Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais

Tamanho: px
Começar a partir da página:

Download "Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais"

Transcrição

1 Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Prof. Alex G. Dias Prof. Alysson F. Ferrari Integrando Campos vetoriais Você já viu que, diferentemente de campos escalares, campos vetoriais podem ser derivados de mais que uma maneira, por exemplo V ; V ; V ;... Podemos também integrar campos vetoriais. Não deve surpreendê-lo, a esta altura, saber que existem várias formas de integrar um campo vetorial. É o que começaremos a ver nesta aula. Começaremos com o caso mais intuitivo: a integral de linha. Talvez você já tenha visto a integral de linha num curso de mecânica clássica, já que o trabalho feito por uma força F (r) sobre uma partícula que se move de um ponto P 1 a um ponto P é dado pela integral W = P P 1 F (r) dr. Esta integral é na verdade uma integral de linha sobre o caminho tomado pela partícula para ir de P 1 a P. Vamos estudar o caso particular em que o campo vetorial integrado é o gradiente de um campo escalar ψ (r). Nossa apresentação será intuitiva e prática; o aluno interessado deve buscar em livros de matemática aplicada ou análise vetorial o enunciado precisos dos teoremas, incluindo todas as condições para sua validade. No que se segue, vamos sempre assumir que todas as curvas, superfícies e funções são sucientemente comportadas para que todas as operações feitas façam sentido. NH801 - Fundamentos da Eletrostática - 009t1 NH801 - Fundamentos da Eletrostática - 009t1 1

2 Integrais de Linha do Gradiente e somar sobre todos os segmentos. denição do gradiente, Considere uma região do espaço onde existe um campo vetorial ψ, e uma curva que começa num ponto (1) e termina um ponto (). A integral de linha ψ dr é calculada da seguinte forma: divida a curva em pequenos pedaços de comprimento s. Cada segmento é aproximado por um vetor s i. Podemos calcular o produto ψ s i para cada segmento, dψ = ( ψ) dr. Temos que lembrar que, pela omando as três primeiras contribuições, por exemplo, temos dψ 1 + dψ + dψ 3 ψ (r c ) ψ (r 1 ). e somarmos todas as contribuições, portanto, teremos ψ dr ψ s i ψ (r ) ψ (r 1 ). i Tomando o limite para s 0, as aproximações tornam-se uma igualdade, e encontramos assim que ψ dr = ψ (r ) ψ (r 1 ), uma curva indo de r 1 a r Note a similaridade com o teorema fundamental do cálculo integral: Note que: b a df (x) dx = f (b) f (a) dx Assim: ψ (r 1 ) s 1 = dψ 1 ψ (r a ) ψ (r 1 ) ψ (r a ) s = dψ ψ (r b ) ψ (r a ) ψ (r b ) s 3 = dψ 3 ψ (r c ) ψ (r b )... este resultado não depende da escolha dos subintervalos s i, desde que sejam pequenos, já que no nal é tomado o limite s 0; o resultado da integral não depende da curva escolhida para ir de (1) a (); NH801 - Fundamentos da Eletrostática - 009t1 NH801 - Fundamentos da Eletrostática - 009t1 3

3 Fluxo e Circulação: motivação egue deste resultado que a integral de ψ sobre qualquer curva fechada é nula: ψ dr = = 1 + ψ dr + 1 ψ dr = ψ (P ) ψ (P 1 ) + ψ (P 1 ) ψ (P ) = 0 Lembre-se do exemplo que mostramos na aula passada: V V 4 V 1 (r) = r r = x x + y x + y x + y ŷ V (r) = y x + x ŷ Calculando o divergente e o rotacional: V 1 = 0 j.v 1 = 0, se x ou y 0, se x = y = V = 0 ; V = ẑ Você consegue daí ter uma idéia do que o divergente e o rotacional signicam? Pense nestes campos representando o campo de velocidades de um uido, por exemplo. Vamos agora demonstrar dois teoremas que, além da importância prática, também esclarecem a interpretação física da divergência e do rotacional. Antes, vamos discutir um pouco duas características fundamentais de um campo vetorial: o uxo e a circulação. NH801 - Fundamentos da Eletrostática - 009t1 4 NH801 - Fundamentos da Eletrostática - 009t1 5

4 Fluxo de um Campo Vetorial através de uma uperfície n normal a a. Em particular, uxo por a = uxo por a 1. Imagine um campo vetorial representando o uxo de um determinado uído em escoamento estacionário (independente do tempo), i.e., V (r) em cada ponto do espaço aponta para o sentido de uxo do uído, e V (r) = litros por unidade de área unidade de tempo Então, dada uma superfície qualquer, podemos nos perguntar quanto líquido atravessa esta superfície por unidade de tempo. Chamaremos esta quantidade de uxo. Mais precisamente, o uxo será uma média da componente normal de V à superfície considerada, vezes a área da superfície. O uxo por uma superfície é calculado dividindo a superfície em áreas elementares a, calculando o uxo para cada uma delas e somando, sendo ao nal tomado o limite a 0. Considere uma área elementar a, como na gura ao lado. uxo de V por a depende da orientação relativa entre V e o vetor NH801 - Fundamentos da Eletrostática - 009t1 6 O Mas logo, e a 1 = cos θ a, uxo por a = V a 1 = V a cos θ = V (n a ) = V da uxo por = lim V da a 0 = V da No caso que é um superfície fechada (por exemplo, a superfície de uma esfera tridimensional), escrevemos para o uxo, V da. No caso particular do uido em escoamento, o uxo V da por uma superfície fechada dá a taxa com que o uido sai do NH801 - Fundamentos da Eletrostática - 009t1 7

5 volume V denido por ; se o uido é incompressível, isto signica necessariamente que há uma fonte dentro de V, pela qual está entrando mais uido. No exemplo V 1 citado anteriormente, temos, para uma superfície esférica centrada na origem, V 1 da > 0, já que V 1 da > 0 em todos os pontos da superfície; esta situação correndo à existência de uma fonte de uido na origem. Circulação de um campo vetorial Retornando ao campo V de um uído como no exemplo anterior, imagine que possamos fazer surgir, instantaneamente, um tubo innitesimal fechado dentro do uído. Podemos nos perguntar: o uído dentro do tubo está circulando? Para responder, considere a média da componente de V tangencial à curva fechada, ao longo da curva - chamada de circulação de V. Dividimos uma curva fechada em segmentos innitesimais l i, com comprimento l, para cada segmento, temos V tangencial l = Vi dl i logo circulação = lim l 0 V i dl i = V dl e V dl 0, existe um movimento líquido de rotação dentro deste tubo imaginário. Este é o caso do campo vetorial V, citado anteriormente. NH801 - Fundamentos da Eletrostática - 009t1 8 NH801 - Fundamentos da Eletrostática - 009t1 9

6 As Leis Fundamentais do Eletromagnetismo a lei: As leis fundamentais do eletromagnetismo podem ser enunciadas através das propriedades de uxo e circulação dos campos E e B. 1 a lei: circulação de E ao redor de uma curva fechada C = d dt (uxo de B através de ) Esta lei basicamente informa que um campo magnético variável no tempo induz uma circulação de E diferente de zero numa dada curva fechada. Este é justamente o fenômeno da indução magnética, que você conhece de cursos elementares de eletromagnetismo. uxo de E por qualquer superfície fechada = 1 ε 0 (carga líquida englobada pela superfície). Caso particular de uma carga puntual envolvida por uma superfície esférica: como E é constante na superfície da esfera, E da = E (área da esfera), logo No caso particular estacionário (B constante no tempo), temos simplesmente: circulação de E ao redor de uma curva fechada C = 0 4πr E = q ε 0 E = 1 4πε 0 q r 3 a lei: uxo de B através de qualquer superfície fechada = 0 Esta lei diz simplesmente que não existe carga magnética. NH801 - Fundamentos da Eletrostática - 009t1 10 NH801 - Fundamentos da Eletrostática - 009t1 11

7 4 a lei: O Teorema (da divergência) de Gauss circulação de B ao redor da curva fe- d chada C = µ 0 ε 0 dt (uxo de E por ) + µ 0 (corrente elétrica cortando ) No caso particular estacionário (E e corrente elétrica independentes do tempo), temos πr B = µ 0 I B = µ 0 I π r Considere um dado volume V, englobado pela superfície. A cada elemento innitesimal de área da associamos um vetor n normal ao elemento de área, apontando para fora do volume, e o vetor da na direção de n e com módulo da. eja A (r) um campo vetorial que existe em toda a região considerada. Queremos calcular o uxo de A através de, A da. uponha agora que dividamos o volume em duas metades, V 1 e V, como na gura (na verdade, as duas metades estão coladas, e foram desenhadas separadas apenas pela clareza do desenho). Podemos calcular o uxo de A pela superfícies que envolvem V 1 e V. A da = A da + A da a 1 1 A da = A da + A da b 1 NH801 - Fundamentos da Eletrostática - 009t1 1 NH801 - Fundamentos da Eletrostática - 009t1 13

8 Note que, para cada elemento de área da 1 em 1, existe um correspondente elemento da em 1, e que e portanto, da 1 = da, A da = 1 A da. 1 A da + a A da = b A da + 1 A da = (Em palavras: A da podemos calcular o uxo sobre dividindo o volume em partes menores, e somando o uxo correspondente a cada uma delas, já que as contribuições correspondentes às faces internas se cancelam aos pares.) Dividimos agora o volume num grande número de cubos innitesimais V i, cada um com superfície i, muito pequenos. Como acabamos de mostrar, o uxo total é dado simplesmente por A da = i i A da. Vamos calcular, portanto, o uxo de A = A xx + A y ŷ + A z ẑ NH801 - Fundamentos da Eletrostática - 009t1 14 para um volume innitesimal V i, de lados x, y e z, em torno de um ponto P = (x, y, z), como na gura. Como o cubo é innitesimal, vamos tomar A como constante em cada face do cubo, igual ao valor no ponto médio de cada face. Face 1: n 1 = ŷ e F 1 = face 1 Face : n = ŷ e F = F 1 + F = face ( A da 1 = A y x, y + y ), z x z ( A da = A y x, y y ), z x z»a y x, y + y» = «, z A y A y (x, y, z) + A y y x, y y, z y + O y ««x z A y (x, y, z) A y y y + O y «x z» Ay = y y + O y x z = A y y x y x = A y y V i NH801 - Fundamentos da Eletrostática - 009t1 15

9 Procedendo da mesma forma para as outras faces, obtemos: F 3 + F 4 = A x x V i F 5 + F 6 = A z z V i somando, encontramos como uxo total, i A da = [ Ax x + A y y + A ] z V i z = A V i Teorema de Gauss Dado um campo vetorial A (r) e um volume V envolvido por uma superfície, temos A da = V A d 3 V Este teorema relaciona de alguma forma o uxo de um dado campo vetorial com o seu divergente. Lembre-se do exemplo do campo V 1 do começo desta aula. omando o uxo por todas as superfícies i, temos 4 V 1 = 0 j.v 1 = 0, se x ou y 0, se x = y = 0 A da = i i A da = i A V i V Ad 3 V V 1 tem uxo diferente de zero em qualquer volume que contenha a origem, o que sinaliza a presença de uma fonte na origem. Pois justamente na origem vimos que V 1 0 (o fato de que, formalmente V 1 = está ligado ao fato de tratar-se de uma fonte pontual na origem; discutiremos isto mais adiante). No limite em que os volumes V i 0, obtemos uma igualdade entre o uxo total do campo A pela superfície e a integral, em todo o volume V, da divergência de A. Este é o Teorema de Gauss. NH801 - Fundamentos da Eletrostática - 009t1 16 NH801 - Fundamentos da Eletrostática - 009t1 17

10 Teorema de tokes Note que 1 (1 ) e 1 ( 1) diferem apenas pela orientação do caminho. Assim: Existe um teorema similar ao de Gauss, mas que está relacionado à circulação de um campo vetorial. eja A = A xx + A y ŷ + A z ẑ e vamos calcular a circulação de A em torno de uma curva. Temos que escolher um sentido para fazer a integração na curva, e este sentido é escolhido por convenção: o sentido é tal que o interior da curva esteja à esquerda enquanto se percorre a curva. Vamos calcular a circulação de A em : e A dl Começamos dividindo a curva em duas, como na gura. Temos: a A dl + 1 b A dl + 1 (1 ) 1 ( 1) A dl A dl ( 1 (1 ) signica a integral na curva 1, indo do ponto 1 ao ponto ). NH801 - Fundamentos da Eletrostática - 009t1 18 e, consequentemente, A dl + 1 (1 ) 1 ( 1) 0. omando as integrais em a e b, A dl + a b A dl + 1 A dl O processo pode ser repetido, e dividimos a curva fechada em muitas curvas elementares i, que podem ser tomadas como quadrados muito pequenos. Como acabamos de mostrar, as integrais de linhas sobre todas as linhas internas se cancelam aos pares, e NH801 - Fundamentos da Eletrostática - 009t1 19

11 portanto, i i A dl. Basta portanto calcular a circulação de A sobre um laço innitesimal i. i lado 1 Lado 1: dl = ŷdy e lado 1 Lado : dl = ẑdz e lado Considere um laço i, com o ponto central P = (x, y, z). uponha, para simplicar, o laço de formato quadrado, no plano yz, como na gura. Como i é muito pequeno, podemos considerar A constante em cada lado do quadrado, igual ao seu valor no ponto médio. Temos: A dl + A dl + A dl + A dl lado lado 3 lado 4 A dl A y x, y, z z «y A dl A z x, y + y «, z NH801 - Fundamentos da Eletrostática - 009t1 0 z Lado 3: dl = ŷdy e lado 3 Lado 4: dl = ẑdz e omando: lado 1+lado 3 = e lado 4 A dl A y x, y, z + z «y A dl A z x, y y «, z z»a y x, y, z z «A y x, y, z + z «y = A y z z y + O z y = A y z z y lado +lado 4 = A z y z y i» Az y A y y z z = ( A) x a i = ( A) (x a i ) = ( A) da i NH801 - Fundamentos da Eletrostática - 009t1 1

12 Note que x é o vetor unitário normal ao plano da curva, em concordância com a regra da mão direita. Isto acontece pois escolhemos o referencial tal que o laço i esteja no plano yz. Devido à invariância do produto escalar, a relação ( A) da i i Teorema de tokes Dado um campo vetorial A (r) e uma superfície, tendo como borda a curva fechada, temos ( A) da onde o sentido de da é dado pela regra da mão direita. vale para qualquer laço quadrado i, onde da i é o vetor elemento da área delimitada por i. omando para todos os laços elementares i, Note que, dada uma curva, existem várias superfícies que possuem como borda. O que o teorema arma é que a integração ( A) da em 1 e dará exatamente o mesmo resultado, desde que 1 e compartilham a mesma borda. i i i = ( A) da, ( A) da i Considere o que acontece se colapsa a um ponto: neste caso, se torna uma superfície fechada que engloba um volume V e, pelo teorema de tokes, ( A) da = 0 ( A) ( A) nda, onde n é o vetor normal à superfície, onde é a superfície cuja borda é. Lembre-se que da = orientado segundo a regra da mão direita. O resultado que acabamos de encontrar é o chamado teorema de tokes. NH801 - Fundamentos da Eletrostática - 009t1 por outro lado, usando o teorema de Gauss, ( A) da = ( A) d 3 V = 0 NH801 - Fundamentos da Eletrostática - 009t1 3

13 já que ( A) = 0 para qualquer A: consistentes, como deveria ser. os dois resultados são 4 Finalmente, lembre-se do campo vetorial V do começo desta aula. V = 0 ; V = ẑ É claro que A dl 0 para qualquer curva circular em torno da origem, e o teorema de tokes diz que então tem que ser A 0, o que justamente encontramos ao calcular explicitamente o rotacional. NH801 - Fundamentos da Eletrostática - 009t1 4

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss Linhas de Força Fundamentos da Eletrostática Aula 6 Mais sobre o campo elétrico e a lei de Gauss Prof. Alex G. Dias Prof. Alysson F. Ferrari Vimos na última aula a denição do campo elétrico E (r), F (r)

Leia mais

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Problema 1: Capacitor preenchido com dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Considere um capacitor de placas paralelas,

Leia mais

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Coordenadas Curvilíneas Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Até agora, usamos sempre o sistema de coordenadas cartesiano, ou seja: dados três eixos

Leia mais

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Prof. Alex G. Dias Prof. Alysson F. Ferrari Eletrostática Neste curso trataremos da parte estática do eletromagnetismo. Ou seja:

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens

Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens Fundamentos da Eletrostática Aula 3 Descontinuidades no Campo Elétrico & Método das Imagens Prof. Alex G. Dias Prof. Alysson F. Ferrari Descontinuidades no campo elétrico Uma observação a ser feita uando

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de arvalho Eletromagnetismo I - Eletrostática Lei de Ampère na Forma Diferencial (apítulo 7 Páginas 195 a 203) Teorema de

Leia mais

LISTA DE EXERCÍCIOS SOBRE FLUXOS, TEOREMA DE GAUSS E DE STOKES

LISTA DE EXERCÍCIOS SOBRE FLUXOS, TEOREMA DE GAUSS E DE STOKES LITA DE EXERCÍCIO OBRE FLUXO, TEOREMA DE GAU E DE TOKE (1) Fazer exercícios 1), 2), 3), 4) da seção 10.4.4 pgs 235, 236 do livro texto. (2) Fazer exercícios 1), 2), 3), 5) da seção 10.5.3 pgs 241, 242

Leia mais

Fundamentos da Eletrostática Aula 07 Algumas aplicações elementares da lei de Gauss

Fundamentos da Eletrostática Aula 07 Algumas aplicações elementares da lei de Gauss Fundamentos da Eletrostática Aula 7 Algumas aplicações elementares da lei de Gauss Prof. Alex G. Dias Prof. Alysson F. Ferrari Aplicações da Lei de Gauss Quando a distribuição de cargas fontes é altamente

Leia mais

Fundamentos da Eletrostática Aula 05 A Lei de Coulomb e o Campo Elétrico

Fundamentos da Eletrostática Aula 05 A Lei de Coulomb e o Campo Elétrico A lei de Coulomb Fundamentos da Eletrostática Aula 5 A Lei de Coulomb e o Campo Elétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Conforme mencionamos anteriormente, trataremos neste curso de distribuções

Leia mais

CAP 03 CÁLCULO VETORIAL

CAP 03 CÁLCULO VETORIAL CAP 03 CÁLCULO VETORIAL Estudaremos integração e diferenciação de vetores. COMPRIMENTO, ÁREA E VOLUME DIFERENICIAI Os elementos diferenciais de comprimento, área e volume são úteis em cálculo vetorial.

Leia mais

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Prof. Alex G. Dias Prof. Alysson F. Ferrari Solução de problemas eletrostáticos via Equação de Laplace Especicada a distribuição

Leia mais

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes

Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais escalar e vetorial magnéticos (Capítulo 7 Páginas 210 a 216) Potencial Escalar Vm Potencial Vetorial

Leia mais

= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1

= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1 Definição 0.1. eja F : R n R n um campo de vetores (diferenciável. screva F = (F 1,..., F n. (i O divergente de F é a função div F : R n R definida por div F. = m particular, para n = temos n F i = F 1

Leia mais

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 03 O FLUXO ELÉTRICO Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento

Leia mais

Exercícios resolvidos P3

Exercícios resolvidos P3 Exercícios resolvidos P3 Questão 1 Calcule a área da superfície obtida pela revolução da curva α(t) (R cos t,, R sin t + a), t [, 2π], < R < a, em torno do eixo x. Esta superfície é chamada de Toro. Resposta:

Leia mais

Teorema de Green Curvas Simples Fechadas e Integral de

Teorema de Green Curvas Simples Fechadas e Integral de Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4 Eletromagnetismo I Prof. Ricardo Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 4 Equações de Maxwell O livro texto inicia a apresentação de Eletromagnetismo pela Eletrostática. No entanto, antes

Leia mais

Fundamentos da Eletrostática Aula 16 Dielétricos / Polarização

Fundamentos da Eletrostática Aula 16 Dielétricos / Polarização Fundamentos da Eletrostática Aula 16 Dielétricos / Polarização Prof. Alex G. Dias Prof. Alysson F. Ferrari Dielétricos Consideramos, em aulas passadas, a resolução de problemas eletrostáticos na presença

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Expressa a inexistência de cargas magnéticas, também chamadas monopolos magnéticos.

Expressa a inexistência de cargas magnéticas, também chamadas monopolos magnéticos. Capítulo 10 Equações de Maxwell 10.1 Fluxo Magnético Lei de Gauss: relaciona fluxo elétrico com carga elétrica. O equivalente para campos magnéticos também é uma equação fundamental do eletromagnetismo:

Leia mais

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 10 Campo Elétrico na Matéria Até agora discutimos eletrostática no vácuo, ou na presença de condutores perfeitos,

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

superfície que envolve a distribuição de cargas superfície gaussiana

superfície que envolve a distribuição de cargas superfície gaussiana Para a determinação do campo elétrico produzido por um corpo, é possível considerar um elemento de carga dq e assim calcular o campo infinitesimal de gerado. A partir desse princípio, o campo total em

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

Instituto de Fıśica UFRJ Mestrado em Ensino profissional

Instituto de Fıśica UFRJ Mestrado em Ensino profissional Instituto de Fıśica UFRJ Mestrado em Ensino profissional Tópicos de Fıśica Clássica II 1 a Lista de Exercıćios egundo emestre de 2008 Prof. A C Tort Exercıćio 1 O operador nabla Começamos definindo o operador

Leia mais

Cálculo III-A Módulo 14

Cálculo III-A Módulo 14 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 4 Aula 25 Teorema de tokes Objetivo Estudar um teorema famoso que generalia

Leia mais

CÁLCULO II - MAT0023. F (x, y, z) =

CÁLCULO II - MAT0023. F (x, y, z) = UNIERIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da ida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO II - MAT0023 17 a Lista de exercícios 1.

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Fluxo de Campos Vetoriais: Teorema da

Fluxo de Campos Vetoriais: Teorema da Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Fluxo de Campos Vetoriais: Teorema da Divergência Na aula anterior introduzimos o conceito de superfície paramétrica e chegamos

Leia mais

Cálculo III-A Módulo 12

Cálculo III-A Módulo 12 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 1 Aula Integral de uperfície de um Campo Vetorial Objetivo Compreender a noção

Leia mais

Aula 12. Eletromagnetismo I. Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5)

Aula 12. Eletromagnetismo I. Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5) Eletromagnetismo I Prof. Dr..M.O Galvão - 2 emestre 204 Preparo: Diego Oliveira Aula 2 Campo Magnético Produzido por Correntes Estacionárias (Griths Cap. 5) Como visto no curso de Física Básica, o campo

Leia mais

Cálculo Diferencial e Integral de Campos Vetoriais

Cálculo Diferencial e Integral de Campos Vetoriais Capítulo 1 Cálculo Diferencial e Integral de Campos Vetoriais Conteúdo 1.1 Breve Interlúdio........................... 8 1.2 Noções básicas de campo escalar e vetorial........... 9 1.3 Divergência de um

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma A /1 Prova da área I UFRG - INTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2018/1 Prova da área I 1-6 7 8 Total Nome: Cartão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

LEI DE AMPÈRE. Aula # 15

LEI DE AMPÈRE. Aula # 15 LEI DE AMPÈRE Aula # 15 BIOT-SAVART Carga em movimento gera campo magnético Campo magnético produzido por um elemento de corrente em um ponto r d B = ( µ0 ) id l r r 3 = ( µ0 ) idlsin(θ) r 2 µ 0 = 10 7

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 06 Respostas esperadas Parte Estas são sugestões de possíveis respostas. Outras possibilidades também podem ser consideradas

Leia mais

Eletromagnetismo I. Aula 16. Na aula passada denimos o vetor Magnetização de um meio material como. M = n m. n i m i

Eletromagnetismo I. Aula 16. Na aula passada denimos o vetor Magnetização de um meio material como. M = n m. n i m i Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 16 Campo Magnético na Matéria - Continuação Na aula passada denimos o vetor Magnetização de um meio material como

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada. Docente:... nome n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Instruções e recomendações Não desagrafar! Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

Leia mais

equação paramêtrica/vetorial da superfície: a lei

equação paramêtrica/vetorial da superfície: a lei 1 Superfícies Definição Chamamos Superfície parametrizada em R n : uma função contínua : B R n (n 3) onde B R 2. Superfície: a imagem de, equação paramêtrica/vetorial da superfície: a lei Seja p 0 = (s

Leia mais

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície Instituto de Matemática e Estatística da UP MAT455 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. emestre 5 - /6/5 Turma A Questão :(, pontos) Calcule a massa da superfície que é parte

Leia mais

CÁLCULO I. 1 Área de Superfície de Revolução

CÁLCULO I. 1 Área de Superfície de Revolução CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.

Leia mais

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho.

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Eletricidade e Magnetismo - IME Potencial Elétrico Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Energia Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Equipamentos

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

Física 3. Resumo e Exercícios P1

Física 3. Resumo e Exercícios P1 Física 3 Resumo e Exercícios P1 Resuminho Teórico e Fórmulas Parte 1 Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv

Leia mais

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo

Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo Integral Dupla Aula 06 Cálculo Vetorial Professor: Éwerton Veríssimo Integral Dupla Integral dupla é uma extensão natural do conceito de integral definida para as funções de duas variáveis. Serão utilizadas

Leia mais

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3

Integral de linha de campo vectorial. Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com. e F : Dom( F ) R 3 R 3 Integral de linha de campo vectorial Sejam : C uma curva dada por r(t) = (x(t), y(t), z(t)), com t [a, b]. e F : Dom( F ) R 3 R 3 F = (F 1, F 2, F 3 ) um campo vectorial contínuo cujo Dom( F ) contem todos

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais retardados e dipolo de Hertz (Introdução) (Capítulo 11 Páginas 395a 400) (Capítulo 14 Páginas 511

Leia mais

CÁLCULO VETORIAL E NÚMEROS COMPLEXOS

CÁLCULO VETORIAL E NÚMEROS COMPLEXOS TE053-Ondas Eletromagnéticas CÁLCULO VETORIAL E NÚMEROS COMPLEXOS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Noções gerais e notação Gradiente, Divergente

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018 Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 17/09/2018 Seção 1: Múltipla Escolha (7 0,8 = 5,6 pontos) 3. O campo elétrico

Leia mais

Conceitos Matemáticos & Notações

Conceitos Matemáticos & Notações Conceitos Matemáticos & Notações Apêndice A: Notações - x,δx: uma pequena mudança em x - t : a derivada parcial em relação a t mantendo as outras variáveis fixadas d - : a derivada no tempo de uma quantidade

Leia mais

Cinemática em 2D e 3D

Cinemática em 2D e 3D Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

TÓPICO. Fundamentos da Matemática II APLICAÇÕES DAS DERIVADAS PARCIAIS9. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II APLICAÇÕES DAS DERIVADAS PARCIAIS9. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques APLICAÇÕES DAS DERIVADAS PARCIAIS9 TÓPICO Gil da Costa Marques 9. Introdução 9. Derivadas com significado físico: o gradiente de um Campo Escalar 9.3 Equação de Euler descrevendo o movimento de um fluido

Leia mais

Física. Resumo Eletromagnetismo

Física. Resumo Eletromagnetismo Física Resumo Eletromagnetismo Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv Força Elétrica Duas formas de calcular:

Leia mais

Questão 1. (3,0 pontos)

Questão 1. (3,0 pontos) ESOLA DE IÊNIAS E TENOLOGIA UFN TEEIA POVA DE ÁLULO 2 ET 22 Turma 2 27//24 Prof. onaldo Nome Legível: Assintatura: Instruções: Q. Leia todas as instruções antes de qualquer outra coisa. 2. Q2 A resolução

Leia mais

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016 Lei de Gauss Ignez Caracelli ignez@ufscar.br Quem foi Gauss? Um dos maiores matemáticos de todos os tempos Um professor mandou ue somassem todos os números de um a cem. Para sua surpresa, em poucos instantes

Leia mais

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO 99 15 EQUAÇÕES DE MAXWELL, POTENCIAL MANÉTICO E EQUAÇÕES DE CAMPO 15.1 - AS QUATRO EQUAÇÕES DE MAXWELL PARA CAMPOS ELÉTRICOS E MANÉTICOS ESTACIONÁRIOS Como pudemos observar em todo o desenvolvimento deste

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Corrente e Eq. da Continuidade (Capítulo 4 Páginas 109 a 113) Densidade de corrente Elétrica Equação da Continuidade Forma Integral Equação da Continuidade Forma

Leia mais

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO Se um carga elétrica se move de um ponto à outro, qual é o trabalho realizado sobre essa carga? A noção de mudança de posição nos remete

Leia mais

Eletromagnetismo II. 4 a Aula. Professor Alvaro Vannucci. nucci

Eletromagnetismo II. 4 a Aula. Professor Alvaro Vannucci. nucci Eletromagnetismo II 4 a Aula Professor Alvaro Vannucci nucci Na aula passada vimos... Potência MédiaM dia (Circuito RLC) P 0 = ω = 1 I 0ε0 cos Ressonância: 1 LC θ Fator de Qualidade: Fator de Potência

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS Prof. Bruno Farias Introdução Na Física, uma ferramenta importante para a

Leia mais

Aula Teórica nº 2 Prof. Responsável: Mário J. Pinheiro 1. FLUXO DE UM CAMPO VECTORIAL. Problema de aplicação [nº 10 da colectânea]

Aula Teórica nº 2 Prof. Responsável: Mário J. Pinheiro 1. FLUXO DE UM CAMPO VECTORIAL. Problema de aplicação [nº 10 da colectânea] Aula Teórica nº 2 rof. Responsável: Mário J. inheiro 1. FLUXO DE UM CAMO VECTORIAL roblema de aplicação [nº 10 da colectânea] No estudo dos campos vectoriais é útil introduzir linhas de força (ou de corrente),

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia Eletrostática (Capítulo 4 Páginas 00 a 04) Energia potencial de um grupo de cargas pontuais. Energia de uma distribuição contínua de carga. Densidade de energia no campo

Leia mais

Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico

Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari O Vetor Deslocamento Denimos na aula passada o vetor deslocamento D (r) = ε 0 E (r) + P (r).

Leia mais

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. 1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

Teorema da Divergência e Teorema de Stokes

Teorema da Divergência e Teorema de Stokes Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2 Eletromagnetismo I Prof. Dr. R.M.O Galvão - 1 Semestre 2015 Preparo: Diego Oliveira Aula 2 Na aula passada recordamos as equações de Maxwell e as condições de contorno que os campos D, E, B e H devem satisfazer

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Lei de Biot-avart e campo magnético estacionário de correntes contínuas (Capítulo 7 Páginas 119 a 123) Princípio da uperposição na Magnetostática Densidade de Fluxo Magnético

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO Prof. Bruno Farias Campo Elétrico A força elétrica exercida por uma carga

Leia mais

Cálculo IV EP13. Aula 23 Integral de Superfície de um Campo Vetorial

Cálculo IV EP13. Aula 23 Integral de Superfície de um Campo Vetorial Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP1 Aula Integral de uperfície de um Campo

Leia mais

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I. Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar

Leia mais

Introdução à Magneto-hidrodinâmica

Introdução à Magneto-hidrodinâmica Introdução à Magneto-hidrodinâmica Gilson Ronchi November, 013 1 Introdução A magneto-hidrodinâmica é o estudo das equações hidrodinâmicas em uidos condutores, em particular, em plasmas. Entre os principais

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de

Leia mais

Aula 25 Teorema do Divergente

Aula 25 Teorema do Divergente Aula 25 Teorema do Divergente MA211 - Cálculo II Marcos duardo Valle Departamento de Matemática Aplicada Instituto de Matemática, statística e Computação Científica Universidade stadual de Campinas Introdução

Leia mais

Lei de Ampere. 7.1 Lei de Biot-Savart

Lei de Ampere. 7.1 Lei de Biot-Savart Capítulo 7 Lei de Ampere No capítulo anterior, estudamos como cargas em movimento (correntes elétricas) sofrem forças magnéticas, quando na presença de campos magnéticos. Neste capítulo, consideramos como

Leia mais

2 Diferença de Potencial e Potencial Eletrostático

2 Diferença de Potencial e Potencial Eletrostático Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 3 - Potencial Eletrostático Prof. Elvis Soares Nesse capítulo, estudaremos o potencial eletrostático criado por cargas

Leia mais

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO ecc~ao de Algebra e Analise, Departamento de Matematica, Instituto uperior Tecnico Analise Matematica III A - o semestre de 6/7 FIHA DE TRABALHO 6 - REOLU ~AO ) Indique se as formas diferenciais seguintes

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

3.6 O Teorema de Stokes

3.6 O Teorema de Stokes 18 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.6 O Teorema de tokes Definição 3.41 eja K R um conjunto fechado e limitado, com interior não vazio, cuja fronteira K é uma curva fechada, simples e regular ou regular

Leia mais

Capítulo 7. Fontes de Campo Magnético. 7.1 Lei de Gauss no Magnetismo

Capítulo 7. Fontes de Campo Magnético. 7.1 Lei de Gauss no Magnetismo Capítulo 7 Fontes de Campo Magnético Nesse capítulo, exploraremos a origem do campo magnético - cargas em movimento. Apresentaremos a Lei de Gauss do Magnetismo, a Lei de Biot-Savart, a Lei de Ampère e

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014 Cálculo 2 Cálculo Vetorial ECT1212 Prof. Ronaldo Carlotto Batista 20 de novembro de 2014 Integrais de linha Podemos integrar uma função escalar f = f (x, y, z) em um dado caminho C, esta integral é dada

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Dipolo Magnético (Capítulo 8) Importância do dipolo magnético Cálculo do Potencial Vetorial Magnético de um

Leia mais

d 3 r ρ (r ) r r 3 (r r ). (2)

d 3 r ρ (r ) r r 3 (r r ). (2) Campo gravitacional Entre duas partículas puntiformes a força gravitacional é fácil de ser escrita e entendida intuitivamente, pois aponta sempre de uma partícula para a outra e é sempre atrativa. No entanto,

Leia mais