Cálculo III-A Módulo 8
|
|
|
- Marta Cabral Leveck
- 10 Há anos
- Visualizações:
Transcrição
1 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums proprieddes. Integrl de Linh de mpo Vetoril Motivção onsidere um prtícul que se move o longo de um curv : γ(t) ( x(t),y(t) ), t [,b], sob ção de um cmpo de forçs F (x,y) P(x,y) i + Q(x,y) j. Queremos clculr o trblho relizdo pel forç F, qundo prtícul se desloc de A γ() té B γ(b). D físic, temos, no cso em que F é constnte e é um segmento de ret, o trblho ddo pelo produto esclr W F AB. No cso gerl, dividimos o intervlo [,b] em n subintervlos [t i 1,t i ], i 1,...,n, de mesmo comprimento t t i t i 1. Temos n subrcos γ ( [t i 1,t i ] ) i e n segmentos [A i 1,A i ], A i γ(t i ) ( x(t i ),y(t i ) ), com i 1,...,n. t A i t i 1 γ A i+1 t i b t n Supondo que F constnte o longo do segmento [A i 1,A i ], o trblho o longo de i é proximdmente igul o produto esclr W i ( F γ(ti ) ) A i 1 A i F ( γ(t i ) ) (A i A i 1 ) P ( x(t i ),y(t i ) ) x+q ( x(t i ),y(t i ) ) y, onde x x(t i ) x(t i 1 ) e y y(t i ) y(t i 1 ).
2 álculo III-A Módulo 8 2 Pelo Teorem do Vlor Médio, temos x x (t i) t, com t i ]t i 1,t i [ e y y (t i ) t, com t i ]t i 1,t i [. Logo, portnto W W i [P ( x(t i ),y(t i ) ) x ( t i n i1 Assim, definimos W lim t S n. Então W ) ( +Q x(ti ),y(t i ) ) y ( ) ] t i t [ P ( x(t i ),y(t i ) ) x ( ) ( t i +Q x(ti ),y(t i ) ) y ( ) ] t i t S n. b Est motivção sugere definição que se segue. Definição: [ P ( x(t),y(t) ) x (t)+q ( x(t),y(t) ) ] y (t) dt. Sej R 3 um curv regulr dd por um prmetrizção γ : [,b] R 3 de clsse 1, tl que γ (t), pr todo t ],b [. Sej F (P,Q,R) um cmpo vetoril contínuo sobre. Então integrl de linh do cmpo F o longo de, denotdo por F d r, é definid por b F d r F (γ(t)) γ (t)dt b [ P ( x(t),y(t),z(t) ) x (t)+q ( x(t),y(t),z(t) ) y (t)+r ( x(t),y(t),z(t) ) ] z (t) dt. OBS.: 1. Sej um curv regulr por prtes: n. Então r F d r F d r 1 n 2. A integrl de linh de um cmpo vetoril F, F d r não depende d prmetrizção de, desde que não se invert su orientção. Isto é, denotndo por curv percorrid em outro sentido, então r F d r
3 álculo III-A Módulo 8 3 OBS.: 3. Se é um curv fechd (γ() γ(b)) e está orientd no sentido nti-horário, denotmos integrl de linh por F d r. + so contrário, denotmos por F d r. Exemplo 1 Sej F (x,y,z) x i + y j + z k. Temos integrl de linh F o longo d hélice : γ(t) (cost,sent,t), com t 2π dd por b F d r F (γ(t)) (γ (t)) dt 2π 2π 2π [ ] 2π t 2 2 2π 2. (cost,sent,t) ( sent,cost,1) dt ( costsent+sentcost+t) dt tdt Um outr notção Sbemos que dx x (t) dt, dy y (t) dt e dz z (t) dt. Se usrmos convenção d r dx i +dy j +dz k (dx,dy,dz), temos r (P,Q,R) (dx,dy,dz) P dx+qdy+rdz b [ P ( x(t),y(t),z(t) ) x (t)+q ( x(t),y(t),z(t) ) y (t)+r ( x(t),y(t),z(t) ) ] z (t) dt. Logo, um outr notção é P dx+qdy +Rdz. Exemplo 2
4 álculo III-A Módulo 8 4 lcule y dx+(x 2 +y 2 ) dy, onde é formdo pelos segmentos que ligm ( 2,) (,) e (,) (,2). Solução: O esboço de 1 2 está representdo n figur o ldo. y (,2) 2 ( 2, ) (, ) 1 x 1 e 2 podem ser prmetrizds por { x t 1 : y, { x 2 : y t,, 2 t, portnto dx dt e dy., t 2, portnto dx e dy dt. Temos Logo, ( y dx+ x 2 +y 2) dy 1 y dx+(x 2 +y 2 ) dy dt+ ( t 2 + 2) t +( 2 +t 2 ) dt 2 t 2 dt [ ] 2 t y dx+(x 2 +y 2 ) dy Aul 16 mpos onservtivos Objetivo Estudr um clsse de cmpos vetoriis que tem propriedde de que integrl de linh não depende do cminho. álculo de funções potenciis.
5 álculo III-A Módulo 8 5 mpos onservtivos Dizemos que F : D R n R n, (n 2, 3) é um cmpo conservtivo ou um cmpo grdiente se existir um cmpo esclr diferenciável ϕ : D R n R, tl que ϕ F em D. O cmpo esclr ϕ : D R n R é dito função potencil de F em D. Exemplo 1 O cmpo vetoril F (x,y,z) (2x+3yz) i + 3xz j + 3xy k é um cmpo conservtivo em R 3, pois existe ϕ(x,y,z) x 2 +3xyz diferenciável em R 3, tl que ϕ F em R 3. A seguir, presentremos lguns resultdos dos cmpos conservtivos. Teorem 1: Sej F : D R n R n, (n 2, 3) um cmpo vetoril de clsse 1. Se F é conservtivo, então rot F. Demonstrção: Suponhmos n 3. Então, F (P,Q,R). Se F é conservtivo, existe ϕ : D R 3 R, tl que ϕ F. Logo, rot F F ( ϕ) por propriedde dos operdores diferenciis. Mis dinte, veremos um exemplo de um cmpo vetoril não conservtivo, com rotcionl nulo. OBS.: O Teorem 1 tmbém pode ser enuncido d seguinte mneir: Se rot F em D, então F não é conservtivo em D. Exemplo 2 Temos que F (x,y) 2x x 2 +y 2 i + 2y x 2 +y 2 j é um cmpo conservtivo em R 2 {(,)}, pois existe ϕ(x,y) ln(x 2 +y 2 ), tl que ϕ F em R 2 {(,)}. Exemplo 3 Temos que F (x,y) 2y i +2x j não é um cmpo conservtivo. Or, temos que rot F (x,y) ( Q x P y) k (2 ( 2)) k 4 k.
6 álculo III-A Módulo 8 6 então r Teorem 2: Sej F : D R n R n, (n 2, 3) de clsse 2. Se F é conservtivo, isto é, F ϕ em D, e se é qulquer curv regulr por prtes com ponto inicil A e ponto finl B, ϕ d r ϕ(b) ϕ(a). Demonstrção: A demonstrção segue d definição de integrl de linh e d regr d cdei (ver Teorem 6.2 do livro). Este resultdo é conhecido como Teorem Fundmentl do álculo pr Integris de Linh. É dele que concluímos que integrl de linh de um cmpo conservtivo só depende dos pontos A e B e não depende d trjetóri que os une. Teorem 3: Se F : D R n R n, (n 2, 3) é conservtivo, então F d r qulquer que sej o cminho fechdo. Demonstrção: A demonstrção segue do Teorem 2, pois sendo um cminho fechdo, o ponto finl B coincide com o ponto inicil A, portnto ϕ(b) ϕ(a). Assim, integrl de linh é zero. Este Teorem tmbém pode ser enuncido d seguinte mneir: Se r pr lgum curv fechd então F não é conservtivo. Exemplo 4 lcule F d r, onde F (x,y) x i +y j e é dd por γ(t) (rctgt,cost 4 ), t 1. Solução: Observemos que F é um cmpo conservtivo em R 2 com função potencil ϕ(x,y) 1 2 (x2 +y 2 ).
7 álculo III-A Módulo 8 7 Assim, r ϕ(γ(1)) ϕ(γ()) ϕ(rctg1,cos1) ϕ(rctg,cos) ϕ ( π,cos1) ϕ(,1) 4 ( ) 1 π cos ( ) ( ) 1 π cos2 1. A seguir exibiremos um cmpo vetoril não conservtivo com rotcionl, o que mostr que recíproc do Teorem 1 é fls. Exemplo 5 Sej F (x,y) y x 2 +y i + x 2 x 2 +y j, (x,y) D R 2 {(,)}. omo Q P (verifique!), 2 x y rot F em D. lculemos F d r, onde é circunferênci γ(t) (cost,sent), t 2π. Temos r y x 2 +y 2 dx+ x x 2 +y 2 dy 2π [( sent ) ( ( sent)+ cost ) ] 2 (cost) dt 2 2π (sen 2 t+cos 2 t) dt 2π (1) Se F fosse conservtivo, terímos encontrdo, pelo Teorem 3, que F d r, o que + contrdiz (1). Logo, F não é conservtivo. N ul18, veremos, procso n 2, que, impondo certscondições odomíniode F, recíproc do Teorem 1 é verddeir. álculo de Funções Potenciis Exemplo 6 Sbe-seque F (x,y) (2xy 2 y 3,2x 2 y 3xy 2 +2)éumcmpogrdiente. Determineumfunção potencil. Solução:
8 álculo III-A Módulo 8 8 Pr determinr um função potencil ϕ(x, y), devemos ter Integrndo (2) em relção x, temos Integrndo (3) em relção y, temos x 2xy2 y 3 (2) y 2x2 y 3xy 2 +2 (3) ϕ(x,y) x 2 y 2 xy 3 +f(y) (4) ϕ(x,y) x 2 y 2 xy 3 +2y +g(x) (5) De (4) e (5), vemos que, tomndo f(y) 2y e g(x), segue que um função potencil é ϕ(x,y) x 2 y 2 xy 3 +2y. Exemplo 7 Sbe-se que F (x,y,z) 2xy i + (x 2 +zcos(yz)) j + ycos(yz) k é um cmpo conservtivo. Determine um função potencil. Solução: Devemos ter: 2xy x (6) y x2 +zcos(yz) (7) ycos(yz) (8) z Integrndo (6), (7) e (8) em relção x, y e z respectivmente, temos ϕ(x,y,z) x 2 y +f(y,z) (9) ϕ(x,y,z) x 2 y +sen(yz)+g(x,z) (1) ϕ(x,y,z) sen(yz)+h(x,y) (11) De (9), (1) e (11), devemos ter f(y,z) sen(yz), g(x,z) e h(x,y) x 2 y. Logo, é um função potencil de F. ϕ(x,y,z) x 2 y +sen(yz) Exercício 1: lcule x dx+x 2 dy de ( 1,) (1,)
9 álculo III-A Módulo 8 9 ) o longo do eixo x b) o longo de : r (t) ( cost,sent), com t π. c) o longo d poligonl de vértices ( 1,), (,1), (1,1) e (1,). Exercício 2: lcule os vlores de 2xy dx+(x 2 +y 2 )dy o longo do cminho, onde é ) prte superior d circunferênci x 2 +y 2 2 de (,) (,); b) prte superior d elipse x 2 +4y 2 2x, orientd no sentido nti-horário. Exercício 3: lcule o trblho relizdo pel forç F (x,y) (x, y) pr deslocr um prtícul o longo d curv fechd 1 2 3, onde 1 : segmento de ret de O (,) A (1,1); 2 : prte d curv 4x 2 12x+4y 2 8y +12, com y 1, do ponto A (1,1) B (2,1); 3 : segmento de ret BO. Exercício 4: lcule (,1,π/2). 2x dx 3y dy + z 2 dz, onde é o segmento de ret que une (1,,) Exercício 5: Determine o trblho relizdo pel forç F (x,y,z) (3y + z) i + (y 3x) j + +(e z +x) k pr deslocr um prtícul o longo d curv interseção do cilindro x 2 + y 2 1 com o plno z 5, orientd no sentido nti-horário qundo vist de cim. Exercício 6: lcule z dx + y dy x dz, onde é interseção ds superfícies y + z 8 e x 2 +y 2 +z 2 8z, com x, no sentido nti-horário qundo vist de cim. Exercício 7: Sbe-se que o cmpo F (e x+y +1) i +e x+y j é um cmpo conservtivo em R 2. ) Encontre um função potencil pr F. b) lcule F d r onde é o rco de circunferênci (x 1) 2 + que vi de (1,) (1,1). ( y 1 ) , com x 1 Exercício 8: Determine um função potencil pr cd cmpo conservtivo. ) F (x,y) (x 2 +y 2 ) i +2xy j. b) F (x,y) (cos(xy) xysen(xy)) i (x 2 sen(xy)) j. c) F (x,y) (6xy 3 +2z 2,9x 2 y 2,4xz +1).
f γ : [a,b] R f = f +... + C 2 C 1
pítulo 5 INTEGRAIS 5. Integris sobre Trjetóris Sejm f : R 3 R e γ : [,b] R 3 umprmetrizção dcurv declsse, tis que f γ : [,b] R é um função contínu. Definição 5.. Aintegrl de f o longo de γ édenotd edefinid
Cálculo III-A Módulo 6
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir
Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2
Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo
Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B
Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
Universidade Federal da Bahia
Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15
3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos
3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região
CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2
Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido
TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície
4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe
4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n
1 Fórmulas de Newton-Cotes
As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como
Teorema Fundamental do Cálculo - Parte 2
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver
CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre
b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp
8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral
Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro
CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).
Capítulo III INTEGRAIS DE LINHA
pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo
16.4. Cálculo Vetorial. Teorema de Green
ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece
Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais
POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES
Elementos de Análise - Lista 6 - Solução
Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto
, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]
Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej
CÁLCULO I. 1 Funções denidas por uma integral
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por
Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos
A integral de Riemann e Aplicações Aula 28
A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de
Diogo Pinheiro Fernandes Pedrosa
Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
(x, y) dy. (x, y) dy =
Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores
Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa
Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção
Operadores momento e energia e o Princípio da Incerteza
Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs
8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3
1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções
1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.
As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,
IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.
IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo
FUNC ~ OES REAIS DE VARI AVEL REAL
FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo
Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III
Cálculo Diferencil e Integrl II Págin Universidde de Mogi ds Cruzes UMC Cmpos Vill Lobos Cálculo Diferencil e Integrl II Prte III Engenhri Civil Engenhri Mecânic [email protected] º semestre de 05 Cálculo Diferencil
1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3.
Universidde Federl de Uberlândi Fculdde de Mtemátic Disciplin : Geometri Diferencil Assunto: Cálculo no Espço Euclidino e Curvs Diferenciáveis Prof. Sto 1 List de exercícios 1. Prove chmd identidde de
Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017
Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,
Teorema de Green no Plano
Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com
RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração
RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F
{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada
MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >
Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução
(9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se
Lista 5: Geometria Analítica
List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no
Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é
Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um
6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]
6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior
Teorema Fundamental do Cálculo - Parte 1
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como
Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i
Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos
SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por
SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o
Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.
Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde
Resumo com exercícios resolvidos do assunto: Aplicações da Integral
www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A
1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE
Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço
INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.
INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo
Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec
Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)
Introdução ao estudo de equações diferenciais
MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um
Cálculo Diferencial e Integral II Prof. Ânderson Vieira
CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são
Comprimentos de Curvas e Coordenadas Polares Aula 38
Comprimentos de Curvas e Coordenadas Polares Aula 38 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli
Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento
CÁLCULO I. Denir e calcular o centroide de uma lâmina.
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr
fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:
Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo
Semelhança e áreas 1,5
A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.
Área entre curvas e a Integral definida
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções
META: Introduzir o conceito de integração de funções de variáveis complexas.
Integrção omplex AULA 7 META: Introduzir o conceito de integrção de funções de vriáveis complexs. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integrl de um função complex. lculr integrl
UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA
UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm
José Miguel Urbano. Análise Infinitesimal II Notas de curso
José Miguel Urbno Análise Infinitesiml II Nots de curso Deprtmento de Mtemátic d Universidde de Coimbr Coimbr, 2005 Conteúdo Primitivs 3 2 O integrl de Riemnn 8 2. Proprieddes do integrl de Riemnn..............
1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.
6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e
Cálculo Diferencial e Integral II
1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.
Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1
Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 1. Fazer exercícios 1, 4, 5, 7, 8, 9 da seção 8.4.4 pgs 186, 187 do livro
1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial
º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d
Simbolicamente, para. e 1. a tem-se
. Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos
Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:
Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5
