(Exames Nacionais 2002)
|
|
|
- Daniela Leveck Lameira
- 10 Há anos
- Visualizações:
Transcrição
1 (Exames Nacionais 2002) 105. Na figura estão representadas, num referencial o.n. xoy: parte do gráfico de uma função f, de domínio R +, definida por f(x)=1+2lnx; a recta r, tangente ao gráfico de f no ponto de abcissa 1. Qual é o declive da recta r? (A) 1 (B) 2 (C) 3 (D) Seja h uma função contínua, de domínio R. Qual dos seguintes conjuntos não pode ser o contradomínio de h? (A) R (B) R\{0} (C) R - (D) ]0,1[ 107. Na figura junta está representada parte do gráfico de uma função f, de domínio R. Numa das alternativas seguintes estão os quadros de sinais de f e de f. Em qual delas? 108. O gráfico da função f, de domínio R, definida por f(x)=0,1+0,2e 0,3x, tem uma única assimptota. Qual das condições seguintes é uma equação dessa assimptota? (A) y=0 (B) y=0,1 (C) y=0,2 (D) y=0,3 Cálculo Diferencial - Exercícios saídos em exames (12º ano) - pág. 13
2 109. Doses terapêuticas iguais de um certo antibiótico são administradas, pela primeira vez, a duas pessoas: a Ana e o Carlos. Admita que, durante as doze primeiras horas após a tomada simultânea do medicamento pela Ana e pelo Carlos, as concentrações de antibiótico, medidas em miligramas por litro de sangue, são dadas, respectivamente, por A(t)=4t 3 e -t e C(t)=2t 3 e -0,7t. A variável t designa o tempo, medido em horas, que decorre desde o instante em que o medicamento é tomado (t [O, 12 ]). a) Recorrendo a métodos analíticos e utilizando a calculadora para efectuar cálculos numéricos, resolva as duas alíneas seguintes. a 1 ) Determine o valor da concentração deste antibiótico no sangue da Ana, quinze minutos depois de ela o ter tomado. Apresente o resultado, em miligramas por litro de sangue, arredondado às centésimas. a 2 ) No instante em que as duas pessoas tomam o medicamento, as concentrações são iguais (por serem nulas). Determine quanto tempo depois as concentrações voltam a ser iguais. Apresente o resultado em horas e minutos (minutos arredondados às unidades). b) Considere as seguintes questões: 1. Quando a concentração ultrapassa 7,5 miligramas por litro de sangue, o medicamento pode ter efeitos secundários indesejáveis. Esta situação ocorrerá, neste caso, com alguma destas duas pessoas? Caso afirmativo, com quem? E em quantos miligramas por litro o referido limiar será ultrapassado? 2. Depois de atingir o nível máximo, a concentração começa a diminuir. Quando fica inferior a 1 miligrama por litro de sangue, é necessário tomar nova dose do medicamento. Quem deve torná-la em primeiro lugar, a Ana ou o Carlos? E quanto tempo antes do outro? Utilize as capacidades gráficas da sua calculadora para investigar estas duas questões. Numa pequena composição, com cerca de dez linhas, explicite as conclusões a que chegou, justificando-as devidamente. Apresente, na sua resposta, os elementos recolhidos na utilização da calculadora: gráficos e coordenadas de alguns pontos (coordenadas arredondadas às décimas) 110. De uma função f, de domínio R, sabe-se que: f(5)=0; f é uma função par. Seja g a função, de domínio R, definida por g(x)=f(x+3). Qual dos seguintes pode ser o conjunto dos zeros de g? (A) {0,3} (B) {3,5} (C) {-8,2} (D) {2,8} 111. De uma função h, de domínio R, sabe-se que a recta de equação y=2 é assimptota do seu gráfico. Qual é o valor de hx lim ( ) x e x? (A) + (B) - (C) 0 (D) Na figura está representado, em referencial o.n. Oxyz, um cilindro de revolução. Tem se que: a altura do cilindro é 3; uma das bases está contida no plano xoy, sendo o seu centro o ponto (0,1,0) e o seu raio igual a 1. Seja b ]0,2[ e seja f a função que, a cada valor de b, faz corresponder o perímetro da secção produzida no cilindro pelo plano de equação y=b. Qual é o máximo da função f? (A) 9 (B) 10 (C) 11 (D) O nível N de um som, medido em decibéis, é função da sua intensidade I, medida em watt por metro quadrado, de acordo com a igualdade N=10 log 10 (10 12 I) para I>0. Utilizando métodos exclusivamente analíticos, resolva as 2 alíneas seguintes. a) Verifique que N=120+10log 10 I b) Admita que o nível de ruído de um avião a jacto, ouvido por uma pessoa que se encontra na varanda de um aeroporto, é de 140 decibéis. Determine a intensidade desse som, em watt por metro quadrado Seja f uma função contínua, de domínio [0,5] e contradomínio [3,4]. Seja g a função, de domínio [0,5], definida por g(x)=f(x)-x. Prove que a função g tem, pelo menos, um zero Na figura estão parcialmente representados os gráficos de 2 funções polinomiais, r e s. Qual dos seguintes conjuntos pode ser o domínio da função r/s? (A) R (C) R\{-1,1} (B) R\{0} (D) R\{-1,0,1} 116. Seja f uma função de domínio R. Na figura está representada parte do gráfico de f, 2ª derivada da função f. Relativamente ao gráfico da função f, qual das afirmações seguintes é verdadeira? (A) O ponto de abcissa a é um ponto de inflexão. (B) O ponto de abcissa c é um ponto de inflexão. (C) A concavidade está voltada para baixo no intervalo [0,b] (D) A concavidade está sempre voltada para cima 117. Considere, num referencial o.n. Oxyz, uma pirâmide quadrangular regular, de altura 1, cuja base está contida no plano xoy. Cálculo Diferencial - Exercícios saídos em exames (12º ano) - pág. 14
3 Para cada c [0,1], seja V(c) o volume da parte da pirâmide constituída pelos pontos cuja cota é superior ou igual a c. Qual dos gráficos seguintes pode ser o da função V? 118. Uma nova empresa de refrigerantes pretende lançar no mercado embalagens de sumo de fruta, com capacidade de 2 litros. Por questões de marketing, as embalagens deverão ter a forma de um prisma quadrangular regular. a) Mostre que a área total da embalagem é dada por Ax ( ) = 3 2x + 8 (x é o comprimento da aresta da base, em dm) Nota: recorde que 1 litro=1 dm 3 b) Utilizando métodos exclusivamente analíticos, mostre que existe um valor x para o qual a área total da embalagem é mínima e determine-o Seja f uma função de domínio R, com derivada finita em todos os pontos do domínio, e crescente. Sejam a e b 2 quaisquer nºs reais. Considere as rectas r e s, tangentes ao gráfico de f nos pontos de abcissas a e b, respectivamente. Prove que as rectas r e s não podem ser perpendiculares. x (Exames Nacionais 2003) 120. Seja f uma função de domínio R. Sabe-se que a primeira e a segunda derivadas de f são negativas em R. Em qual das figuras seguintes pode estar representada parte do gráfico da função f? 121. Considere uma função g, de domínio [0,+ [, contínua em todo o seu domínio. Sabe-se que: O gráfico de g tem uma única assimptota; Em qual das alternativas seguintes podem estar representadas, em referencial o. n. xoy, parte do gráfico da função g e, a tracejado, a sua assimptota? Cálculo Diferencial - Exercícios saídos em exames (12º ano) - pág. 15
4 122. Na figura está representada parte do gráfico de uma função h, de domínio [0,5[ ]5,+ [. As rectas de equações x=5 e y=3 são as únicas assimptotas do gráfico de h Prove que, para qualquer função quadrática g, existe um e um só ponto do gráfico onde a recta tangente é paralela à bissectriz dos quadrantes ímpares. Indique o valor de (A) 0 (B) 1 (C) 5 (D) Indique o valor de (A) 0 (B) 1 (C) - (D) Na figura está representado um cubo, em referencial o. n. xoy. Três das arestas do cubo estão contidas nos eixos do referencial. Os pontos P e Q são dois dos vértices do cubo, pertencentes ao plano yoz. Admita que um ponto R, partindo da origem do referencial, se desloca ao longo do semieixo positivo Ox. Seja g a função que faz corresponder, à abcissa x do ponto R, a área da secção produzida no cubo pelo plano PQR. Qual dos seguintes pode ser o gráfico da função g? 127. Em qual das figuras seguintes pode estar representada parte do gráfico de uma função par, de domínio R e contradomínio ]-,0]? 124. Num laboratório, foi colocado um purificador de ar. Num determinado dia, o purificador foi ligado às zero horas e desligado algum tempo depois. Ao longo desse dia, o nível de poluição do ar diminuiu, enquanto o purificador esteve ligado. Uma vez o purificador desligado, o nível de poluição do ar começou de imediato a aumentar. Admita que o nível de poluição do ar no laboratório, medido em mg/l de ar, às t horas desse dia, pode ser dado por 128. Na figura está representado, em referencial o.n. xoy, um arco de circunferência AB, de centro na origem do referencial. O ponto Q move-se ao longo desse arco. Os pontos P e R, situados sobre os eixos Ox e Oy, respectivamente, acompanham o movimento do ponto Q, de tal forma que o segmento de recta [PQ] é sempre paralelo ao eixo Oy e o segmento de recta [QR] é sempre paralelo ao eixo Ox. Para cada posição do ponto Q, seja x a amplitude do ângulo AOQ e seja h(x) a área da região sombreada. Qual dos gráficos seguintes pode ser o da função h?, t [0,24] Nas duas alíneas seguintes, sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais. a) Qual é o nível de poluição à uma hora e trinta minutos da tarde? Apresente o resultado na unidade considerada, arredondado às décimas. b) Sem recorrer à calculadora, a não ser para efectuar eventuais cálculos numéricos, resolva o seguinte problema: Quanto tempo esteve o purificador de ar ligado? Apresente o resultado em horas e minutos (minutos arredondados às unidades). Cálculo Diferencial - Exercícios saídos em exames (12º ano) - pág. 16
5 129. Na figura junta está representada parte do gráfico de uma função f de domínio R, contínua em todo o seu domínio. A bissectriz dos quadrantes pares e a bissectriz dos quadrantes ímpares são assimptotas do gráfico de f. Indique em qual das figuras seguintes pode estar representada parte do gráfico da função g definida por g(x)=f(x)/x Internet: roliveira.pt.to ou sm.page.vu 130. Uma rampa de desportos radicais foi construída entre duas paredes, A e B, distanciadas de 10 metros, como se mostra na figura. Considere a função definida por Admita que h(x) é a altura, em metros, do ponto da rampa situado x metros à direita da parede A. a) Determine a altura da parede A. Apresente o resultado em metros, arredondado às décimas. Nota: se, nos cálculos intermédios, proceder a b) Sem recorrer à calculadora, estude a função h quanto à monotonia e conclua daí que, tal como a figura sugere, é num ponto equidistante das duas paredes que a altura da rampa é mínima. c) Mostre, analiticamente, que h(5-x)=h(5+x). Interprete esta igualdade no contexto da situação descrita De uma função f, de domínio R, sabe-se que a sua derivada é dada por Seja A o único ponto de inflexão do gráfico de f. Recorrendo às capacidades gráficas da sua calculadora, determine a abcissa do ponto A, arredondada às décimas. Explique como procedeu. Inclua, na sua explicação, o(s) gráfico(s) que obteve na calculadora De uma função f, de domínio [-4,5] e contínua em todo o seu domínio, sabe-se que: f(-4)=6; f(2)=-1; f(5)=1; f é estritamente decrescente no intervalo [-4,2]; f é estritamente crescente no intervalo [2,5]. Quantas soluções tem a equação f(x)=0? (A) 0 (B) 1 (C) 2 (D) Seja g uma função, de domínio A, definida por g(x)=ln(1-x 2 ). Qual dos seguintes poderá ser o conjunto A? (A) ]-e+1,e-1[ (B) ]-1,1[ (C) ]0,+ [ (D) ]-,1[ 134. Seja f uma função de domínio R, e seja g a função definida por g(x)=f(x+1). A recta de equação y=2x+4 é a única assimptota do gráfico de f. Qual das seguintes é uma equação da única assimptota do gráfico de g? (A) y=2x+6 (B) y=2x+4 (C) y=2x-4 (D) y=2x Admita que, ao longo dos séculos XIX e XX e dos primeiros anos do século XXI, a população de Portugal Continental, em milhões de habitantes, é dada, 6,8 aproximadamente, por pt () = 3,5+ 0,036t ,8e (considere que t é medido em anos e que o instante t=0 corresponde ao início do ano 1864). a) De acordo com este modelo, qual será a população de Portugal Continental no final do presente ano (2003)? Apresente o resultado em milhões de habitantes, arredondado às décimas. arredondamentos, conserve, no mínimo, 3 casas decimais. b) Sem recorrer à calculadora (a não ser para efectuar eventuais cálculos numéricos), resolva o seguinte problema: De acordo com este modelo, em que ano a população de Portugal Continental foi de 3,7 milhões de habitantes? arredondamentos, conserve, no mínimo, 3 casas decimais. Cálculo Diferencial - Exercícios saídos em exames (12º ano) - pág. 17
(Testes intermédios e exames 2005/2006)
158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico
FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:
FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE
PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS
PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE ANOS Duração: 60 minutos Nome: 1ª Parte Para cada uma das seguintes questões de escolha múltipla, seleccione a resposta correcta com um círculo de entre
(Exames Nacionais 2000)
(Eames Nacionais 000) 1.a) Seja [ABC] um triângulo O ângulo, assinalado na figura, tem o seu vértice no centro isósceles em que BA = BC. Seja α da Terra; o seu lado origem passa no perigeu, o seu lado
Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.
Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica
Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 06.05.2011 10.º no de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,
(Testes intermédios e exames 2010/2011)
(Testes intermédios e eames 00/0) 57. Na Figura, está parte da representação gráfica da função f, de domínio +, definida por f() = log 9 () Em qual das opções seguintes está definida uma função g, de domínio,
2ª fase. 19 de Julho de 2010
Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas
Matemática A. Fevereiro de 2010
Matemática A Fevereiro de 2010 Matemática A Itens 10.º Ano de Escolaridade No Teste intermédio, que se irá realizar no dia 5 de Maio de 2010, os itens de grau de dificuldade mais elevado poderão ser adaptações
NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007
EXAME DO ENSINO SECUNDÁRIO DE RESUMOS.TK Prova Escrita de Matemática A 10.ºAno de Escolaridade Prova MAT10 14 páginas Duração da Prova: 120 minutos. Tolerância: 30 minutos. Autor: Francisco Cubal, como
Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 24.01.2008. 11.º Ano de Escolaridade
Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 24.01.2008 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,
Escola Básica de Santa Catarina
Escola Básica de Santa Catarina Matemática Assunto Sólidos geométricos. Áreas e Volumes. 9º ano Nome: Nº. Turma: data / / GRUPO I 1. 2. 3. 4. 1 5. 6. 7. 8. 9. 10. GRUPO II 2 GRUPO II (Exame Nacional de
Teste Intermédio de Matemática A Matemática A Versão 2 10.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 06.05.2009 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
Prova Escrita de Matemática A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática A 12.º Ano de Escolaridade Prova 635/2.ª Fase 11 Páginas Duração da Prova: 150 minutos. Tolerância:
Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios
Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5
Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................
Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 6.05.2010. 11.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 6.05.2010 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
Prova Escrita de MATEMÁTICA
Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/11 Págs. Duração da prova: 150
Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros
Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 2º ciclo PCA - 6º ano Planificação Anual 2013-2014 MATEMÁTICA METAS CURRICULARES
EXAME NACIONAL DO ENSINO SECUNDÁRIO
EXAME NACIONAL DO ENSINO SECUNDÁRIO PROVA 735/C/12 Págs. 11.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Curso Científico-Humanístico de Artes Visuais Duração da prova: 150 minutos 2006
I. Cálculo Diferencial em R n
Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento
MATEMÁTICA A VERSÃO 1
gabinete de avaliação educacional T E S T E I N T E R M É D I O 11.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos 10/Maio/2007 MATEMÁTICA A VERSÃO 1 Na sua
VESTIBULAR 2004 - MATEMÁTICA
01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos
Teste Intermédio de Matemática A Matemática A Versão 2 11.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 07.05.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO EXERCÍCIOS DE PROVAS DE EXAME NACIONAIS Matemática 1º ANO 1. Observe o gráfico de uma função F. 1.1 Estude o sinal de F. 1. Considere as funções reais de variável real,
FÍSICA. Exatas/Tarde Física e Matemática Prova A Página 1
FÍSICA 01 - A figura a seguir representa um eletroímã e um pêndulo, cuja massa presa à extremidade é um pequeno imã. Ao fechar a chave C, é correto afirmar que C N S (001) o imã do pêndulo será repelido
Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 30.04.2009 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18
MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18 9. Na maquete de uma casa, a réplica de uma caixa d água de 1000 litros tem 1 mililitro de capacidade. Se a garagem da maquete tem 3 centímetros de
Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.
MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),
12.º Ano de Escolaridade
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos
Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 5.05.2010. 10.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 5.05.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios 1. Para um certo número real k, é contínua em R a função f definida por 2 + e +k se 0 f() = 2 + ln( + 1)
CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.
CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,
Faculdade Sagrada Família
AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer
Exame Nacional de 2008 2. a chamada
1. Qual é o mínimo múltiplo comum entre dois números primos diferentes, a e b? Cotações a * b a + b a b 3 - œ10, - 1 24 2. Qual é o menor número inteiro pertencente ao intervalo? - 4-3 - 2-1 3. Numa aula
MATEMÁTICA PRIMEIRA ETAPA - 1999
MATEMÁTICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Observe a figura. Essa figura representa o intervalo da reta numérica determinado pelos números dados. Todos os intervalos indicados (correspondentes a duas
Prova Escrita de Matemática Aplicada às Ciências Sociais
Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/2.ª Fase 15 Páginas Duração
) a sucessão de termo geral
43. Na figura está desenhada parte da representação R \. gráfica de uma função f, cujo domínio é { } As rectas de equações =, y = 1 e y = 0 são assímptotas do gráfico de f. Seja ( n ) a sucessão de termo
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
Escola Básica e Secundária de Velas
Escola Básica e Secundária de Velas Planificação Anual do 12º Ano Matemática A Ano letivo 2015 /2016 1º Período 2º Período 3º Período Nº DE BLOCOS PREVISTOS 39 32 24 Apresentação 0,5 1º Período 2º Período
Prova Prática de Geometria Descritiva A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Prática de Geometria Descritiva A 11.º/ 12.º anos de Escolaridade Prova 708/2.ª Fase 5 Páginas Duração da Prova: 150 minutos.
Planificação 2015/2016
Planificação 2015/2016 ENSINO SECUNDÁRIO PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA A 11º ANO DE ESCOLARIDADE CONTEÚDOS PROGRAMÁTICOS GEOMETRIA NO PLANO E NO ESPAÇO II 1-Resolução de Problemas Envolvendo
Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5
Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar
Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental
Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:
Resolvendo problemas com logaritmos
A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar
MATEMÁTICA 3. Resposta: 29
MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e
Notas sobre a Fórmula de Taylor e o estudo de extremos
Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo
Introdução ao estudo de equações diferenciais
Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações
Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano Lectivo 09/10
Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano ectivo 09/10 Duração da Actividade: 90 minutos Data: 04/ 12 / 09 Responda com clareza às questões
Colégio de Aplicação. Universidade Federal do Rio de Janeiro. Admissão. 2ª série ensino médio. Matemática
Colégio de Aplicação Universidade Federal do Rio de Janeiro Admissão 2011 2ª série ensino médio Matemática UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO
Curvas em coordenadas polares
1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico
PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES
PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais ordinais Utilizar corretamente os numerais ordinais até centésimo. Contar até um milhão Estender as regras
EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1
EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/12 Págs. Duração da prova: 150
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}
AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980
Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.
= 30maneiras para sentar-se. Como são 20 filas, o número total de maneiras distintas que atende ao enunciado será:
TEÁTIC 1ª QUESTÃO Um avião possui 10 poltronas de passageiros distribuídas em 0 filas. Cada fila tem poltronas do lado esquerdo (denotadas por, B, C) e do lado direito (denotadas por D, E, F), separadas
Exercícios de exames e provas oficiais
Exercícios de exames e provas oficiais 1. Na figura abaixo, está representada, num referencial o.n. xoy, parte do gráfico de uma função polinomial f. Em qual das opções seguintes pode estar representada
24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18
/Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis
MATEMÁTICA UFRGS 2011
MATEMÁTICA UFRGS 2011 01. Uma torneira com vazamento pinga, de maneira constante, 25 gotas de água por minuto. Se cada gota contém 0,2 ml de água, então, em 24 horas o vazamento será de a) 0,072 L. b)
Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios
Problemas sobre Sistemas Não Lineares
Mestrado Integrado em Engenharia Electrotécnica e de Computadores Controlo em Espaço de Estados Problemas sobre Sistemas Não Lineares Organizada por J. Miranda Lemos 0 J. M. Lemos IST P. (Construção do
b) a 0 e 0 d) a 0 e 0
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,
Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I
Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Ano Lectivo 009-10 - 1º Semestre Eame Final de ª Época em 0 de
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE AVALIAÇÃO MATEMÁTICA Duração: 90 minutos Data: 3 maio de 0 8º C Apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres
Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano
Agrupamento de Escolas Eugénio de Castro 1º Ciclo Critérios de Avaliação Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Números e Operações Números naturais Utilizar corretamente os numerais ordinais
(Exames Nacionais 2000)
Internet: roliveira.pt.to ou sm.page.vu 65. Sejam a, b e c 3 números reais tais que log a b=c. Qual é o valor de log a (ab)? (A) 1+c (B) a+c (C) ac (D) a+bc 66. Na figura ao lado está representado o gráfico
Lista de Exercícios 03
Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados
Teste Intermédio de Matemática A Matemática A Versão 1 10.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 28.05.2008 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Nome do aluno N.º
4. Tangentes e normais; orientabilidade
4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se
4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares
38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo
Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015
Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.
29/Abril/2015 Aula 17
4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda
Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na
Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?
1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de
Resolução dos Exercícios sobre Derivadas
Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função
MATEMÁTICA. 3 ΔBHG ΔAFG(L.A.A o ) AG BG e HG = GF 2 3 K. No ΔGBH : GH 2 GH
MATEMÁTICA Prof. Favalessa 1. Em um aparelho experimental, um feixe laser emitido no ponto P reflete internamente três vezes e chega ao ponto Q, percorrendo o trajeto PFGHQ. Na figura abaixo, considere
CPV 82% de aprovação na ESPM
CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy
Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,
GEOMETRIA ESPACIAL - PIRÂMIDES
GEOMETRIA ESPACIAL - PIRÂMIDES Questão 0 - (FAMERP SP) O gráfico indica uma reta r, que intersecta o eixo y no ponto de coordenadas (0, n). De acordo com os dados disponíveis nesse gráfico, n é igual a
Prova Escrita de Matemática Aplicada às Ciências Sociais
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/1.ª Fase 13 Páginas Duração
CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013
CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x
PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 6.º ANO 2015/2016
Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 6.º ANO 2015/2016 Tema 1: Números naturais. Potências de expoente
MATEMÁTICA. y Q. (a,b)
MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m
Exercícios de exames e provas oficiais
Exercícios de exames e provas oficiais. Na figura, está representada, num referencial o.n. xoy, parte do gráfico de uma função f, polinomial do terceiro grau. Tal como a figura sugere, a função f tem um
MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:
PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(
O sinal de menos ( ) colocado antes de um número indica o oposto desse número. Assim: 11 é o oposto de 11.
EXERCÍCIOS DE RECUPERAÇÃO 7º ANO º BIMESTRE MATEMÁTICA PROFº PAULO 1. Dois números de sinais contrários são opostos? Justifique. O sinal de menos ( ) colocado antes de um número indica o oposto desse número.
Mais exercícios de 12.º ano:
Mais exercícios de 1.º ano: www.prof000.pt/users/roliveira0/ano1.htm Escola Secundária de Francisco Franco Matemática A (metas curriculares) 1.º ano Exercícios saídos em testes intermédios e em exames
Lista de exercícios nº 2
F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 2 MOVIMENTO EM UMA DIMENSÃO Exercício 1: A velocidade escalar média é definida como a razão entre a distância total percorrida
MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.
1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto
-ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS
INFRAINFRA -ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS Prof. Djalma Pereira Prof. Eduardo Ratton Profa. Gilza Fernandes Blasi Profa. Márcia de Andrade Pereira Um fator importante para a segurança e eficiência
Unidade III: Movimento Uniformemente Variado (M.U.V.)
Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
