Comprimentos de Curvas e Coordenadas Polares Aula 38
|
|
|
- Theodoro Fonseca Vasques
- 10 Há anos
- Visualizações:
Transcrição
1 Comprimentos de Curvas e Coordenadas Polares Aula 38 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Junho de 2014 Primeiro Semestre de 2014 Turma Engenharia Mecânica
2 Uma curva no plano R 2 é uma função γ que associa a cada t em um intervalo I um ponto γ(t) = (x(t),y(t)) R 2. A medida que t percorre o intervalo I o ponto γ(t) = (x(t),y(t)) descreve um traço no plano. Exemplos a)γ(t)=(2+t,3+3t), t R b)γ(t)=(cost,sent), t [0,2π], c)γ(t)=(t,t 2 ), t R d)γ(t)=(3cost,2sent), t [0,2π].
3 Sejam x,y : [a,b] R funções continuamente diferenciáveis e vamos procurar uma fórmula para o comprimento do traço descrito pela curva γ(t) = (x(t),y(t)), t [a,b] no plano. Procedemos como antes, aproximando o comprimento da curva pelo comprimento de uma poligonal.
4 Seja P : a = t 0 < t 1 < < t np = b uma partição do intervalo [a,b] e considere a poligonal de vértices γ(t 0 ),γ(t 1 ),,γ(t np ). Então, o comprimento desta poligonal é n P i=1 γ(t i ) γ(t i 1 ) = = n P i=1 n P i=1 n P i=1 (x(t i ) x(t i 1 )) 2 +(y(t i ) y(t i 1 )) 2 (x(ti ) ) x(t i 1 ) 2 ( ) y(ti ) y(t i 1 ) 2 + (t i t i 1) t i t i 1 t i t i 1 (x (τ i )) 2 +(y (τ i )) 2 (t i t i 1 )
5 Assim, o comprimento do traço da curva γ é definido por L := lim P 0 n P i=1 γ(t i ) γ(t i 1 ) = b a (x (t) 2 +y (t) 2 dt Exemplo Calcular o comprimento da espiral x(t) = e t cost, y(t) = e t sent, 0 t π.
6 Fixado um semi-eixo Ox (eixo polar) no plano com origem O (pólo), qualquer ponto P do plano fica determinado pelo ângulo θ [0,2π) que OP faz com o eixo polar (contado a partir do eixo polar e no sentido anti-horário) e do comprimento ρ > 0 do segmento OP. Os números θ e ρ são chamados coordenadas polares de P.
7 Conhecidas as coordenadas polares de P e fixando um sistema ortogonal de coordenadas em que a origem coincida com o pólo e o primeiro quadrante coincida com { (θ,ρ) : θ [0, π 2 ],ρ 0}. Então P = (x,y) se, e somente se, x = ρcosθ, y = ρsenθ e ρ = x 2 +y 2, cosθ = x y senθ = x 2 +y2, x 2 +y 2. Convencionaremos que se ρ < 0 o par (θ,ρ) corresponde ao par simétrico relativamente ao pólo do par (θ, ρ).
8 Exemplo Esboçar as curvas descritas pelos pontos (θ, ρ(θ)) nos casos a) ρ(θ) = θ, θ [0,2π], b) ρ(θ) = senθ, 0 θ π c) ρ(θ) = 1 cosθ, θ [0,2π], d) ρ(θ) = cos2θ,θ [0,2π].
9 Se ρ : [α,β] [0, ) e R é a região do plano dada por {(θ,r) : θ [α,β], e 0 r ρ(θ)}, a área de R é dada por Exemplos A(R) = 1 2 β α ρ(θ) 2 dθ Calcular a área da região delimitada pela cardióide ρ(θ) = 1 cosθ. Calcular a área da interseção das regiões limitadas pelas curvas ρ = 3, ρ = 3cosθ e ρ = 1+cosθ.
10 Se ρ : [α,β] [0, ) é uma função continuamente diferenciável, o comprimento L da curva descrita pelos pontos (θ,ρ(θ)), θ [α,β] é β L := ρ(θ) 2 +(ρ (θ)) 2 dθ α Exemplo Calcule o comprimento da curva ρ = senθ, θ [0,π].
11 dos Capítulos 11, 12 e 13 do Livro do Guidorizzi, Volume 1, e das listas 11, 12, 13 e 14.
Prof. Rossini Bezerra Faculdade Boa Viagem
Sistemas de Coordenadas Polares Prof. Rossini Bezerra Faculdade Boa Viagem Coordenadas Polares Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no
Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5
Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................
Coordenadas Polares. Prof. Márcio Nascimento. [email protected]
Coordenadas Polares Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática
7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).
1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.
Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
Curvas em coordenadas polares
1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.
Aula 8 : Desenho Topográfico
Aula 8 : Desenho Topográfico Topografia, do grego topos (lugar) e graphein (descrever), é a ciência aplicada que representa, no papel, a configuração (contorno,dimensão e posição relativa) de um porção
Matemática para Engenharia
Matemática para Engenharia Profa. Grace S. Deaecto Faculdade de Engenharia Mecânica / UNICAMP 13083-860, Campinas, SP, Brasil. [email protected] Segundo Semestre de 2013 Profa. Grace S. Deaecto ES401
3.4 Movimento ao longo de uma curva no espaço (terça parte)
3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória
4. Tangentes e normais; orientabilidade
4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se
Introdução às equações diferenciais
Introdução às equações diferenciais Professor Leonardo Crochik Notas de aula 1 O que é 1. é uma equação:... =... 2. a incógnita não é um número x R, mas uma função x(t) : R R 3. na equação estão presentes,
Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru
Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P
FICHA DE TRABALHO 6 - RESOLUÇÃO
ecção de Álgebra e Análise, Departamento de Matemática, Instituto uperior Técnico Análise Matemática III A - 1 o semestre de 23/4 FIHA DE TRABALHO 6 - REOLUÇÃO 1) Indique se as formas diferenciais seguintes
II Cálculo Integral em R n
Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de omputadores Ano Lectivo 2/22 2 o emestre Exercícios propostos para as aulas práticas II álculo Integral em R n Departamento de
Exercícios Resolvidos Integrais de Linha. Teorema de Green
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo
FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II
1 COORDEADAS, AZIMUTES E ÂGULOS DE DEFLEXÃO estas notas de aula pretende-se apresentar as formas de cálculos de obtenção dos valores de azimutes de trechos de tangentes de rodovias e também os cálculos
Equações Diferenciais Ordinárias
Capítulo 8 Equações Diferenciais Ordinárias Vários modelos utilizados nas ciências naturais e exatas envolvem equações diferenciais. Essas equações descrevem a relação entre uma função, o seu argumento
Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1
Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 1. Fazer exercícios 1, 4, 5, 7, 8, 9 da seção 8.4.4 pgs 186, 187 do livro
I. Cálculo Diferencial em R n
Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento
FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim
FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação
Teorema da Mudança de Variáveis
Instituto Superior écnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires eorema da Mudança de Variáveis 1 Mudança de Variáveis Definição 1 Seja R n um aberto. Di-se que uma
Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes
Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes
IA344 - Dinâmica Caótica em Sistemas de Engenharia
IA344 - Dinâmica Caótica em Sistemas de Engenharia (FEEC/Unicamp - Primeiro Semestre de 2005) 1 Transformações (Mapas) de Poincaré Um sistema dinâmico é usualmente definido como um fluxo contínuo, que
CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger
CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /
x d z θ i Figura 2.1: Geometria das placas paralelas (Vista Superior).
2 Lentes Metálicas Este capítulo destina-se a apresentar os princípios básicos de funcionamento e dimensionamento de lentes metálicas. Apresenta, ainda, comparações com as lentes dielétricas, cujas técnicas
Márcio Dinis do Nascimento de Jesus
Márcio Dinis do Nascimento de Jesus Trabalho 3 Modelação Matemática usando o software Modellus Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013 2 Modelação Matemática
PUCGoiás Física I. Lilian R. Rios. Rotação
PUCGoiás Física I Lilian R. Rios Rotação O movimento de um cd, de um ventilador de teto, de uma roda gigante, entre outros, não podem ser representados como o movimento de um ponto cada um deles envolve
Capítulo 2 CINEMÁTICA
Capítulo CINEMÁTICA DISCIPLINA DE FÍSICA CAPÍTULO - CINEMÁTICA.1 Uma partícula com movimento rectilíneo desloca-se segundo a seguinte equação: x = 0,5 t.1.1 Desenhe o gráfico da função r(t), no intervalo
Singularidades de Funções de Variáveis Complexas
Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir
Sistemas Dinâmicos Discretos Lineares notas de aula Análise Linear. Isabel S. Labouriau
Sistemas Dinâmicos Discretos Lineares notas de aula Análise Linear Isabel S. Labouriau Novembro de 1991 Índice 1 Introdução, definições e exemplos 2 1.1 exemplo: transformação linear em R..............
CONTROLO DE SISTEMAS
UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS Lugar Geométrico das Raízes PROJECTO E ANÁLISE DA RESPOSTA TRANSITÓRIA E ESTABILIDADE Parte 1/3 - Compensação
Cap. 7 - Fontes de Campo Magnético
Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.
Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3
1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens
EA616B Análise Linear de Sistemas Resposta em Frequência
EA616B Análise Linear de Sistemas Resposta em Frequência Prof. Pedro L. D. Peres Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre 2013 Resposta em Frequência
Aula 6 Derivadas Direcionais e o Vetor Gradiente
Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}
36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase
36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e
Capítulo 9 INTEGRAÇÃO DUPLA. 9.1 Integração Dupla sobre Retângulos. Denotemos por: R = [a, b] [c, d] = {(x, y) R 2 /a x b, c y d} um retângulo em R 2.
Capítulo 9 INTEGAÇÃO UPLA 9. Integração upla sobre etângulos enotemos por: um retângulo em. = [a, b [c, d = {(x, y) /a x b, c y d} Consideremos P = {x, x,..., x n } e P = {y, y,..., y n } partições de
TRABALHO: CONTROLE DE UM SISTEMA PÊNDULO-CARRO
TRABALHO: CONTROLE DE UM SISTEMA PÊNDULO-CARRO Professor: Tiago Dezuo 1 Objetivos Desenvolver técnicas de controle por variáveis de estado clássicas e ótimas, realizando comparações de desempenho entre
Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016
Análise Complexa e Equações Diferenciais ō Semestre 205/206 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ). Considere a função u : R 2 R dada por onde a e b são duas constantes reais. 09 de Abril
RAIOS E FRENTES DE ONDA
RAIOS E FRENTES DE ONDA 17. 1, ONDAS SONORAS ONDAS SONORAS SÃO ONDAS DE PRESSÃO 1 ONDAS SONORAS s Onda sonora harmônica progressiva Deslocamento das partículas do ar: s (x,t) s( x, t) = s cos( kx ωt) m
Uma e.d.o. de segunda ordem é da forma
Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear
NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 1 INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL Edição de junho de 2014 2 CAPÍTULO 1 TEORIA DA RELATIVIDADE ESPECIAL ÍNDICE 1.1-
24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18
/Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis
MODELO CINEMÁTICO DE UM ROBÔ MÓVEL
MODELO CINEMÁTICO DE UM ROBÔ MÓVEL y r v ω r E v E y ω E v D b ω D r D θ x x (x,y) = Posição do referencial fixo no robô em relação ao referencial fixo no espaço de trabalho. θ = Ângulo de orientação do
Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA
Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado
EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado
Aula 28 EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Prof. Ricardo C.L.F. Oliveira Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre
Capítulo 3 Sistemas de Controle com Realimentação
Capítulo 3 Sistemas de Controle com Realimentação Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Sistemas de Controle com
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected].
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected] Transformações Lineares 1 Definição e Exemplos 2 Núcleo e Imagem
Capítulo 3 Modelos Estatísticos
Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide
Cálculo III-A Módulo 8
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums
Métodos de Adams-Bashforth. Se y é uma solução exacta do problema de Cauchy, então
Métodos de Adams-Bashforth Se y é uma solução exacta do problema de Cauchy, então ti+1 y(t i+1 ) = y(t i )+ f(t, y(t)) dt. t i A ideia é de aproximar a função f(t, y(t)) no intervalo [t i, t i+1 ] pelo
Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Controle de Sistemas O Método do Lugar das Raízes Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Introdução No projeto de um sistema de controle, é fundamental se determinar
Notas de aula: MTM 5186 - Cálculo IV
Departamento de Matemática - MTM Universidade Federal de Santa Catarina - UFSC Notas de aula: MTM 5186 - Cálculo IV Prof. Matheus Cheque Bortolan Florianópolis - SC 2015/1 ii Sumário 1 Introdução 5 2 O
Faculdades Anhanguera
2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem
Cálculo Diferencial e Integral II
1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
29/Abril/2015 Aula 17
4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda
INTRODUÇÃO À ENGENHARIA
INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação
Universidade Federal do Paraná
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j
Resistência dos Materiais
Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal
Torção Deformação por torção de um eixo circular
Torção Deformação por torção de um eixo irular Torque é um momento que tende a torer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o omprimento e o raio do eixo permaneerão
Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (2) Definição de Sistemas. Esta Aula
Resumo Sistemas e Sinais Definição de Sinais e de Sistemas (2) [email protected] Instituto Superior Técnico Definição de sistemas. Espaço de funções. Equações diferenciais e às diferenças. Sistemas com e
V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.
11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.
Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada
Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Prof. José Carlos Fogo Departamento de Estatística - UFSCar Outubro de 2014 Prof. José Carlos Fogo (DEs - UFSCar) Material Didático
UFPB PRG X ENCONTRO DE INICIAÇÃO À DOCÊNCIA
4CCENDMMT03 ABELHA: GEOMETRIA DOS ALVÉOLOS Thiago Pereira Rique (1), Jorge Costa Duarte Filho (3) Centro de Ciências Exatas e da Natureza/Departamento de Matemática/Monitoria Resumo Este trabalho tem por
Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas
Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000
FÍSICA CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra
Refração da Luz Prismas
Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo
4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES
CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma
CSE-020 Revisão de Métodos Matemáticos para Engenharia
CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia
4. Curvas planas. T = κn, N = κt, B = 0.
4. CURVAS PLANAS 35 4. Curvas planas Nesta secção veremos que no caso planar é possível refinar a definição de curvatura, de modo a dar-lhe uma interpretação geométrica interessante. Provaremos ainda o
Vibrações Mecânicas. Vibração Livre Sistemas com 1 GL. Ramiro Brito Willmersdorf [email protected]
Vibrações Mecânicas Vibração Livre Sistemas com 1 GL Ramiro Brito Willmersdorf [email protected] Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2015.1 Introdução Modelo 1
Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 3
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 3 Condições para de Segunda Ordem Considere por enquanto um VAR de primeira ordem, VAR(1): z t = C 0 +C 1
Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.
MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),
Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I. Fluido Perfeito
Mestrado Integrado em Engenharia Aeroespacial Aerodinâmica I Fluido Perfeito 1. Considere o escoamento bidimensional, irrotacional e incompressível definido pelo potencial φ = a) Mostre que φ satisfaz
É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A
4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los
Horário de Aulas Fundamental II
Infantil - Fundamental - Médio Horário de Aulas Fundamental II 1ª AULA 7H10 ÀS 8H 2ª AULA 8H ÀS 8H50 3ª AULA 8H50 ÀS 9H40 INTERVALO 9H40 ÀS 10H 4ª AULA 10H ÀS 10H50 5ª AULA 10H50 ÀS 11H40 6ª AULA 11H40
Fichas de sistemas de partículas
Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.
Lista 1: Processo Estocástico I
IFBA/Introdução aos Processos Estocásticos/ Prof. Fabrício Simões 1 Lista 1: Processo Estocástico I 1. Esboce o espaço amostral do processo estocástico x(t) = acos(ωt + θ), em que ω e θ constantes e a
Astronomia/Kepler. As hipóteses de Kepler [editar] Colaborações com Tycho Brahe [editar]
Astronomia/Kepler < Astronomia Astronomia Uma das importantes personagens da Astronomia foi Johannes Kepler.. Como muitos astrônomos de sua época, Kepler era também um astrólogo e uma de suas crenças fundamentais
Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade
Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson
Por meio de experimentos, notou-se que os portadores de carga sofriam influências de outra força, fora aquela resultante da ação do campo elétrico.
Capítulo 10 Magnetostática 10.1 Campo Magnético Por meio de experimentos, notou-se que os portadores de carga sofriam influências de outra força, fora aquela resultante da ação do campo elétrico. Tal força
Cálculo III-A Módulo 5
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 5 Aula 9 Mudança de Variáveis na Integral Tripla Objetivo Aprender a faer
FÍSICA - 1 o ANO MÓDULO 16 GRÁFICOS DA CINEMÁTICA REVISÃO
FÍSICA - 1 o ANO MÓDULO 16 GRÁFICOS DA CINEMÁTICA REVISÃO Como pode cair no enem? O estudo dos movimentos (Uniforme e Uniformemente Variado) é a aplicação física do estudo das funções em Matemática. As
CPV 82% de aprovação dos nossos alunos na ESPM
CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1
Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e
MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas
EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO
EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO 1. QUESTÃO (VALOR 6.0) A viga bi-engastada abaio mostrada deverá ser construída
Resumo de Aulas Teóricas de Análise Matemática II. Rui Albuquerque Universidade de Évora 2011/2012
1 Resumo de Aulas Teóricas de Análise Matemática II Rui Albuquerque Universidade de Évora 2011/2012 Aula 1 O espaço euclideano R n : Espaço vectorial, espaço de pontos, vectores a = (a 1,..., a n ), x
Universidade Federal de São João Del Rei - UFSJ
Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart
Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I
Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,
Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial
Mecânica de Partículas (Revisão) Paulo J. S. Gil Departamento de Engenharia Mecânica, Secção de Mecânica Aeroespacial Instituto Superior Técnico Cadeira de Satélites, Lic. Eng. Aeroespacial Paulo J. S.
Curvas de nível homotópicas a um ponto
Curvas de nível homotópicas a um ponto Praciano-Pereira, T Sobral Matemática 6 de agosto de 2011 [email protected] pré-prints da Sobral Matemática no. 2011.03 Editor Tarcisio Praciano-Pereira, [email protected]
PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011
PROVAS DE MATEMÁTICA DO VESTIBULAR-0 DA MACKENZIE Profa. Maria Antônia Gouveia. //0 QUESTÃO N o 9 Turma N o de alunos Média das notas obtidas A 0,0 B 0,0 C 0,0 D 0,0 A tabela acima refere-se a uma prova
Exercícios de Revisão: Análise Complexa 1- Números Complexos
Exercícios de Revisão: Análise Complexa - Números Complexos Exercícios Propostos Globais I... Soluções dos Exercícios Propostos Globais I... Introdução... 4 Definições e propriedades elementares... 4.
AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980
Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.
