29/Abril/2015 Aula 17

Tamanho: px
Começar a partir da página:

Download "29/Abril/2015 Aula 17"

Transcrição

1 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis de energia. 9/Abril/015 Aula 17 Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial º partícula num poço de potencial finito 3º oscilador harmónico simples 4º barreira de potencial, probabilidade de transmissão. 1

2 Aula anterior Princípio de Incerteza de Heisenberg (cont.) Se uma medição da posição for feita com precisão x e, simultaneamente, se se medir a componente p x do momento com precisão p x, então o produto das duas incertezas não pode ser inferior a h / (). Princípio da Incerteza Dx Dp ³ com = h p Se existe uma incerteza no momento da partícula, também existirá uma incerteza na sua energia. DE Dt ³ Esta relação impõe um limite para a medição da energia de um sistema.

3 Aula anterior Probabilidade de encontrar uma partícula numa certa região A probabilidade P ab de encontrar a partícula no intervalo b x a é igual a P ab b a dx Experimentalmente, existe sempre alguma probabilidade de se encontrar a partícula num ponto para um dado instante, pelo que a probabilidade vai estar entre 0 e 1. Por exemplo, se a probabilidade de se encontrar uma partícula entre dois pontos for igual a 0,3, então há 30% de hipóteses de ela estar nesse intervalo. A probabilidade de uma partícula se encontrar entre os pontos a e b é igual à área definida pela curva entre a e b. 3

4 Aula anterior Posição média de uma partícula A função de onda, para além de permitir calcular a probabilidade de encontrar uma partícula numa dada região, também pode dar informações de outras quantidades mensuráveis, como o momento e a energia. Em particular, é por vezes útil conhecer qual a posição média de uma partícula numa dada região: valor expectável. O valor expectável é definido como b x x dx a e é igual ao valor médio da posição da partícula representada pela função de onda na região delimitada por a e b. 4

5 Aula anterior Partícula numa caixa de potencial a) funções de onda b) distribuições de probabilidade A partir da função de onda (x) = A sen (n x / L) que tipo de informações será possível obter acerca da partícula? 5

6 Energia Aula anterior Partícula numa caixa (cont.) E h 8 m L n n com n = 1,, 3 No estado com menor energia (n =1), esta tem o valor de E h 1 8 m L Os estados mais energéticos (n >1) têm energias A energia mínima é > 0 E = 4E 1, E 3 = 9 E 1, Uma partícula numa caixa não pode ter energia nula 6

7 Equação de Schrödinger Será possível usar o modelo da partícula numa caixa para prever os níveis de energia electrónicos num átomo? Problema: O electrão não está confinado a uma caixa de paredes infinitas (nem as paredes são verticais). Modelo da energia potencial em função da distância ao núcleo para um átomo. 7

8 Equação de Schrödinger (cont.) Solução: a equação de Schrödinger permite determinar as funções de onda de uma partícula num poço de potencial qualquer, de uma maneira sistemática; a partir das funções de onda é possível determinar as densidades de probabilidade, os comprimentos de onda, os momentos, os níveis de energia, 8

9 Equação de Schrödinger (cont.) A expressão geral (clássica) da equação das ondas para ondas que se deslocam ao longo do eixo x é 1 x v t em que v é a velocidade da onda e depende do espaço (x) e do tempo (t ) No caso mais simples, é possível separar a dependência no espaço da dependência no tempo: (x, t ) = (x) cos t Substituindo na equação das ondas, vem cos t - cos t x v - x v 9

10 Equação de Schrödinger (cont.) Partindo da expressão anterior e considerando as relações de de Broglie para as ondas (de matéria) = f = v / e p = h / v = p æ ö æ ç = 4p ö è l ø ç è h p = p ø w Sendo a energia total E a soma das energias cinética e potencial E total = E cin +U pot = p m +U pot p =m( E total -U ) pot w v = p = m ( E total -U ) pot 10

11 Equação de Schrödinger (cont.) Substituindo na equação das ondas obtém-se a Equação de Schrödinger na sua forma mais simples, independente do tempo, para uma partícula com movimento ao longo de x : - m d Y ( x) +U ( dx pot x)y ( x) = E total Y ( x) Equação de Schrödinger d Y ( x) dx = - m ( E-U )Y 11

12 Aplicações da equação de Schrödinger 1º partícula numa caixa de potencial A equação de Schrödinger permite explicar os sistemas atómico e nuclear, onde os métodos clássicos falham. Equação de Schrödinger para uma partícula numa caixa: d Y ( x) dx = - m ( E-U )Y A energia potencial nas paredes da caixa é nula e as paredes são infinitas. U (x) = 0 para 0 x L U (x) = para x 0 e x L 1

13 1º partícula numa caixa de potencial (cont.) Na região 0 x L a equação de Schrödinger pode ser escrita como d Y ( x) dx = - m EY Para simplificar, se se fizer k = me d Y ( x) dx = - k Y 13

14 1º partícula numa caixa de potencial (cont.) Agora é necessário resolver a equação de Schrödinger para determinar a função de onda que representa a partícula na caixa. Como as paredes são infinitas, vai ser nula fora da caixa. Neste caso, as duas condições fronteira são : (x) = 0 para x = 0 e x = L A solução da equação de Schrödinger que satisfaz estas condições é do tipo x A senk x 14

15 Energia 1º partícula numa caixa, verificação da solução 1ª condição fronteira : (x) = 0 para x = 0 É verificada (sen 0 = 0) ª condição fronteira : (x) = 0 para x = L É verificada se k L for um múltiplo de, ou seja, se k L = n, com n inteiro Como se definiu k = me, tem-se, a partir desta condição k L = me L = np A energia mínima é > 0 15

16 1º partícula numa caixa, verificação da solução (cont.) k L = me L = np (em função da energia) E h 8 m L n n (idêntico ao resultado obtido anteriormente) 16

17 1º partícula numa caixa, verificação da solução (cont.) x A senk x k L = me L = np Y x æ ( ) = A sen ç np x è L ö ø Para determinar A vai ser necessário usar a condição de normalização: dx 1 17

18 1º partícula numa caixa, verificação da solução (cont.) A probabilidade da partícula estar na caixa (ou seja, em 0 < x < L) tem de ser igual a 1: L 0 dx1 x n x A sen L L L n x dx A sen dx 1 L 0 0 Dado que sen ax x sen ax dx 4a L A sen æ np xö ò ç dx = A L è L ø = 1 A = 0 L 18

19 1º partícula numa caixa, verificação da solução (cont.) x n x sen L L (finalmente ) 19

20 Uma partícula é descrita pela função de onda = a x entre x = 0 e x = 1 e por = 0 fora desta região. O seu movimento está limitado ao eixo x. Determine a probabilidade da partícula ser encontrada entre x = 0,45 e x = 0,55. A função de onda pode ser representada por: 0 0,45 0,55 1 x A probabilidade vai ser dada por: x1 0, ,55 x P dx a x dx a 0,05 a 3 x 0,45 0,45 0

21 º partícula num poço de potencial finito Consideremos uma partícula cuja energia potencial é nula na região 0 < x < L (poço) e igual a U (valor finito) fora dessa região. Para determinar as características desta partícula é necessário resolver a equação de Schrödinger: d Y ( x) dx = - m ( E-U )Y No caso da partícula numa caixa de lados infinitos, a função de onda era nula nas paredes. Mas, neste caso, como as paredes representam um potencial finito, a função de onda já não vai ser nula. 1

22 º partícula num poço de potencial finito (cont.) Regiões I e III U E d C dx em que C = m(u-e)/ h é uma constante positiva Soluções desta equação: matemática física

23 º partícula num poço de potencial finito (cont.) Matemática A solução geral desta equação é do tipo = A e Cx + B e -Cx que A e B são constantes., em Física Na região I ( x < 0 ), B e -Cx aumenta exponencialmente com x < 0; esta situação não tem significado físico B = 0. Na região III ( x > L ), A e Cx aumenta exponencialmente com x > L; esta situação não tem significado físico A = 0. Portanto, as soluções nas regiões I e III são: Ι ΙIΙ Ae Be Cx -C x 3

24 º partícula num poço de potencial finito (cont.) Região II U < E d dx D em que D é uma constante negativa A solução geral desta equação é do tipo I I = F sen (kx) + G cos (kx), em que F e G são constantes. As funções de onda na região II são sinusoidais. 4

25 º partícula num poço de potencial finito (cont.) Fora da caixa: funções de onda exponenciais I = A e Cx, III = B e -Cx No interior: funções de onda sinusoidais II = F sen (kx) + G cos (kx) Funções de onda Densidades de probabilidade 5

26 º partícula num poço de potencial finito (cont.) As constantes A, B, F e G podem ser determinadas a partir das condições nas fronteiras : continuidade das funções de onda nas fronteiras As funções de onda têm que ser iguais (e as suas derivadas também) nas zonas de transição. x 0 : e Ι ΙI d d x Ι d d x ΙI x L : ΙI ΙII e d d x ΙI d d x ΙII 6

27 3º oscilador harmónico simples Considere uma partícula sujeita a uma força de restituição linear dada por F = - k x. x é o deslocamento relativamente à posição de equilíbrio (x = 0) e k é uma constante. Quando a partícula é deslocada da sua posição de equilíbrio e libertada, começa a oscilar em torno de x = 0 com um movimento harmónico (movimento semelhante ao dos átomos numa rede cristalina). 7

28 3º oscilador harmónico simples (cont.) Classicamente, a energia potencial U do sistema é igual a 1 1 U k x m x com a frequência angular de vibração dada por k m A energia total E do sistema é a soma das energias cinética e potencial: 1 E total E cinética U k A em que A é a amplitude do movimento. 8

29 3º oscilador harmónico simples (cont.) Classicamente, todos os valores de energia E são permitidos Quanticamente, é necessário resolver a eq. de Schrödinger com U = ½ x m para determinar os níveis de energia permitidos : d Y ( x) dx = - m ( E-U )Y d Y ( x) dx = - m æ 1 E- mw x ö ç Y è ø 9

30 3º oscilador harmónico simples (cont.) Uma das soluções da eq. de Schrödinger para este caso é do tipo = B e C x C = mw E 0 = w Esta solução particular corresponde ao estado de menor energia do sistema (estado fundamental - ground state ). Os estados de maior energia (excitados) podem ser obtidos a partir do estado fundamental: æ E n = n + 1 ö ç w è ø com n = 1,, 30

31 3º oscilador harmónico simples (cont.) A diferença de energia entre estados consecutivos é igual a E n - E n-1 = w =h n Se a partícula estiver num certo estado e passar para o estado de energia imediatamente abaixo, vai perder um quantum de energia exactamente a quantidade de energia de um fotão. Diagrama de níveis de energia. Os níveis estão igualmente espaçados (com separação ) e o estado fundamental tem energia E 0 = / 31

32 3º oscilador harmónico simples (cont.) Curvas a vermelho Densidades de probabilidade para os estados com n = 0, 1 e. Curvas a azul Probabilidades clássicas correspondentes às mesmas energias. Do ponto de vista quântico, em certas regiões sobre o eixo x, a probabilidade de encontrar a partícula é nula. Classicamente, a partícula está mais tempo nas amplitudes extremas (maior probabilidade). 3

33 Energia 4º barreira de potencial Se uma partícula estiver num poço de potencial com paredes finitas, as suas funções de onda penetram as paredes. Consideremos agora o caso de uma partícula que incide numa barreira de potencial suficientemente fina. A resolução da equação de Schrödinger permite obter as funções de onda desta partícula. 33

34 Energia 4º barreira de potencial (cont.) A resolução da eq. de Schrödinger aplicada às regiões I, II e III, com as condições fronteira para cada região (as funções de onda têm de ser contínuas nas separações), conduz às seguintes soluções: Regiões I e III ( E > U = 0 ) Funções de onda sinusoidais. Região II ( E < U ) Funções de onda exponenciais (decrescentes). Como a probabilidade de encontrar a partícula numa dada região é proporcional a, então existe uma probabilidade finita, não nula, de encontrar a partícula na região III. 34

35 Energia 4º barreira de potencial (cont.) Isto significa que a partícula tem uma probabilidade finita de penetrar a barreira, ainda que a energia da barreira seja superior à da própria partícula. Qual será a energia da partícula após ter penetrado a barreira? - O quadrado da função de onda indica a probabilidade da partícula atravessar a barreira, não a sua energia. - O comprimento de onda da função de onda é que indica o momento e, portanto, a energia da partícula. 35

36 4º barreira de potencial, probabilidade de transmissão Nas condições deste problema, a energia é a mesma antes e depois de atravessar a barreira. A probabilidade da partícula passar através da parede pode ser calculada a partir da função de onda que, por sua vez, vai ser calculada através da equação de Schrödinger. Essa probabilidade pode ser descrita em termos de um coeficiente de transmissão (T ) e de um coeficiente de reflexão (R ): O coeficiente de transmissão mede a probabilidade da partícula penetrar a barreira. para a região II 36

37 4º barreira de potencial, probabilidade de transmissão (cont.) O coeficiente de reflexão é igual à probabilidade da partícula ser reflectida pela barreira. Dado que a partícula só pode ser transmitida ou reflectida T R 1 Uma solução (aproximada) da equação de Schrödinger (quando a barreira for suficientemente alta ou larga) é dada por: T = e -a L a = m U - E, com e ( ) k1- k R k k 1 37

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

4 e 6/Maio/2016 Aulas 17 e 18

4 e 6/Maio/2016 Aulas 17 e 18 9/Abril/016 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

O degrau de potencial. Caso II: energia maior que o degrau

O degrau de potencial. Caso II: energia maior que o degrau O degrau de potencial. Caso II: energia maior que o degrau U L 9 Meta da aula plicar o formalismo quântico ao caso de uma partícula quântica que incide sobre o degrau de potencial, definido na ula 8. Vamos

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. Exercícios A U L A 10 Meta da aula Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. objetivo aplicar os conhecimentos adquiridos nas Aulas 4 a 9 por meio da

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

objetivos A partícula livre Meta da aula Pré-requisitos

objetivos A partícula livre Meta da aula Pré-requisitos A partícula livre A U L A 7 Meta da aula Estudar o movimento de uma partícula quântica livre, ou seja, aquela que não sofre a ação de nenhuma força. objetivos resolver a equação de Schrödinger para a partícula

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

22/Abr/2015 Aula 15. 17/Abr/2015 Aula 14

22/Abr/2015 Aula 15. 17/Abr/2015 Aula 14 17/Abr/2015 Aula 14 Introdução à Física Quântica Radiação do corpo negro; níveis discretos de energia. Efeito foto-eléctrico: - descrições clássica e quântica - experimental. Efeito de Compton. 22/Abr/2015

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Figura 2.1: Carro-mola

Figura 2.1: Carro-mola Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro

Leia mais

4 Aplicações I. 4.6 Exercícios. partícula numa caixa. 4.6.1 A probabilidade de transição de uma 2 L 4-1

4 Aplicações I. 4.6 Exercícios. partícula numa caixa. 4.6.1 A probabilidade de transição de uma 2 L 4-1 4-1 4 Aplicações I 4.6 Exercícios 4.6.1 A probabilidade de transição de uma partícula numa caixa A seguir iremos calcular a probabilidade de transição para uma partícula de massa m e de carga e numa caixa

Leia mais

Ondas Sonoras. Velocidade do som

Ondas Sonoras. Velocidade do som Ondas Sonoras Velocidade do som Ondas sonoras são o exemplo mais comum de ondas longitudinais. Tais ondas se propagam em qualquer meio material e sua velocidade depende das características do meio. Se

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar 3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento

Leia mais

Faculdades Anhanguera

Faculdades Anhanguera 2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

FÍSICA. Professor Felippe Maciel Grupo ALUB

FÍSICA. Professor Felippe Maciel Grupo ALUB Revisão para o PSC (UFAM) 2ª Etapa Nas questões em que for necessário, adote a conversão: 1 cal = 4,2 J Questão 1 Noções de Ondulatória. (PSC 2011) Ondas ultra-sônicas são usadas para vários propósitos

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

5/Dez/2012 Aula 21. 21. Polarização das ondas EM 21.1 Por absorção 21.2 Por reflexão 21.3 Por birrefringência 21.4 Equações de Fresnell

5/Dez/2012 Aula 21. 21. Polarização das ondas EM 21.1 Por absorção 21.2 Por reflexão 21.3 Por birrefringência 21.4 Equações de Fresnell 5/Dez/2012 Aula 21 21. Polarização das ondas EM 21.1 Por absorção 21.2 Por reflexão 21.3 Por birrefringência 21.4 Equações de Fresnell 7/Dez/2012 Aula 22 22. Óptica geométrica 22.1 Espelhos planos 22.2

Leia mais

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

O caso estacionário em uma dimensão

O caso estacionário em uma dimensão O caso estacionário em uma dimensão A U L A 6 Meta da aula Aplicar o formalismo quântico no caso de o potencial ser independente do tempo. objetivos verificar que, no caso de o potencial ser independente

Leia mais

1. Difusão. A difusão só ocorre quando houver gradiente de: Concentração; Potencial; Pressão.

1. Difusão. A difusão só ocorre quando houver gradiente de: Concentração; Potencial; Pressão. 1. Difusão Com frequência, materiais de todos os tipos são tratados termicamente para melhorar as suas propriedades. Os fenômenos que ocorrem durante um tratamento térmico envolvem quase sempre difusão

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas.

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas. UniposRio - FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 9 de novembro de 00 Nome (legível): Assinatura: Leia atentamente as oito (8) questões e responda nas folhas de

Leia mais

PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete

PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete Equação diferencial parcial (EDP) é a uma equação que envolve duas ou mais variáveis independentes ( x, y,z,t, K ) e derivadas parciais

Leia mais

Antenas e Propagação. Artur Andrade Moura. amoura@fe.up.pt

Antenas e Propagação. Artur Andrade Moura. amoura@fe.up.pt 1 Antenas e Propagação Artur Andrade Moura amoura@fe.up.pt 2 Parâmetros fundamentais das antenas Permitem caracterizar o desempenho, sobre vários aspectos, das antenas Apresentam-se definições e utilização

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

Circuitos de 2 ª ordem: RLC. Parte 1

Circuitos de 2 ª ordem: RLC. Parte 1 Circuitos de 2 ª ordem: RLC Parte 1 Resposta natural de um circuito RLC paralelo Veja circuito RLC paralelo abaixo: A tensão é a mesma e aplicando a soma de correntes que saem do nó superior temos: v R

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar? Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Alfred Landé (13 de dezembro de 1888, Elberfeld, Alemanha 30 de outubro de 1976, Columbia, EUA ). -> foi um físico alemão/norte americano.

Alfred Landé (13 de dezembro de 1888, Elberfeld, Alemanha 30 de outubro de 1976, Columbia, EUA ). -> foi um físico alemão/norte americano. Alfred Landé (13 de dezembro de 1888, Elberfeld, Alemanha 30 de outubro de 1976, Columbia, EUA ). -> foi um físico alemão/norte americano. -> mais conhecido por suas contribuições para a teoria quântica.

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Primeira Edição junho de 2005 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados

Leia mais

Datas Importantes 2013/01

Datas Importantes 2013/01 INSTRUMENTAÇÃO CARACTERÍSTICAS DE UM SISTEMA DE MEDIÇÃO PROBABILIDADE PROPAGAÇÃO DE INCERTEZA MÍNIMOS QUADRADOS Instrumentação - Profs. Isaac Silva - Filipi Vianna - Felipe Dalla Vecchia 2013 Datas Importantes

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

CADA QUESTÃO DEVE SER RESOLVIDA NA SUA PRÓPRIA FOLHA

CADA QUESTÃO DEVE SER RESOLVIDA NA SUA PRÓPRIA FOLHA Nome: CADA QUESTÃO DEVE SER RESOLVIDA NA SUA PRÓPRIA FOLHA Universidade do Estado do Rio de Janeiro Mecânica Clássica Um fio tem a sua forma descrita por y = x 3. O fio esta orientado verticalmente com

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL

NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 1 INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL Edição de junho de 2014 2 CAPÍTULO 1 TEORIA DA RELATIVIDADE ESPECIAL ÍNDICE 1.1-

Leia mais

AS QUATRO FORÇAS FUNDAMENTAIS DA NATUREZA

AS QUATRO FORÇAS FUNDAMENTAIS DA NATUREZA AS QUATRO FORÇAS FUNDAMENTAIS DA NATUREZA Adaptado dum artigo na revista inglesa "Astronomy Now" por Iain Nicolson As interacções entre partículas subatómicas e o comportamento em larga escala de matéria

Leia mais

MATEMÁTICA UFRGS 2011

MATEMÁTICA UFRGS 2011 MATEMÁTICA UFRGS 2011 01. Uma torneira com vazamento pinga, de maneira constante, 25 gotas de água por minuto. Se cada gota contém 0,2 ml de água, então, em 24 horas o vazamento será de a) 0,072 L. b)

Leia mais

Princípios da Mecânica Quântica

Princípios da Mecânica Quântica Princípios da Mecânica Quântica Conceitos básicos de Mecânica Quântica Em 1900 Max Planck introduziu o conceito de quantum de energia. Neste conceito a energia só poderia ser transferida em unidades discretas

Leia mais

fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms

fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms O uso da Calculadora Científica (Casio fx) fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms Prof. Ms. Renato Francisco Merli 2013 1 Sumário 1. Antes de Começar... 2 2. Cálculos Básicos... 8 3. Cálculos

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electricidade e magnetismo Circuitos eléctricos 3ª Parte Prof. Luís Perna 2010/11 Corrente eléctrica Qual a condição para que haja corrente eléctrica entre dois condutores A e B? Que tipo de corrente eléctrica

Leia mais

6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear

6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear 6 Ações Mecânicas Principais sobre Edificações de uma Usina Nuclear 6.1 Forças sobre estruturas civis sensíveis Na avaliação da força sobre a estrutura é utilizada a relação força/velocidade descrita pela

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br

Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br Professor Mário Henrique Farias Santos dee2mhfs@joinville.udesc.br Conceitos preliminares Introdução às máquinas CA e CC Força Magnetomotriz (FMM) de enrolamentos concentrados e de enrolamentos distribuídos

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

Aula 8 Fótons e ondas de matéria II. Física Geral F-428

Aula 8 Fótons e ondas de matéria II. Física Geral F-428 Aula 8 Fótons e ondas de matéria II Física Geral F-428 1 Resumo da aula anterior: Planck e o espectro da radiação de um corpo negro: introdução do conceito de estados quantizados de energia para os osciladores

Leia mais

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal Guia de aulas: Equações diferenciais Prof. Carlos Vidigal Profª. Érika Vidigal 1º Semestre de 013 Índice 1.Introdução... 3. Equações Diferenciais de 1ª Ordem... 7.1. Equações Diferenciais Separáveis...

Leia mais

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente

Leia mais

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF NOME: TURMA: DATA: / / OBJETIVOS: Ler o valor nominal de cada resistor através do código de cores. Conhecer os tipos de

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Prof. Marcos Antonio

Prof. Marcos Antonio Prof. Marcos Antonio 1- DEFINIÇÃO É o ramo da eletricidade que estuda as cargas elétricas em movimento bem como seus efeitos. 2- CORRENTE ELÉTRICA E SEUS EFEITOS É o movimento ordenado de partículas portadoras

Leia mais

Introdução às equações diferenciais

Introdução às equações diferenciais Introdução às equações diferenciais Professor Leonardo Crochik Notas de aula 1 O que é 1. é uma equação:... =... 2. a incógnita não é um número x R, mas uma função x(t) : R R 3. na equação estão presentes,

Leia mais

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica O Princípio da Complementaridade e o papel do observador na Mecânica Quântica A U L A 3 Metas da aula Descrever a experiência de interferência por uma fenda dupla com elétrons, na qual a trajetória destes

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar o comportamento

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

RAIOS E FRENTES DE ONDA

RAIOS E FRENTES DE ONDA RAIOS E FRENTES DE ONDA 17. 1, ONDAS SONORAS ONDAS SONORAS SÃO ONDAS DE PRESSÃO 1 ONDAS SONORAS s Onda sonora harmônica progressiva Deslocamento das partículas do ar: s (x,t) s( x, t) = s cos( kx ωt) m

Leia mais

FÍSICA PRIMEIRA ETAPA - 1998

FÍSICA PRIMEIRA ETAPA - 1998 FÍSICA PRIMEIRA ETAPA - 1998 QUESTÃO 01 Este gráfico, velocidade versus tempo, representa o movimento de um automóvel ao longo de uma estrada reta A distância percorrida pelo automóvel nos primeiros 1

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

17-11-2011. Marília Peres Adaptado de (Corrêa 2007)

17-11-2011. Marília Peres Adaptado de (Corrêa 2007) FQA 10º Ano Unidade 1 Química Espectro de Absorção Fonte: http://www.brasilescola.com/quimica/espectroseletromagneticos-estrutura-atomo.htm Adaptado de (Corrêa 2007) 1 Carlos Corrêa Fernando Basto Noémia

Leia mais

Objectivos. Classificação dos Sons. Agradáveis Úteis Incómodos / Ruído

Objectivos. Classificação dos Sons. Agradáveis Úteis Incómodos / Ruído Ruído Objectivos Classificação dos Sons Agradáveis Úteis Incómodos / Ruído O som como uma Onda O som propaga-se com um movimento ondulatório, no qual as cristas das ondas são substituídas por compressões

Leia mais

(D) A propriedade que permite reconhecer dois sons correspondentes à mesma nota musical, emitidos por fontes sonoras diferentes, é a frequência.

(D) A propriedade que permite reconhecer dois sons correspondentes à mesma nota musical, emitidos por fontes sonoras diferentes, é a frequência. Escola Físico-Química 8. Ano Data Nome N.º Turma Professor Classificação 1. O som é produzido pela vibração de uma fonte sonora. Essa vibração, ao propagar-se num meio material, como, por exemplo, o ar,

Leia mais

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,

Leia mais

Freqüência dos sons audíveis: entre 20Hz (infra-sônica) e 20.000Hz (ultra-sônica, audíveis para muitos animais).

Freqüência dos sons audíveis: entre 20Hz (infra-sônica) e 20.000Hz (ultra-sônica, audíveis para muitos animais). Ondas Sonoras: - São ondas longitudinais de pressão, que se propagam no ar ou em outros meios. - Têm origem mecânica, pois são produzidas por deformação em um meio elástico. - As ondas sonoras não se propagam

Leia mais

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica. Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo

Leia mais

(Exames Nacionais 2002)

(Exames Nacionais 2002) (Exames Nacionais 2002) 105. Na figura estão representadas, num referencial o.n. xoy: parte do gráfico de uma função f, de domínio R +, definida por f(x)=1+2lnx; a recta r, tangente ao gráfico de f no

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21 Aula 1 Ondas sonoras harmônicas Na aula passada deduzimos a equação de onda para ondas sonoras propagando-se em uma dimensão. Vimos que ela pode ser escrita em termos de três variáveis medidas em relação

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Electromagnetismo e Óptica Laboratório 3 - Óptica geométrica e ondulatória 1. OBJECTIVOS Obter o valor do índice de refracção de um vidro. Medir o ângulo limite de reflexão total. Montar um sistema óptico

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS

CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS A DEPENDÊNCIA DA VELOCIDADE DE REAÇÃO COM A TEMPERATURA A velocidade da maioria das reações químicas aumenta à medida que a temperatura também aumenta.

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais