuição Proprieddes d Função de Distribuição v) Se X é um vriável letóri contínu, su função de distribuição é contínu. Se X é discret, F(x) é um função contínu à direit, isto é, função de distribuição present "pulos" (descontinuiddes) que só são "sentidos" qundo nos proximmos do ponto onde existe o "pulo" pel esquerd. Função de Distribuição - Sej X um vriável letóri com função de distribuição definid por: se x F( x) = x - e se x > O gráfico dest função de distribuição é mostrdo seguir. F( x) x 5 7 8

8 Função de Distribuição Considere um vriável discret com seguinte função de probbilidde: 4! = Pr( X = x) = pr x =,,,,4 x! ( 4 x)! A função de distribuição é: F( x) = Pr = x k = ( X x) x! ( 4 x)! = x k = 4! x! 4 = ( ) 4 x! x! ( 4 x)! pr x =,,,,4 4 x k = Função de Distribuição Assim: F () = /6 =.65 = Pr (X ) = Pr (X = ) F () = 5/6 =.5 = Pr (X ) = Pr (X = ) + Pr (X = ) F () = /6 =.6875 = Pr (X ) = Pr (X=) + Pr(X=) + Pr(X=) F () = 5/6 =.975 F (4) = Tmbém F(x) = se x < e F(x) = se x > 4 9 Relção entre densidde e função de distribuição Sej X um v.. contínu com densidde f(x) e função de distribuição cumuld F(x). Então: Ms: Pr( < X < b) = dx F( ) = Pr( X ) = F( b) = Pr( X b) = b b dx dx e Relção entre densidde e função de distribuição Então: b Pr( X b) = dx = F( b) F( ) Pelo teorem fundmentl do cálculo: df( x) = dx Logo, densidde é derivd d função de distribuição ão.

9 Espernç mtemá Definição (médi ou vlor esperdo) A médi (ou vlor esperdo ou primeiro momento) de um vriável letóri é definid como: μ = E ( X ) = x. f ( x) x. f dx se X é v.. contínu ( x) = x.pr( X = x) se X é v.. discret Espernç mtemá Sej X um vriável contínu com densidde: f(x) = cx pr < x < ) Ache constnte c que fz de f(x) um densidde. ) Encontre médi dest densidde. A médi de um vriável letóri é um medid de tendênci centrl d distribuição de probbilidde dest vriável letóri. 4 Espernç Mtemá Solução ) Pr que f(x) sej um densidde: dx = cx dx = c = = c = x ) A médi dest densidde é: x ( x ) 4 x dx = x dx = = 4 4 c Espernç mtemá Definição (Vriânci) A vriânci de um vriável letóri mede dispersão d distribuição de probbilidde, e é definid como: ( x μ ). dx se X contínu σ = VAR( X ) = E (( X μ) ) = ( x μ). = ( x μ).pr ( X = x) se X discret 5 6

10 Espernç mtemá Onde novmente f(x) represent densidde de probbilidde (se X contínu) ou função de probbilidde (se X é discret) e μ é médi d vriável letóri. A vriânci é o segundo momento em torno d médi, e corresponde o momento de inérci em Mecânic. D própri definição segue que vriânci é um quntidde sempre mior ou igul zero. Espernç mtemá Definição (desvio pdrão) O desvio pdrão de um vriável letóri é riz qudrd positiv d su vriânci, e denotdo por σ, isto é: σ = σ = VAR( X ) O desvio pdrão é expresso ns mesms uniddes que vriável letóri, e vriânci é dd ns uniddes d vriável letóri o qudrdo. 7 8 Espernç mtemá Se o desvio pdrão é pequeno existe pouc dispersão em torno d médi. Se ele é grnde, os vlores d vriável letóri estão muito dispersos em torno d médi. A médi e vriânci são csos prticulres dos momentos de um distribuição de probbilidde. 9 Espernç mtemá Os momentos de um distribuição servem pr crcterizr est distribuição, não pens no que se refere à su centrlidde e dispersão, ms tmbém com relção outrs crcteríss, como simetri ou ssimetri d densidde de probbilidde. A notção E(...) indic o vlor esperdo (ou espernç,, ou expectânci ), e pode ser estendid pr funções mis geris que X k ou (X - μ) k. 4

11 Espernç mtemá Definição (vlor esperdo de um função de um vriável vel letóri) Sej X um vriável letóri com densidde f(x) e sej u(x) um função qulquer tl que s integris ou somtórios mostrdos seguir existem. O vlor esperdo (ou espernç mtemá) de u(x) é: u( x). dx se X é v.. contínu E( u( X )) = u( x). = u( x).pr( X = x) se X é v.. discret Espernç mtemá Note que u(x) é tmbém m um v..! A definição nterior inclui, como csos prticulres, s definições de médi e vriânci. O próximo teorem é útil n mnipulção de combinções lineres de v.. (ou sus funções). 4 4 Espernç mtemá Teorem (Lineridde do vlor esperdo) Sejm e b constntes e u, v funções quisquer de X com vlores esperdos finitos. Então: E[.u(X) + b.v(x)] = E [u(x)] + b E [v(x)] Espernç mtemá A demonstrção deste fto segue diretmente d lineridde ds integris ou somtórios. Em prticulr, se é um constnte, E () =. Not: fórmul lterntiv pr o cálculo d vriânci O cálculo d vriânci trvés d definição é, às vezes, bstnte trblhoso. Por exemplo, no cso de um v.. discret, é necessário computr tods s diferençs x i - μ, elevá-ls o qudrdo e multiplicá-ls pel probbilidde de ocorrênci de cd x i. 4 Logo, seri interessnte encontrr um fórmul lterntiv (e mis fácil) pr o cálculo d vriânci, e isso pode ser feito empregndo-se lineridde do vlor esperdo. 44

12 Espernç mtemá Fórmul Alterntiv pr o Cálculo C d Vriânci σ = VAR(X) = E [(X - μ) ] = E [X.μ.X + μ ] Pel lineridde do vlor esperdo e notndo que μ é um constnte: Ms, por definição: μ dí E (μ ) = μ. σ = E (X ) - μ.e(x) + E (μ ) = E (X) e μ é um constnte, Espernç mtemá Logo: σ = E (X ) - μ + μ = E (X ) - μ σ = E (X ) - {E(X) E(X)} Est fórmul é válid pr qulquer vriável letóri X (contínu ou discret), desde que médi de X sej finit Espernç mtemá Proprieddes do vlor esperdo e d vriânci de funções lineres Sejm e b constntes, e X um vriável letóri qulquer. Então: ) E(.X + b) =.E(X) + b ) E() = ) VAR(.X+ b) =.VAR(X) 4) VAR() = Espernç mtemá O retorno mensl de certo investimento de risco pode ser modeldo pel vriável letóri R com função de probbilidde dd seguir: r -5 % % 5 % % 5 % Pr(R = r) Clcule o retorno esperdo (em %) do investimento e su vriânci e desvio pdrão. Solução A vriável R é discret, e su médi é (pel definição): 47 48

13 Espernç mtemá μ = (-5)(.4) + ().(.5) + (5).(.5) + ().(.5) + (5).(.5) =.5 A vriânci de R é: σ = (-5-.5).(.4) + (-.5).(.5)+ (5-.5).(.5) + (-.5).(.5) + (5 -.5).(.5) = 4.5 O desvio pdrão de R é: σ = σ = 6.44 (em porcentgem, que é unidde em que estão expressos os retornos) Espernç mtemá exemplo (pr cs) Sej X um vriável letóri contínu com densidde f(x) = c.x onde < x <. Ache constnte c que fz de f(x) um densidde. Encontre função de distribuição de X. Ache médi, vriânci e o desvio pdrão de X. Encontre um ponto m no intervlo (,) tl que Pr(X m) = Pr( X m) = 5%. Este ponto é medin d distribuição Espernç mtemá exemplo (pr cs) A rend de um pesso num populção é um vriável letóri contínu X com densidde f(x) = k/x onde x >. ) Ache constnte k que fz dest expressão um densidde. b) Encontre rend médi nest populção. c) Encontre rend medin nest populção, onde m, medin, é tl que Pr(X > m) = Pr(X m) =.5. 5

Inferência Estatística Aula 1

Inferência Estatística Aula 1 Inferênci Esttístic Aul 1 Agosto de 2008 Mônic Brros mbrros.com 1 Conteúdo Revisão de Probbilidde Vriáveis Aletóris - Definições Vriáveis Discrets e Contínus Função de Probbilidde Vriável Aletóri Geométric

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Termodinâmica e Estrutura da Matéria 2013/14

Termodinâmica e Estrutura da Matéria 2013/14 Termodinâmic e Estrutur d Mtéri 3/4 (LMAC, MEFT, MEBiom Responsável: João P Bizrro Prátics: Edurdo Cstro e ítor Crdoso Deprtmento de Físic, Instituto Superior Técnico Resolução de exercícios propostos

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Aula 29 Aplicações de integrais Áreas e comprimentos

Aula 29 Aplicações de integrais Áreas e comprimentos Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

1 A Integral de Riemann

1 A Integral de Riemann Medid e Integrção. Deprtmento de Físic e Mtemátic. USP-RP. Prof. Rfel A. Rosles 22 de mio de 27. As seguintes nots presentm lgums limitções d integrl de Riemnn com o propósito de justificr construção d

Leia mais

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL MAT 103 - Complementos de Mtemátic pr Contbilidde - FEAUSP 1 o semestre de 011 Professor Oswldo Rio Brnco de Oliveir INTEGRAL Suponhmos um torneir bert em um recipiente e com velocidde de escomento d águ

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

f(x) dx for um número real. (1) x = x 0 Figura A

f(x) dx for um número real. (1) x = x 0 Figura A FFCLRP-USP Integris Imprópris - CÁLCULO DIFERENCIAL E INTEGRAL I Professor Dr Jir Silvério dos Sntos Integris Imprópris Definição Sej f : ; x ) R um função Suponh ret x = x é um Assíntot Verticl o gráfico

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Processos Estocásticos. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais

Processos Estocásticos. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais Processos Estocásticos Luiz Affonso Guedes Sumário Probbilidde Vriáveis Aletóris Funções de Um Vriável Aletóri Funções de Váris Vriáveis Aletóris Momentos e Esttístic Condicionl Teorem do Limite Centrl

Leia mais

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas Cálculo Diferencil e Integrl - Nots de Aul Márci Federson e Gbriel Plns de mrço de 03 Sumário Os Números Reis. Os Números Rcionis................................ Os Números Reis.................................

Leia mais

FÓRMULA DE TAYLOR USP MAT

FÓRMULA DE TAYLOR USP MAT FÓRMULA DE TAYLOR USP MAT 5 SEVERINO TOSCANO DO REGO MELO. Polinômios de Tylor A ret tngente o gráfico de um função f derivável em um ponto define função de primeiro gru que melhor proxim função em pontos

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UIVERSIDADE TECOLÓGICA FEDERAL DO PARAÁ ITEGRAIS IMPRÓPRIAS Adptdo de: HOFFMA, Lurence D. & BRADLEY, Gerld L. Cálculo: Um Curso Moderno e sus Aplicções. Rio de Jneiro: Set Edição, LTC Livros Técnicos

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ. Tópicos Especiais de Matemática Aplicada

UNIVERSIDADE FEDERAL DO AMAPÁ. Tópicos Especiais de Matemática Aplicada UNIVERSIDADE FEDERAL DO AMAPÁ Tópicos Especiis de Mtemátic Aplicd Márleson Rôndiner dos Sntos Ferreir mrleson p@yhoo.com.br Unifp-AP 23/junho/2010 Universidde Federl do Ampá 1 INTEGRAIS DE LINHA E SUPERFÍIE

Leia mais

f(x) dx. Note que A é a área sob o gráfico

f(x) dx. Note que A é a área sob o gráfico FFCLRP-USP AULA-INTEGRAL - CÁLCULO II- ECONOMIA Professor: Jir Silvério dos Sntos PROPRIEDADES DA INTEGRAL Sejm f,g : [,b] R funções integráveis. Então (i) [f(x) + g(x)]dx = (ii) Se λ é um número rel,

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Integrais Duplas em Regiões Limitadas

Integrais Duplas em Regiões Limitadas Cálculo III Deprtmento de Mtemátic - ICEx - UFMG Mrcelo Terr Cunh Integris Dupls em egiões Limitds Ou por curiosidde, ou inspirdo ns possíveis plicções, é nturl querer usr integris dupls em regiões não

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Prof. Dr. Amnd Liz Pcífico Mnfrim Perticrrri mnd.perticrrri@unesp.r DEFINIÇÃO. Se f é um função contínu definid em x, dividimos o intervlo, em n suintervlos de comprimentos iguis: x = n Sejm

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sej um vriável letóri com conjunto de vlores (S). Se o conjunto de vlores for infinito não enumerável então vriável é dit contínu. É função

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

Atividade Prática como Componente Curricular

Atividade Prática como Componente Curricular Universidde Tecnológic Federl do Prná Gerênci de Ensino e Pesquis Deprtmento Acdêmico de Mtemátic Atividde Prátic como Componente Curriculr - Propost - Nome: Mtrícul: Turm: Justique su respost, explicitndo

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Integrais impróprias - continuação Aula 36

Integrais impróprias - continuação Aula 36 Integris imprópris - continução Aul 36 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 06 de Junho de 204 Primeiro Semestre de 204 Turm 20406 - Engenhri Mecânic Alexndre Nolsco de

Leia mais

Bandas de Energia de Elétrons em Sólidos

Bandas de Energia de Elétrons em Sólidos Bnds de Energi de Elétrons em Sólidos Alexndre Bentti n o usp:7144063 November 23, 2014 Abstrct Anlisr um sistem de elétrons sujeitos um potencil periódico, verificndo origem de bnds de energi e bnds proibids

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA Acesse: http://fuvestibulr.com.br/ Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de

Leia mais

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004 Integrção Numéric Prof. Doherty Andrde- DMA/UEM DMA-UEM-4 Preliminres Nests nots o nosso interesse é clculr numericmente integris f(x)dx. A idéi d integrção numéric reside n proximção d função integrnd

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Fich de Trlho Álger - Rdicis Mtemátic - 0 o no Fich de Trlho Álger - Rdicis Grupo I. Sejm e dois números nturis diferentes que tis que x =. onclui-se então que x pode ser ddo por qul ds expressões ixo?

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escol Secundári/, d Sé-Lmego Fich de Trlho de Mtemátic A Ano Lectivo 0/ Distriuição de proiliddes.º Ano Nome: N.º: Turm:. Num turm do.º no, distriuição dos lunos por idde e sexo é seguinte: Pr formr um

Leia mais

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais