Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade
|
|
|
- Gabriel Luiz Guilherme Klettenberg Filipe
- 9 Há anos
- Visualizações:
Transcrição
1 Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade
2 Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson Fim do Cap. 4
3 Estatística e Probabilidade Neste aula... Início do Cap. 5 Distribuições normais de probabilidade Distribuição normal padrão
4 Estatística e Probabilidade Distribuições Normais Infinitos valores possíveis
5 Distribuição normal A distribuição normal é a distribuição contínua de probabilidades mais importante em estatística. Pode ser usadas para modelar muitos conjuntos de medidas na natureza, na industria e no comércio, na saúde, etc. A distribuição normal é uma distribuição contínua de uma variável aleatória x e seu gráfico é chamado de curva normal. Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem forma de sino e é simétrica em torno da média. A área total sob a curva normal é 1. 1 x
6 Propriedades de uma distribuição normal Ponto de inflexão Ponto de inflexão x À medida que a curva se afasta da média, aproxima-se cada vez mais do eixo x, mas nunca o toca. Os pontos em que a curvatura muda são chamados pontos de inflexão. O gráfico curva-se para baixo entre os pontos de inflexão e, para cima, à esquerda e à direita deles.
7 Propriedades de uma distribuição normal Se x for uma variável aleatória contínua com função densidade de probabilidade pode-se fazer o gráfico de uma curva normal usando a seguinte equação: f ( x μ ) 1 2 2σ ( x) = e σ 2π 2 com parâmetros μ e σ, em que - <μ<, e σ>0. Como e e π são constantes, a curva normal depende de μ (média) e σ (desvio padrão)
8 Médias e desvios padrão Uma distribuição normal pode ter qualquer média e qualquer desvio padrão positivo. Os parâmetros μ e σ determinam o formato da curva Curvas com médias diferentes e o mesmo desvio padrão
9 Médias e desvios padrão Curvas com médias diferentes e desvios padrão diferentes
10 Estatística e Probabilidade Médias e desvios padrão Exemplo: Massas de homens e mulheres adultos mulheres homens 63.6 massa (Kg) Qual das curvas normais tem média maior? 2- Qual das curvas normais tem desvio padrão maior?
11 Interpretando gráficos das distribuições normais Cerca de 68% da área está a um desvio padrão da média. 68% Cerca de 95% da área está a dois desvios padrão. Cerca de 99,7% da área está a três desvios padrão da média.
12 Exemplo: Segundo o manual de instruções, o tempo de montagem de certo produto é normalmente distribuído, com uma média de 4,2 horas e um desvio padrão de 0,3 hora. Determine o intervalo no qual caem 95% dos tempos de montagem. 4,2 horas 0,3 hora 3,3 3,6 3,9 4,2 4,5 4,8 5,1 95% dos dados caem a até dois desvios padrão da média. 4,2 2 (0,3) = 3,6 e 4,2 + 2 (0,3) = 4,8. 95% dos tempos de montagem estarão entre 3,6 e 4,8 horas. x
13 Estatística e Probabilidade
14 Distribuição Normal Padrão A distribuição normal com μ=0 e σ=1 é chamada de distribuição normal padrão. Área = z Escala horizontal: corresponde aos escores z
15 O escore Z O escore padrão, ou escore z, representa o número de desvios padrão que separa uma variável aleatória x da média. Para transformar um valor x em um escore z usamos a seguinte fórmula: valor - média desvio padrão
16 O escore Z Exemplo: As pontuações em um concurso público estão normalmente distribuídas, com média de 152 e desvio padrão de 7. Determine o escore z para um candidato com pontuação de: (a) 161 (b) 148 (c) 152 valor - média desvio padrão
17 Entendendo o escore Z Se cada valor de dados de uma variável aleatória x normalmente distribuida for transformado em um escore z, o resultado será uma curva normal padrão. Podemos utilizar a curva normal padrão e o escore z para obter áreas (e portanto probabilidades) sob qualquer curva normal. Propriedades de uma distribuição normal A área acumulada está próxima de 0 para escores próximos de -3,29 A área acumulada cresce à medida que z cresce A área acumulada para z = 0 é de 0,50 A área acumulada para z = 3,39 é ~1 A área total sob a curva é z
18 Áreas acumuladas: A tabela normal padrão Determine a área acumulada para um escore z de 1,25. Use a tabela padrão. Percorra a coluna z, à esquerda, até z = 1,2; Depois siga na transversal até a coluna de número 0,05. O valor da célula, 0,1056, corresponde à área acumulada. Área acumulada
19 Áreas acumuladas e probabilidade A área acumulada corresponde a probabilidade. 0, z Então, a probabilidade de que z esteja no máximo até 1,25 é de 0,1056. P 1,25) 0,1056
20 Exercício: Determine P(z < 1,45). Para determinar a probabilidade de z ser inferior a um valor dado, encontre a área acumulada na tabela de acordo com o correspondente escore z. P(z < 1,45) = 0,0735 Área acumulada = Probabilidade z
21 Exercício: Determine P(z > 1,36). Para determinar a probabilidade de z ser superior a um valor dado, subtraia de 1 a área acumulada que você encontrar na tabela. 0, z A área acumulada (área à esquerda) é de 0,0869. Logo, a área à direita é: 1 0,0869 = P(z > 1,36) =
22 Como determinar probabilidades entre dois valores. Para determinar a probabilidade de z estar entre dois valores dados, determine as áreas acumuladas para cada valor e, depois, subtraia a menor da maior. Determine P( 1,25 < z < 1,17). 0, z 1. P(z < 1,17) = 0, P(z < 1,25) = 0, P( 1,25 < z < 1,17) = 0,8790 0,1056 = 0,7734
23 Resumo Para determinar a probabilidade de z ser inferior a dado valor, encontre a área acumulada correspondente z Para determinar a probabilidade de z ser superior a dado valor, subtraia de 1 a área acumulada que você encontrou na tabela z Para determinar a probabilidade de z estar entre dois valores dados, determine as áreas acumuladas para cada valor e, depois, subtraia a menor da maior z
24 Estatística e Probabilidade Próxima aula: Ainda cap.5 Determinando probabilidades
Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas
Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000
Capítulo 3 Modelos Estatísticos
Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide
Distribuição de probabilidades
Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva
Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder
Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias
Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL
Faculdade de Medicina Universidade Federal do Ceará Elaborado por Eduardo Rebouças Carvalho Hermano Alexandre Lima Rocha DISTRIBUIÇÃO NORMAL - Uma curva de distribuição pode descrever a forma da distribuição
Processos Estocásticos
Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte
Apresentação de Dados em Tabelas e Gráficos
Apresentação de Dados em Tabelas e Gráficos Os dados devem ser apresentados em tabelas construídas de acordo com as normas técnicas ditadas pela Fundação Instituto Brasileiro de Geografia e Estatística
Estatística Descritiva
Estatística Descritiva Como construir uma distribuição de freqüências. Como construir gráficos de freqüências. Como encontrar medidas de tendência central. Como encontrar medidas de variabilidade. Como
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5
Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................
AULA 03 Resumos e Gráficos de Dados
1 AULA 03 Resumos e Gráficos de Dados Ernesto F. L. Amaral 17 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC.
Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5
Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar
24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18
/Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis
Distribuição Normal de Probabilidade
Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável
Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:
Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos
Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística
Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa
Padronização e Escores z. Transformação z Percentis
Padronização e Escores z Transformação z Percentis Padronização Definição Padronização de escores é o processo de converter o escore bruto de uma distribuição em escore z. Escore bruto O valor individual
O teste de McNemar. A tabela 2x2. Depois
Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ [email protected] O teste de McNemar O teste de McNemar para a significância de mudanças é particularmente aplicável aos experimentos do tipo "antes
INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE
INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.
Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida
Universidade do Estado do Rio Grande do Norte Rua Almino Afonso, 478 - Centro Mossoró / RN CEP: 59.610-210 www.uern.br email: [email protected] ou Fone: (84) 3315-2145 3342-4802 Óptica Geométrica Dr. Edalmy
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,
INSTITUTO TECNOLÓGICO
PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA
1ª Actividade Formativa
1ª Actividade Formativa 1. Foi feito um inquérito a um grupo de 40 compradores de carros novos, de determinada marca, para determinar quantas reparações ou substituições de peças foram feitas durante o
RESUMO DA AULA PRÁTICA DE EXCEL
PARA CONSTRUIR TABELAS: RESUMO DA AULA PRÁTICA DE EXCEL Vai em ; Em seguida irá abrir a janela: Na parte Selecione os dados ou somente a variável que deseja analisar, por exemplo: Em seguida marque a opção
O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
Distribuições de Probabilidade Distribuição Poisson
PROBABILIDADES Distribuições de Probabilidade Distribuição Poisson BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas
MATEMÁTICA 3. Resposta: 29
MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e
Aula 4 Estatística Conceitos básicos
Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a
Testes (Não) Paramétricos
Armando B. Mendes, DM, UAç 09--006 ANOVA: Objectivos Verificar as condições de aplicabilidade de testes de comparação de médias; Utilizar ANOVA a um factor, a dois factores e mais de dois factores e interpretar
Curvas em coordenadas polares
1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.
Aula 5 Distribuição amostral da média
Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento
7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).
1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.
PROBABILIDADE. Aula 5
Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,
3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente
Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação
REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade
REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização
Cap. 12 Testes Qui- Quadrados e Testes Não-Paramétricos. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc.
Cap. 1 Testes Qui- Quadrados e Testes Não-Paramétricos Statistics for Managers Using Microsoft Excel, 5e 008 Prentice-Hall, Inc. Chap 1-1 Final de curso... tempo de recordar : ) Cap. 9 Fundamentos de testes
OpenOffice Calc Aula 4
OpenOffice Calc Aula 4 Objetivos: Apresentar a criação de um gráfico no CALC, a partir dos dados em uma planilha Apresentar os diversos tipos de gráficos e suas aplicações (gráfico de coluna, de linha,
Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda
Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias
sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.
INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas
UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM
Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular
Resistência dos Materiais
Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,
Exercícios - Distribuição Normal (Gauss)
Exercícios - Distribuição Normal (Gauss) Monitora: Juliana e Prof. Jomar 01. Uma empresa produz televisores de dois tipos, tipo A (comum) e tipo B (luxo), e garante a restituição da quantia paga se qualquer
MÓDULO 1. I - Estatística Básica
MÓDULO 1 I - 1 - Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos e empíricamente observáveis. Unidade Estatística nome dado a cada observação de um
Universidade Federal de São João Del Rei - UFSJ
Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart
Leia estas instruções:
Leia estas instruções: 1 2 3 Confira se os dados contidos na parte inferior desta capa estão corretos e, em seguida, assine no espaço reservado para isso. Caso se identifique em qualquer outro local deste
QUESTÃO 11 Nas expressões numéricas que seguem dois números estão escondidos sobre as letra A e B, veja: 3. A 4 = 11 B : 4 + 12 = 28
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 6 Ọ ANO EM 201 Disciplina: MateMática Prova: desafio nota: QUESTÃO 11 Nas expressões numéricas que seguem dois números estão escondidos
Estatística Básica. Armando Oscar Cavanha Filho
Estatística Básica Armando Oscar Cavanha Filho 1- INTRODUÇÃO A Estatística tem ampliado a sua participação na linguagem das atividades profissionais da atualidade, já que os números e seus significados
ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t)
ESTUDO GRÁFICO DOS MOVIMENTOS No estudo do movimento é bastante útil o emprego de gráficos. A descrição de um movimento a partir da utilização dos gráficos (posição x tempo; velocidade x tempo e aceleração
Função do 2º Grau. Alex Oliveira
Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:
XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas
Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de
APOSTILA TECNOLOGIA MECANICA
FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de
fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms
O uso da Calculadora Científica (Casio fx) fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms Prof. Ms. Renato Francisco Merli 2013 1 Sumário 1. Antes de Começar... 2 2. Cálculos Básicos... 8 3. Cálculos
5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber
5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem
Gabarito de Matemática do 7º ano do E.F.
Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na
www.concursovirtual.com.br
Cinemática: É a parte da mecânica que estuda os movimentos, procurando determinar a posição, velocidade e aceleração do corpo a cada instante. Ponto Material: É todo corpo que não possua dimensões a serem
DEFIJI Semestre2014-1 10:07:19 1 INTRODUÇÃO
1 DEFIJI Semestre2014-1 Ótica Lentes Esféricos Prof. Robinson 10:07:19 1 O ÍNDICE DE REFRAÇÃO INTRODUÇÃO Quando a luz passa de um meio para outro, sua velocidade aumenta ou diminui devido as diferenças
Freqüência dos sons audíveis: entre 20Hz (infra-sônica) e 20.000Hz (ultra-sônica, audíveis para muitos animais).
Ondas Sonoras: - São ondas longitudinais de pressão, que se propagam no ar ou em outros meios. - Têm origem mecânica, pois são produzidas por deformação em um meio elástico. - As ondas sonoras não se propagam
Distribuição de Frequência
Distribuição de Frequência Tabela de requências Tabela de classiicação simples Tabela de classiicação cruzada Representação gráica Histograma Polígono de requências Distribuição de requências e gráicos
Estatística e Probabilidade
Estatística e Probabilidade Aula 2 Cap 02 Estatística Descritiva Neste capítulo... estudaremos formas de organizar e descrever conjuntos de dados. O objetivo é tornar os dados mais compreensíveis de modo
Assinale a alternativa que contém o gráfico que representa a aceleração em função do tempo correspondente ao movimento do ponto material.
Física 53. O gráfico da velocidade em função do tempo (em unidades aritrárias), associado ao movimento de um ponto material ao longo do eixo x, é mostrado na figura aaixo. Assinale a alternativa que contém
Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA
Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado
Estatística II Antonio Roque Aula 9. Testes de Hipóteses
Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para
Óptica Geométrica: Óptica de raios com matrizes
Óptica 0/007 UFRJ - IF Prof. Paulo H. S. Ribeiro Óptica Geométrica: Óptica de raios com matrizes Aula 4 Adriano Henrique de Oliveira Aragão Sumário Ótica Geométrica: postulados Princípio de Fermat A equação
AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais
1 AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais Ernesto F. L. Amaral 20 e 22 de abril e 04 de maio de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte:
LENTES ESFÉRICAS DELGADAS
COLÉGIO MILITAR DE JUIZ DE FORA CMJF DISCIPLINA: Física 2 a Série Ensino Médio / 2007 Professor: Dr. Carlos Alessandro A. da Silva Notas de Aula: Lentes Delgadas LENTES ESFÉRICAS DELGADAS Elementos geométricos
FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:
FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita
Variáveis, Expressões, Atribuição, Matrizes, Comandos de Desvio
Programação de Computadores I UFOP DECOM 2013 2 Exercícios de Revisão Variáveis, Expressões, Atribuição, Matrizes, Comandos de Desvio Sumário 1 Testes de Compreensão 1 2 Variáveis, Expressões, Atribuição,
UNIVERSIDADE FEDERAL DO MATO GROSSO CAMPUS
BIOESTATÍSTICA Aula 0 TÓPICOS ABORDADOS: Introdução a estatística; Coleta de dados; Estatística descritiva; Distribuição de frequências; Notação de somatório Medidas de posição. ESTATÍSTICA É um ramo da
ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012
ESTATÍSTICA Prof. Ari Antonio, Me Ciências Econômicas Unemat Sinop 2012 1. Introdução Concepções de Estatística: 1. Estatísticas qualquer coleção consistente de dados numéricos reunidos a fim de fornecer
Notas de Cálculo Numérico
Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo
ponto P terá as projecções P 1 e P 2. E o eixo X passa para X. Vamos ver o que acontece no plano do
Mudança de planos 1- Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos de projecção. Caso contrário as projecções
BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011
BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além
Probabilidade. Distribuição Normal
Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
4Distribuição de. freqüência
4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva
Supondo que se mantém constante o ritmo de desenvolvimento da população de vírus, qual o número de vírus após uma hora?
Lista prova parcial 4º bimestre. 1. (Upf 01) Num laboratório está sendo realizado um estudo sobre a evolução de uma população de vírus. A seguinte sequência de figuras representa os três primeiros minutos
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada
CAPÍTULO 5 - Exercícios
CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos
MATEMÁTICA ENEM 2009 PROF. MARCELO CÓSER
MATEMÁTICA ENEM 09 PROF. MARCELO CÓSER Funções Lineares: problemas com variação constante. f(x) = ax + b VARIAÇÃO CONSTANTE VALOR INICIAL a > 0 a < 0 a y x 0) (UFRJ) Uma operadora de celular oferece dois
REFRAÇÃO DA LUZ. Neste capítulo estudaremos as leis da refração, a reflexão total e a formação de imagens nas lentes esféricas.
AULA 18 REFRAÇÃO DA LUZ 1- INTRODUÇÃO Neste capítulo estudaremos as leis da refração, a reflexão total e a formação de imagens nas lentes esféricas. 2- A REFRAÇÃO A refração ocorre quando a luz ao passar
Unidade III: Movimento Uniformemente Variado (M.U.V.)
Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades
29/Abril/2015 Aula 17
4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda
Aulas 09 a 12. Lentes Esféricas
Aulas 09 a 12 Lentes Esféricas Associação de dois meios com refringências diferentes separados por duas superfícies curvas ou uma plana e outra curva. 24/03/2013 Lentes Esféricas 2 Lentes Esféricas e Delgadas
Tutorial Interpretando o Prognóstico Climático Sazonal
Tutorial Interpretando o Prognóstico Climático Sazonal COMO TRADUZIR A FAIXA NORMAL EM MILÍMETROS DE PRECIPITAÇÃO i RESUMO O prognóstico climático sazonal de precipitação é usualmente expresso pelas probabilidades
Comandos de repetição while
Programação de Computadores I UFOP DECOM 2014 2 Aula prática 6 Comandos de repetição while Resumo Nesta aula vamos trabalhar com problemas cuja solução envolve realizar um cálculo ou tarefa repetidas vezes,
Stela Adami Vayego - DEST/UFPR 1
Aula 03 Análise Exploratória dos Dados (Medidas Descritivas de Variáveis Quantitativas) Parte 1 Medidas de Tendência Central Stela Adami Vayego - DEST/UFPR 1 Medidas de Tendência Central dos Dados Para
Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental
Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:
Capítulo 5 Apresentação Estatística - Gráficos e Tabelas.
Capítulo 5 Apresentação Estatística - Gráficos e Tabelas. 5.1 - OBJETIVO DO CAPÍTULO Um dos objetivos da Estatística é sintetizar os valores que uma ou mais variáveis podem assumir, para que tenhamos uma
Desenho de máquinas. Aula 3
Desenho de máquinas Aula 3 Cotagem A cotagem e a escolhas das vistas que irão compor um desenho, são os dois itens que mais exigem conhecimentos e experiência do engenheiro mecânico na área do Desenho
CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES
Física (Eletromagnetismo) 1. Lei de iot-savart CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES A lei de iot-savart é uma lei no eletromagnetismo que descreve o vetor indução magnética em termos de magnitude
Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas
Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos
MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.
1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto
PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A
PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A
Levantamento. Levantamento altimétrico:
Levantamento planimétrico trico: projeção plana que não traz informações acerca do relevo do terreno levantado; somente acerca de informações relativas à medições feitas na horizontal. Levantamento altimétrico:
AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980
Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.
Mecânica 2007/2008. 3ª Série
Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?
LISTA 10. = ax + b onde f é uma função decrescente. Podemos afirmar que o valor exato de g(a) é igual a: a) 1 b) 2 c) 3 d) 4
LISTA 10 1 - João tem, hoje, 36 anos, idade que é igual a duas vezes a idade que Maria tinha quando João tinha a idade que Maria tem hoje. A idade, hoje, de Maria é: a) 7 ) 30 c) 33 d) 37 O custo de um
