Aula 25 Teorema do Divergente

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 25 Teorema do Divergente"

Transcrição

1 Aula 25 Teorema do Divergente MA211 - Cálculo II Marcos duardo Valle Departamento de Matemática Aplicada Instituto de Matemática, statística e Computação Científica Universidade stadual de Campinas

2 Introdução O teorema do divergente, também chamado teorema de Gauss, estabelece uma relação entre a integral (derivada) do divergente de um campo vetorial F sobre uma região com a integral de F sobre a fronteira da região. Uma região R 3 é chamada região sólida simples se pode ser escrita simultaneamente como: = {(x, y, z) : (x, y) D xy, u 1 (x, y) z u 2 (x, y)}, (tipo 1), = {(x, y, z) : (y, z) D yz, v 1 (y, z) x v 2 (y, z)}, (tipo 2), = {(x, y, z) : (x, z) D xz, w 1 (x, z) y w 2 (x, z)}, (tipo 3). A fronteira de é uma superfície fechada e usaremos a convenção de que a orientação positiva é para fora.

3 Teorema do Divergente Teorema 1 (Teorema do Divergente) eja uma região sólida simples e seja a superfície fronteira de, orientada positivamente (para fora). eja F um campo vetorial cujas componentes tenha derivadas parciais contínuas em uma região aberta que contenha. ob essas hipóteses, tem-se: F d = div FdV.

4 Ideia da Demonstração do Teorema do Divergente eja F = Pi + Qj + Rk. Vamos mostrar que F d = div FdV. Por um lado, div FdV = P x dv + Q y dv + R z dv. Por outro lado, se n é o vetor normal unitário para fora de, F d = (Pi + Qj + Rk) nd = Pi nd + Qj nd + Rk nd. Mostraremos apenas que R z dv = Rk nd.

5 Primeiramente, como é uma região sólida simples, temos = {(x, y, z) : (x, y) D xy, u 1 (x, y) z u 2 (x, y)}. Observe que superfície fronteira é formada por três partes: o fundo 1, o topo 2 e possivelmente a lateral 3. (Figura extraída do livro de James tewart, Calculus, 5 edição.) Calcularemos a integral Rk nd, para i = 1, 2 e 3. i

6 obre 3, k n = 0 pois k é vertical e n é horizontal. Assim, 3 Rk nd = 0. A superfície 2 (topo) é dada por z = u 2 (x, y), (x, y) D, e n aponta para cima. Consequentemente, Rk nd = R ( x, y, u 2 (x, y) ) da. 2 D Analogamente, a superfície 1 (fundo) é dada por z = u 1 (x, y), (x, y) D, e n aponta para baixo. Portanto, Rk nd = R ( x, y, u 1 (x, y) ) da. 1 D

7 Logo, por um lado temos Rk nd = Rk nd + Rk nd + Rk nd = R ( x, y, u 1 (x, y) ) da + R ( x, y, u 2 (x, y) ) da. D Por outro lado, pelo teorema fundamental do cálculo temos ( ) R u2 (x,y) z dv = R D u 1 (x,y) z dz da = R ( x, y, u 2 (x, y) ) da R ( x, y, u 1 (x, y) ) da. D Comparando os resultados, concluímos que R z dv = Rk nd. D D

8 De um modo similar, pode-se mostrar que P x dv = Pi nd, e Q y dv = Qj nd. ssas últimas equações concluem a demostração do teorema do divergente!

9 xemplo 2 Determine o fluxo do campo vetorial F(x, y, z) = zi + yj + xk sobre a esfera unitária x 2 + y 2 + z 2 = 1.

10 xemplo 2 Determine o fluxo do campo vetorial F(x, y, z) = zi + yj + xk sobre a esfera unitária x 2 + y 2 + z 2 = 1. Resposta: Pelo teorema do divergente, temos F d = div FdV = 1dV = 3 4 π.

11 xemplo 3 Calcule F d em que F(x, y, z) = xyi + (y 2 + e xz2 )j + sen(xy)k, e é a superfície da região limitada pelo cilindro parabólico z = 1 x 2 e pelos planos z = 0, y = 0 e y + z = 2.

12 xemplo 3 Calcule F d em que F(x, y, z) = xyi + (y 2 + e xz2 )j + sen(xy)k, e é a superfície da região limitada pelo cilindro parabólico z = 1 x 2 e pelos planos z = 0, y = 0 e y + z = 2. Resposta: Pelo teorema do divergente, temos F d = div FdV = 1 1 x 2 2 z ydydzdx =

13 O teorema do divergente vale quando é a união de regiões sólidas simples! Por exemplo, suponha que é uma região solida entre duas superfícies 1 e 2, onde 1 está dentro de 2. ejam n 1 e n 2 os vetores normais (unitários) apontando para foram de 1 e 2, respectivamente. A superfície fronteira de é = 1 2 e sua normal n é dada por n = n 1 sobre 1 e n = n 2 sobre 2. Pelo teorema do divergente, temos div FdV = F d = F nd = F ( n 1 )d + F n 2 d 1 2 = F n 2 d F (n 1 )d. 2 1

14 xemplo 4 Determine o fluxo elétrico, dado por (x) = ɛq x, sobre x 3 uma superfície fechada que contém a origem. Dica: Pode-se verificar que div (x) = 0 para qualquer x.

15 xemplo 4 Determine o fluxo elétrico, dado por (x) = ɛq x, sobre x 3 uma superfície fechada que contém a origem. Dica: Pode-se verificar que div (x) = 0 para qualquer x. Resposta: Considere uma esfera a, com centro na origem e raio a suficientemente pequeno tal que a está dentro de. Assim, div FdV = F nd F (n a )d. a Porém, div = 0 e d = a Portanto, n a d = 4πɛQ. a F nd = 4πɛQ, para qualquer superfície fechada que contém a origem.

16 Interpretação do Divergente eja v um campo de velocidades de um fluido com densidade constante ρ. A vazão do fluido por unidade de área é F = ρv. e (x 0, y 0, z 0 ) é um ponto no fluido e B a é uma bola de raio a (pequeno) e centro em P 0, então div F(x, y, z) div F(x 0, y 0, z 0 ) para todo (x, y, z) B a. Assim, o fluxo na fronteira a da bola B a é F d = div FdV div F(x 0, y 0, z 0 )dv a B a B a = div F(x 0, y 0, z 0 )V (B a ), em que V (B a ) denota o volume de B a.

17 Tomando a 0, temos div F(x 0, y 0, z 0 ) = lim a 0 1 V (B a ) a F d. Portanto, div F(x 0, y 0, z 0 ) é a vazão total por unidade de volume que sai de (x 0, y 0, z 0 ). e div F(x, y, z) > 0, o escoamento total perto de (x, y, z) é para fora de (x, y, z). Nesse caso, (x, y, z) é chamado fonte. e div F(x, y, z) < 0, o escoamento total perto de (x, y, z) é para dentro e (x, y, z) é chamado sorvedouro.

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente.

1. Calcule a integral do fluxo F nds (i) diretamente e (ii) usando o teorema do divergente. Lista de Exercícios de álculo 3 Módulo 3 - Nona Lista - 02/2016 Parte A 1. alcule a integral do fluxo F nd (i) diretamente e (ii) usando o teorema do divergente. (a) F = (x 3 y 3 )i + (y 3 z 3 )j + (z

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Instituto de Fıśica UFRJ Mestrado em Ensino profissional

Instituto de Fıśica UFRJ Mestrado em Ensino profissional Instituto de Fıśica UFRJ Mestrado em Ensino profissional Tópicos de Fıśica Clássica II 1 a Lista de Exercıćios egundo emestre de 2008 Prof. A C Tort Exercıćio 1 O operador nabla Começamos definindo o operador

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges A lei de Gauss Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Fluxo de um campo

Leia mais

1. Calcule as integrais de linha de primeira espécie. (a) (b)

1. Calcule as integrais de linha de primeira espécie. (a) (b) Lista de Exercícios de álculo 3 Nona Semana Parte 1. alcule as integrais de linha de primeira espécie. xds sobre o arco da parábola y = x 2 de (0, 0) a (1, 1). x2 + y 2 ds sobre a curva r(t) = 4 cos ti

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Aula 1 Funções de Várias Variáveis

Aula 1 Funções de Várias Variáveis Aula 1 Funções de Várias Variáveis MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Leia mais

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes

Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Exercícios Resolvidos Teorema da Divêrgencia. Teorema de tokes Exercício 1 Considere a superfície definida por e o campo

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

Aula 19 Teorema Fundamental das Integrais de Linha

Aula 19 Teorema Fundamental das Integrais de Linha Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço.

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. 1 LIVRO Curvas Espaciais META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. PRÉ-REQUISITOS Funções vetoriais (Aula 08). Curvas Espaciais.1 Introdução Na aula

Leia mais

Volume de Sólidos. Principio de Cavalieri

Volume de Sólidos. Principio de Cavalieri Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO ecc~ao de Algebra e Analise, Departamento de Matematica, Instituto uperior Tecnico Analise Matematica III A - o semestre de 6/7 FIHA DE TRABALHO 6 - REOLU ~AO ) Indique se as formas diferenciais seguintes

Leia mais

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Volume e Área de Superfície, Parte II

Volume e Área de Superfície, Parte II AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Prof. Dr. Vicente Barros 5- O campo elétrico 6- Comportamento de uma carga pontual e um dipolo. 7- Lei de Gauss elétrica Antes de mais nada Vamos testar

Leia mais

MOVIMENTO EM UMA LINHA RETA

MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA Objetivos de aprendizagem: Descrever o movimento em uma linha reta em termos de velocidade média, velocidade instantânea, aceleração média e aceleração

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Introdução à Magneto-hidrodinâmica

Introdução à Magneto-hidrodinâmica Introdução à Magneto-hidrodinâmica Gilson Ronchi November, 013 1 Introdução A magneto-hidrodinâmica é o estudo das equações hidrodinâmicas em uidos condutores, em particular, em plasmas. Entre os principais

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Volume de um sólido de Revolução

Volume de um sólido de Revolução Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas

Leia mais

Resumo com exercícios resolvidos dos assuntos:

Resumo com exercícios resolvidos dos assuntos: www.engenhariafacil.weebly.com (0)- Considerações iniciais: Resumo com exercícios resolvidos dos assuntos: Máximos e mínimos absolutos e Multiplicador de Lagrange -Grande parte das funções não possui máximos

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

Universidade Federal do Rio de Janeiro Cálculo III

Universidade Federal do Rio de Janeiro Cálculo III Universidade Federal do Rio de Janeiro Cálculo III 1 o semestre de 26 Primeira Prova Turma EN1 Não serão aceitas respostas sem justificativa. Explique tudo o que você fizer. 1. Esboce a região de integração,

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Fluxo de um campo vetorial e a Lei de Gauss

Fluxo de um campo vetorial e a Lei de Gauss Fluxo de um campo vetorial e a Lei de Gauss Bibliografia e figuras: Sears & Zemanski, 12a ed. cap 22 Nesta aula vamos aprender a: determinar a quantidade de carga no interior de uma superfície fechada

Leia mais

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Superfícies de Revolução e Outras Aplicações Aula 32 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Teorema da Divergência

Teorema da Divergência Instituto Superior Técnico epartamento de atemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema da ivergência Nestas notas apresentaremos o teorema da divergência em R 3 (Teorema de Gauss devido

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho Revisão Analise Vetorial e Sist. de Coord. Revisão básica álgebra vetorial e Sist. de Coordenadas (Páginas 1 a 22 no Livro texto) Objetivo: Introduzir notação que será usada neste e nos próximos

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

Gráco de funções de duas variáveis

Gráco de funções de duas variáveis UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 09 Assunto:Gráco de funções de duas variáveis, funções de três variáveis reais a valores reais, superfícies de nível,funções limitadas Palavras-chaves:

Leia mais

Limites de Funções de Variáveis Complexas

Limites de Funções de Variáveis Complexas Limites de Funções de Variáveis Complexas AULA 2 META: Introduzir o conceito de limite de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir limites de

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Superfícies Parametrizadas

Superfícies Parametrizadas Universidade Estadual de Maringá - epartamento de Matemática Cálculo iferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit Superfícies Parametrizadas Prof.

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

{ y} Cálculo III. 1 - Funções de Várias Variáveis

{ y} Cálculo III. 1 - Funções de Várias Variáveis 1 Cálculo III 1 - Funções de Várias Variáveis Em muitos casos, o valor de uma grandeza depende do valor de duas ou mais outras. O volume de água de um reservatório, por exemplo, depende das chuvas e da

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

Prof. Marcelo França

Prof. Marcelo França Prof. Marcelo França VETOR POSIÇÃO ( ). No capítulo precedente, estudamos as propriedades e as operações envolvendo vetores. Temos, agora, plenas condições de iniciar o estudo dos movimentos no plano

Leia mais

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico.

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. Grandezas Vetores É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. GRANDEZA ESCALAR São aquelas medidas que precisam

Leia mais

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza Geometria Analítica Superfícies Prof Marcelo Maraschin de Souza Superfícies Quadráticas A equação geral do 2º grau nas três variáveis x,y e z ax 2 + by 2 + cz 2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q

Leia mais

Fundamentos do Eletromagnetismo - Aula IX

Fundamentos do Eletromagnetismo - Aula IX Fundamentos do Eletromagnetismo - Aula IX Prof. Dr. Vicente Barros Conteúdo 11 - Energia eletrostática e capacitância. Conteúdo 12- Capacitores. Antes uma revisão Existe o famoso triângulo das equações

Leia mais

AULA DO CAP. 15-2ª Parte Fluidos Ideais em Movimento DANIEL BERNOULLI ( )

AULA DO CAP. 15-2ª Parte Fluidos Ideais em Movimento DANIEL BERNOULLI ( ) AULA DO CAP. 15-2ª Parte Fluidos Ideais em Movimento DANIEL BERNOULLI (1700-1782) Radicada em Basiléia, Suíça, a família Bernoulli (ou Bernouilli) tem um papel de destaque nos meios científicos dos séculos

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π MAT 2455 álculo Diferencial e Integral para Engenharia III Prova 2 14/5/213 Turma A Questão 1. a) 1, ponto) Um o tem o formato da curva {x, y) R 2 : x 2) 2 + y 2 = 4, y }. Se sua densidade de massa é dada

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

Exercícios Resolvidos Mudança de Coordenadas

Exercícios Resolvidos Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Aula 12 Composição Relação-Conjunto Fuzzy.

Aula 12 Composição Relação-Conjunto Fuzzy. Aula 12 Composição Relação-Conjunto Fuzzy. MS58 - Introdução à Teoria Fuzzy Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade 1 DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade GRANDEZAS ESCALARES São grandezas que se caracterizam apenas por um valor acompanhado uma unidade

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

Princípios de Modelagem Matemática Aula 04

Princípios de Modelagem Matemática Aula 04 Princípios de Modelagem Matemática Aula 04 Prof. José Geraldo DFM CEFET/MG 09 de abril de 2014 1 Análise dimensional Análise dimensional A análise dimensional permite encontrar relações entre variáveis

Leia mais

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. Dirce Uesu Pesco 29/01/2013

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. Dirce Uesu Pesco 29/01/2013 GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA Dirce Uesu Pesco 29/01/2013 I) Dados um ponto do plano e vetor normal ao plano; II) III) Dados um ponto do plano e dois vetores paralelos

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Aula Transformações

Aula Transformações Aula 6 6. Transformações O gráfico de uma função f permite obter os gráficos de outras funções, via transformações elementares. Para simplificar, nesta seção consideraremos somente funções cujo domínio

Leia mais

Aula 26 Separação de Variáveis e a Equação da Onda.

Aula 26 Separação de Variáveis e a Equação da Onda. Aula 26 Separação de Variáveis e a Equação da Onda. MA311 - Cálculo III Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

Para entendermos esse resultado, primeiro consideremos o seguinte lema: ˆ. d 3 r f z =

Para entendermos esse resultado, primeiro consideremos o seguinte lema: ˆ. d 3 r f z = Eletromagnetismo I Aula 2 Eercícios: faça os problemas numerados de 15 a 26 do Capítulo 1 do livro-teto. O Teorema da Divergência de Gauss: http://en.wikipedia.org/wiki/divergence_theorem d 3 r F ( ) da

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha. Integrais Triplas

Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha. Integrais Triplas Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo erra Cunha Integrais riplas Nas primeiras aulas discutimos integrais duplas em vária regiões. Seja motivado pelas aplicações, seja apenas pelo

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Objetos Gráficos Espaciais

Objetos Gráficos Espaciais Universidade Federal de Alagoas Instituto de Matemática Objetos Gráficos Espaciais Prof. Thales Vieira 2014 Objetos Gráficos Espaciais f : U R m 7! R 3 Universo físico Objetos gráficos Representação de

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 0 Lista Sequências de Números Reais. Dê o termo geral de cada uma das seguintes sequências: a,, 3, 4,... b, 4, 9, 6,... c,,

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

1.1 Propriedades básicas dos números reais, axiomática dos números reais.

1.1 Propriedades básicas dos números reais, axiomática dos números reais. I - Funções reais de variável real 1. Números Reais. 1.1 - Números naturais, números relativos, números racionais e números reais. De uma forma muito simples vamos recordar os números: Números Naturais

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Caderno de Prova. Matemática. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 001/2011.

Caderno de Prova. Matemática. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 001/2011. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 00/20 http://uffs.sel.fepese.org.br Caderno de Prova agosto 7 7 de agosto das 4 às 7 h 3 h de duração* 40 questões S06 Matemática Confira

Leia mais

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada 1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 05 Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais

Leia mais

Prova P1 Física para Engenharia II, turma set. 2014

Prova P1 Física para Engenharia II, turma set. 2014 Exercício 1 Um ventilador, cujo momento de inércia é 0,4 kg m 2, opera em 600 rpm (rotações por minuto). Ao ser desligado, sua velocidade angular diminui uniformemente até 300 rpm em 2 s, e continua assim

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

Lista 5: Trabalho e Energia

Lista 5: Trabalho e Energia Lista 5: Trabalho e Energia NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

Lei de Coulomb. Interação entre Duas Cargas Elétricas Puntiformes

Lei de Coulomb. Interação entre Duas Cargas Elétricas Puntiformes Lei de Coulomb Interação entre Duas Cargas Elétricas Puntiformes A intensidade F da força de interação eletrostática entre duas cargas elétricas puntiformes q 1 e q 2, é diretamente proporcional ao produto

Leia mais

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x Notas de aula de MAC0329 (2003) 17 3 Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis

Leia mais

Exemplos de aplicação das leis de Newton e Conservação da Energia

Exemplos de aplicação das leis de Newton e Conservação da Energia Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo

Leia mais

Movimento em duas ou mais dimensões. Prof. Ettore Baldini-Neto

Movimento em duas ou mais dimensões. Prof. Ettore Baldini-Neto Movimento em duas ou mais dimensões Prof. Ettore Baldini-Neto A partir de agora, generalizamos a discussão que fizemos para o movimento retilíneo para mais dimensões. A grande diferença é que o cálculo

Leia mais

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3 VETORES E R3 Ultra-Fast Prof.: Fábio Rodrigues fabio.miranda@engenharia.ufjf.br Obs.: A maioria das figuras deste texto foram copiadas do livro virtual álgebra vetorial e geometria analítica, 9ª edição,

Leia mais

Sétima Lista - Lei de Faraday

Sétima Lista - Lei de Faraday Sétima Lista - Lei de Faraday FGE211 - Física III Sumário O fluxo magnético através de uma superfície S é definido como Φ B = B da A Lei da Indução de Faraday afirma que a força eletromotriz (fem) induzida

Leia mais

02) Estima-se que, t anos a partir de agora, a circulação de um jornal local será dada por

02) Estima-se que, t anos a partir de agora, a circulação de um jornal local será dada por Matemática II 009. E-mails: damasceno104@yahoo.com.br damasceno1@uol.com.br damasceno1@hotmail.com Lista de exercícios 06 01) Considere a função a) b) c) d) e) 1 y = x 1 m = no ponto (0, ) 1 m = no ponto

Leia mais

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula 1 02/09 Sequências Numéricas, definição, exemplos, representação geométrica, convergência e divergência, propriedades,

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais