d 3 r ρ (r ) r r 3 (r r ). (2)

Tamanho: px
Começar a partir da página:

Download "d 3 r ρ (r ) r r 3 (r r ). (2)"

Transcrição

1 Campo gravitacional Entre duas partículas puntiformes a força gravitacional é fácil de ser escrita e entendida intuitivamente, pois aponta sempre de uma partícula para a outra e é sempre atrativa. No entanto, quando uma partícula puntiforme encontra-se na presença de um corpo extenso, a direção da força de atração sobre a partícula pontual não pode mais ser facilmente adivinhada. Isso acontece porque, geralmente, a força gravitacional não aponta para o centro de massa do corpo extenso, mas depende de sua distribuição de massa. É por isso que o conceito de campo gravitacional é útil, já que consiste das linhas de força que ocupam o espaço, sendo geradas por qualquer corpo dotado de massa. Tome uma partícula pontual de massa m que interage gravitacionalmente com um corpo extenso de massa M. A força sobre a massinha m, suposta fixa no ponto r, é dada por F (r = Gm d 3 r ρ (r 3 (r r, ( onde ρ (r é a densidade de massa do corpo extenso de massa total M, calculada no ponto r. Note que a integral é sobre o volume do corpo de massa M. A integração pode ser estendida para todo o espaço físico, já que ρ (r = 0 caso o ponto r não esteja dentro do volume. Fazendo o limite da massa m indo a zero, definimos o campo gravitacional como F (r g (r = lim m 0 + m = G d 3 r ρ (r 3 (r r. (2 É fácil verificar que, como a força gravitacional é conservativa, existe uma função escalar G (r tal que g (r = G (r, (3 onde G (r é chamado de potencial gravitacional. Note que o sinal é invertido com relação à energia potencial (r, cujo gradiente dá a força gravitacional multiplicada por : F = (r. (4 Para ver que a Eq. ( dá a Eq. (4, basta notar que Para ver que essa relação é válida, note que = r r 3. (5 r r = x (x x + ŷ (y y + ẑ (z z (6 e, portanto, = (x x 2 + (y y 2 + (z z 2. (7

2 Logo, = (x x 2 + (y y 2 + (z z 2. (8 Assim, x =, x (x x 2 + (y y 2 + (z z 2 x x x = [(x x 2 + (y y 2 + (z z 2], 3/2 ou seja, x = x x 3, onde usei a Eq. (8. Analogamente, y e z = y y 3 = z z 3, Com essas derivadas parciais, podemos agora escrever r r = x ( x r r + ŷ y ou seja, + ẑ z = x x x 3 ŷ y y 3 ẑ z z 3, ( r r, = x (x x + ŷ (y y + ẑ (z z 3 = r r 3, onde usei a Eq. (6 e esse resultado mostra a validade da Eq. (5. Usando a Eq. (5 na Eq. ( dá F (r = Gm d 3 r ρ (r. 2

3 Como o operador opera na variável r e não em r, podemos escrever essa equação assim também: F (r = Gm d 3 r ρ (r. Como a variável de integração é r e não r, segue que o operador pode ser retirado da integral e o resultado disso é F (r = Gm d 3 r ρ (r, F (r = (r, onde definimos a energia potencial gravitacional (r = d 3 r Gmρ (r r r. (9 Esse resultado mostra a Eq. (4. De forma análoga, a Eq. (3 pode ser vista facilmente a partir da Eq. (2: g (r = G d 3 r ρ (r 3 (r r = G d 3 r ρ (r, onde definimos G (r = g (r = G (r, O campo gravitacional é irrotacional, pois d 3 r Gρ (r. (0 g (r = G (r = 0. ( O fluxo do campo gravitacional sobre uma superfície fechada,, é dado por dan g (r = G dan d 3 r ρ (r 3 (r r, que, para uma massa m pontual dentro da superfície, ao invés de um corpo extenso, dá dan g (r = G da mn (r r 3. 3

4 Mas vou tomar a origem exatamente sobre a massinha m. Então, dan g (r = G da mn r mn r r 3 = G da r 2, onde No integrando, r = r. dan r = dωr 2, onde dω é o elemento de ângulo sólido subentendido pelo elemento de área da. Então, dωr 2 dan g (r = Gm r 2 = Gm dω = 4πGm. (2 Como a superfície pode ser completamente arbitrária, m pode ficar em qualquer ponto interno a e o resultado sempre será o mesmo. Em particular, quando temos mais do que uma massa m apenas dentro de, basta somarmos o resultado: dan g (r = 4πG m k. (3 k No caso de uma distribuição contínua, dan g (r = 4πG d 3 rρ (r, (4 com sendo uma região no interior da superfície fechada. Pelo teorema da divergência de Gauss, podemos escrever d 3 r g (r = dan g (r (5 e, usando a Eq. (4, a Eq. (5 fornece d 3 r g (r = 4πG para todo volume. endo assim, d 3 rρ (r, d 3 r [ g (r + 4πGρ (r] = 0, g (r = 4πGρ (r. (6 4

5 ubstituindo a Eq. (3 na Eq. (6 fornece G (r = 4πGρ (r, 2 G (r = 4πGρ (r, (7 que é a chamada equação de Poisson para o potencial gravitacional e o operador 2 = é chamado de laplaciano. Quando estamos considerando a Eq. (7 em uma região do espaço onde não há massa, obtemos a chamada equação de Laplace para o potencial gravitacional: 2 G (r = 0. (8 As Eqs. ( e (6 são as equações fundamentais para o campo gravitacional de Newton. A Eq. (7 reúne ambas as Eqs. ( e (6. No entanto, para resolver essas equações, é necessário saber as condições de contorno que o campo gravitacional deve satisfazer na fronteira da região onde essas equações devem ser resolvidas. Bibliografia [] Keith R. ymon, Mechanics, terceira edição (Addison Wesley, 97. 5

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho.

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Eletricidade e Magnetismo - IME Potencial Elétrico Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Energia Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Equipamentos

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

TÓPICO. Fundamentos da Matemática II APLICAÇÕES DAS DERIVADAS PARCIAIS9. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II APLICAÇÕES DAS DERIVADAS PARCIAIS9. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques APLICAÇÕES DAS DERIVADAS PARCIAIS9 TÓPICO Gil da Costa Marques 9. Introdução 9. Derivadas com significado físico: o gradiente de um Campo Escalar 9.3 Equação de Euler descrevendo o movimento de um fluido

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais escalar e vetorial magnéticos (Capítulo 7 Páginas 210 a 216) Potencial Escalar Vm Potencial Vetorial

Leia mais

Física Computacional 8

Física Computacional 8 Física Computacional 8 Eqs. Difs. Ders. Parciais 1. Introdução às Eqs Dif. Ders. Parciais a. O que é uma Equação Diferencial às Derivadas Parciais b. Exemplo de diferenças finitas: o operador Laplaciano

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia Eletrostática (Capítulo 4 Páginas 00 a 04) Energia potencial de um grupo de cargas pontuais. Energia de uma distribuição contínua de carga. Densidade de energia no campo

Leia mais

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO 99 15 EQUAÇÕES DE MAXWELL, POTENCIAL MANÉTICO E EQUAÇÕES DE CAMPO 15.1 - AS QUATRO EQUAÇÕES DE MAXWELL PARA CAMPOS ELÉTRICOS E MANÉTICOS ESTACIONÁRIOS Como pudemos observar em todo o desenvolvimento deste

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l Eletromagnetismo I Prof. Ricardo Galvão - Semestre 015 Preparo: Diego Oliveira Aula 7 Trabalho realizado em um campo eletrostático Suponhamos que numa região do espaço exista um campo elétrico E. Qual

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4 Eletromagnetismo I Prof. Ricardo Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 4 Equações de Maxwell O livro texto inicia a apresentação de Eletromagnetismo pela Eletrostática. No entanto, antes

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Corrente e Eq. da Continuidade (Capítulo 5 Páginas 109 a 113) Densidade de corrente Elétrica Equação da Continuidade Forma Integral Equação da Continuidade Forma

Leia mais

O pêndulo composto. k 2 0 = I z. Logo,

O pêndulo composto. k 2 0 = I z. Logo, O pêndulo composto Um pêndulo composto consiste de um corpo rígido, de massa M, que pode girar livremente em torno de um eixo sob a ação da gravidade. Escolhamos o eixo z como sendo o eixo de rotação.

Leia mais

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Coordenadas Curvilíneas Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Até agora, usamos sempre o sistema de coordenadas cartesiano, ou seja: dados três eixos

Leia mais

Cálculo Diferencial e Integral de Campos Vetoriais

Cálculo Diferencial e Integral de Campos Vetoriais Capítulo 1 Cálculo Diferencial e Integral de Campos Vetoriais Conteúdo 1.1 Breve Interlúdio........................... 8 1.2 Noções básicas de campo escalar e vetorial........... 9 1.3 Divergência de um

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo Prof. Dr. Vicente Barros 5- O campo elétrico 6- Comportamento de uma carga pontual e um dipolo. 7- Lei de Gauss elétrica Antes de mais nada Vamos testar

Leia mais

Em um circuito RLC série, a potência média fornecida pelo gerador é igual a potência média dissipada no resistor. Com isso: 2

Em um circuito RLC série, a potência média fornecida pelo gerador é igual a potência média dissipada no resistor. Com isso: 2 ELETROMAGNETISMO Em um circuito RLC série, a potência média fornecida pelo gerador é igual a potência média dissipada no resistor. Com isso: 2 P méd = I rms R = E rms I rms cosφ Onde rms é o valor quadrático

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. 1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Corrente e Eq. da Continuidade (Capítulo 4 Páginas 109 a 113) Densidade de corrente Elétrica Equação da Continuidade Forma Integral Equação da Continuidade Forma

Leia mais

2 Diferença de Potencial e Potencial Eletrostático

2 Diferença de Potencial e Potencial Eletrostático Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 3 - Potencial Eletrostático Prof. Elvis Soares Nesse capítulo, estudaremos o potencial eletrostático criado por cargas

Leia mais

A equação de onda com fonte

A equação de onda com fonte A equação de onda om fonte Na postagem, Invariânia de alibre ou gauge, vimos que podemos esolher o alibre de Lorentz e resolver a mesma equação de onda om fonte para as três omponentes do potenial vetorial

Leia mais

F = Gm V FIGURA 5-2. g = F m = GM r 2 e r (5.3) g = G V

F = Gm V FIGURA 5-2. g = F m = GM r 2 e r (5.3) g = G V C A P Í T U L O 5 GRAITAÇÃO 5.1 INTRODUÇÃO Por volta de 1666, Newton formulou e verificou numericamente a lei gravitacional que ele publicou em seu livro Principia em 1687. Newton esperou quase 20 anos

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

Potencial Elétrico 1

Potencial Elétrico 1 Potencial Elétrico 1 Vamos começar com uma revisão: Quando uma força atua sobre uma partícula que se move de um ponto a até um ponto b, o trabalho W realizado pela força é dado pela integral de linha:

Leia mais

Segunda Lista - Lei de Gauss

Segunda Lista - Lei de Gauss Segunda Lista - Lei de Gauss FGE211 - Física III 1 Sumário O fluxo elétrico que atravessa uma superfície infinitesimal caracterizada por um vetor de área A = Aˆn é onde θ é o ângulo entre E e ˆn. Φ e =

Leia mais

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Problema 1: Capacitor preenchido com dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Considere um capacitor de placas paralelas,

Leia mais

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Prof. Alex G. Dias Prof. Alysson F. Ferrari Solução de problemas eletrostáticos via Equação de Laplace Especicada a distribuição

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 3.4 Potencial Gravítico Com já vimos anteriormente o vector do campo gravítico, g, pode ser representado, de forma única e completa, por um campo escalar, o potencial gravítico W; Conhecido o potencial

Leia mais

CAP 03 CÁLCULO VETORIAL

CAP 03 CÁLCULO VETORIAL CAP 03 CÁLCULO VETORIAL Estudaremos integração e diferenciação de vetores. COMPRIMENTO, ÁREA E VOLUME DIFERENICIAI Os elementos diferenciais de comprimento, área e volume são úteis em cálculo vetorial.

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de arvalho Eletromagnetismo I - Eletrostática Lei de Ampère na Forma Diferencial (apítulo 7 Páginas 195 a 203) Teorema de

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

Introdução à Magneto-hidrodinâmica

Introdução à Magneto-hidrodinâmica Introdução à Magneto-hidrodinâmica Gilson Ronchi November, 013 1 Introdução A magneto-hidrodinâmica é o estudo das equações hidrodinâmicas em uidos condutores, em particular, em plasmas. Entre os principais

Leia mais

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss Linhas de Força Fundamentos da Eletrostática Aula 6 Mais sobre o campo elétrico e a lei de Gauss Prof. Alex G. Dias Prof. Alysson F. Ferrari Vimos na última aula a denição do campo elétrico E (r), F (r)

Leia mais

LIÇÃO 02 O CAMPO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

LIÇÃO 02 O CAMPO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO LIÇÃO 02 O CAMPO ELÉTRICO Como vimos, não é necessário que duas partículas estejam em contato para que interajam entre si. Essa interação ocorre através do chamado campo. Para o caso dos

Leia mais

31/05/17. Ondas e Linhas

31/05/17. Ondas e Linhas 31/05/17 1 Guias de Onda (pags 102 a 112 do Pozar) Geometria e Condições de Contorno Solução geral para Modos TE Solução geral para Modos TM 31/05/17 2 Cabo Coaxial Vamos considerar os campos de um cabo

Leia mais

EAC-082: Geodésia Física. Aula 5 Teoria do Potencial e PVCG

EAC-082: Geodésia Física. Aula 5 Teoria do Potencial e PVCG EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 5 Teoria do Potencial e PVCG https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1 1/55 Potencial Gravitacional Vimos anteriormente

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Capítulo 10 Rotação Copyright 10-1 Variáveis Rotacionais Agora estudaremos o movimento de rotação Aplicam-se as mesmas leis Mas precisamos de novas variáveis para expressá-las o o Torque Inércia rotacional

Leia mais

Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais

Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Prof. Alex G. Dias Prof. Alysson F. Ferrari Integrando Campos vetoriais Você já viu que, diferentemente de campos escalares, campos

Leia mais

Campo Eletromagnético Cap. 5 e 6

Campo Eletromagnético Cap. 5 e 6 Campo Eletromagnético Cap. 5 e 6 Equações de Maxwell Formulação dos potenciais e invariância de calibre Decomposição dos campos vetoriais Força de Lorentz e momento canônico Densidade e fluxo de energia

Leia mais

Lista 2 de CF368 - Eletromagnetismo I

Lista 2 de CF368 - Eletromagnetismo I Lista 2 de CF368 - Eletromagnetismo I Fabio Iareke 28 de setembro de 203 Exercícios propostos pelo prof. Ricardo Luiz Viana , retirados de []. Capítulo 3 3-

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO Se um carga elétrica se move de um ponto à outro, qual é o trabalho realizado sobre essa carga? A noção de mudança de posição nos remete

Leia mais

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS 1. INTRODUÇÃO Sistemas dinâmicos lineares são aqueles que obedecem ao princípio da superposição, isto é, um sistema

Leia mais

Multiplicadores de Lagrange

Multiplicadores de Lagrange Multiplicadores de Lagrange Para motivar o método, suponha que queremos maximizar uma função f (x, y) sujeito a uma restrição g(x, y) = 0. Geometricamente: queremos um ponto sobre o gráfico da curva de

Leia mais

Resumo P1 Mecflu. Princípio da aderência completa: o fluido junto a uma superfície possui a mesma velocidade que a superfície.

Resumo P1 Mecflu. Princípio da aderência completa: o fluido junto a uma superfície possui a mesma velocidade que a superfície. Resumo P1 Mecflu 1. VISCOSIDADE E TENSÃO DE CISALHAMENTO Princípio da aderência completa: o fluido junto a uma superfície possui a mesma velocidade que a superfície. Viscosidade: resistência de um fluido

Leia mais

FÍSICA III AULA 2 PROFESSORA MAUREN POMALIS

FÍSICA III AULA 2 PROFESSORA MAUREN POMALIS FÍSICA III AULA 2 PROFESSORA MAUREN POMALIS mauren.pomalis@unir.br ENG. ELÉTRICA - 3 PERÍODO UNIR/Porto Velho 2017/1 SUMÁRIO Entrega do tema de casa Revisão Campo elétrico Campo elétrico - Carga puntiforme

Leia mais

este termo já se tornou obsoleto, pois depois das derivadas em φ, qualquer termo que sobrar com J multiplicado vai ser nulo (quando J=0)

este termo já se tornou obsoleto, pois depois das derivadas em φ, qualquer termo que sobrar com J multiplicado vai ser nulo (quando J=0) este termo já se tornou obsoleto, pois depois das derivadas em φ, qualquer termo que sobrar com J multiplicado vai ser nulo (quando J=0) vetor vetor Teoria Quântica de Campos II 39 estamos generalizando

Leia mais

equação paramêtrica/vetorial da superfície: a lei

equação paramêtrica/vetorial da superfície: a lei 1 Superfícies Definição Chamamos Superfície parametrizada em R n : uma função contínua : B R n (n 3) onde B R 2. Superfície: a imagem de, equação paramêtrica/vetorial da superfície: a lei Seja p 0 = (s

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Equações de Maxwell e Equação de Onda (Capítulo 9 Páginas 288 a 292) (Capítulo 11 Páginas 267 a 272) Equações

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Os vórtices da turbulência bidimensional

Os vórtices da turbulência bidimensional file:///c:/users/utilizador/documents/ficheiros%20universidade/diversos/bolsa%20gulbenkian/2008.09/hurricane%5b1%5d.jpg Os vórtices da turbulência bidimensional Seminário Diagonal 27/05/2009 José Ricardo

Leia mais

Uma lagrangeana para a corda vibrante

Uma lagrangeana para a corda vibrante Uma agrangeana para a corda vibrante Pense em uma corda de comprimento presa em suas extremidades ao ongo de uma inha horizonta que vamos tomar como sendo o eixo x. Então a corda não se move nos pontos

Leia mais

Funções Hiperbólicas:

Funções Hiperbólicas: Funções Hiperbólicas: Estas funções são parecidas as funções trigonométricas e possuem muitas aplicações como veremos ao longo da disciplina. Definiremos primeiro as funções seno hiperbólico e cosseno

Leia mais

Mecânica Clássica I 2011/2012

Mecânica Clássica I 2011/2012 Mecânica Clássica I 2011/2012 Constança Providência Gabinete D.44 Departamento de Física Universidade de Coimbra Horário de atendimento: quarta-feira das 11h30-12h30 quinta-feira das 10h30-12h30 Bibliografia

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

= ρ (N.1) A+ 1 c 2 φ. 2 φ 1 2 φ

= ρ (N.1) A+ 1 c 2 φ. 2 φ 1 2 φ Apêndice N Solução Geral da Equação de Ondas Eletromagnéticas No caso geral em que há presença de densidades de cargas ρ e correntes j, vimos que os potenciais eletromagnéticos φ, A satisfazem as Eqs.

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O Potencial Elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico

Leia mais

0.5.2 Lei de Gauss aplicada a superfícies de carga

0.5.2 Lei de Gauss aplicada a superfícies de carga 16 0.5.2 Lei de Gauss aplicada a superfícies de carga E 1 E 2 Figure 3: Aplicação da lei de Gauss às proximidades de um ponto de uma superfície carregada com a densidade superficial σ. O campo eléctrico

Leia mais

Note que este funcional gerador agora tem sempre potências ímpares de J, de forma que as funções de n pontos serão nulas para n par:

Note que este funcional gerador agora tem sempre potências ímpares de J, de forma que as funções de n pontos serão nulas para n par: Teoria Quântica de Campos I 98 de onde fica claro que a lógica por trás do Teorema de Wick (conectar os pontos externos de todas as formas possíveis) aqui é implementada pela regra do produto da derivada.

Leia mais

EAC-082: Geodésia Física. Aula 4: Teoria do Potencial

EAC-082: Geodésia Física. Aula 4: Teoria do Potencial EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 4: Teoria do Potencial https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1 1/27 Campo da Gravidade Vimos anteriormente que: m 2 =m

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Prof. Dr. Helder Alves Pereira Outubro, 2017 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS

Leia mais

Expressa a inexistência de cargas magnéticas, também chamadas monopolos magnéticos.

Expressa a inexistência de cargas magnéticas, também chamadas monopolos magnéticos. Capítulo 10 Equações de Maxwell 10.1 Fluxo Magnético Lei de Gauss: relaciona fluxo elétrico com carga elétrica. O equivalente para campos magnéticos também é uma equação fundamental do eletromagnetismo:

Leia mais

Tipos de forças. - As forças em físicas podem ser divididas em dois grandes grupos que são:

Tipos de forças. - As forças em físicas podem ser divididas em dois grandes grupos que são: Tipos de forças - As forças em físicas podem ser divididas em dois grandes grupos que são: - a) forças conservativas: são forças cujo trabalho não depende da trajetória. Exemplo: força gravitacional, elástica,

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Teoria Quântica de Campos I 195 Da mesma forma podemos obter a linha externa do fóton (usando a expansão da pag 149):

Teoria Quântica de Campos I 195 Da mesma forma podemos obter a linha externa do fóton (usando a expansão da pag 149): Teoria Quântica de Campos I 195 Da mesma forma podemos obter a linha externa do fóton (usando a expansão da pag 149): (Mink.) na pg 149 escolhemos ε real, que é útil para polariz. transversa. Para polarizações

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

PLANO DE CURSO (Res. CEPE nº 144/98) CENTRO DE CIÊNCIAS EXATAS Departamento de Física 2013 CÓDIGO Turmas NOME 2FIS /2000 ELETROMAGNETISMO I

PLANO DE CURSO (Res. CEPE nº 144/98) CENTRO DE CIÊNCIAS EXATAS Departamento de Física 2013 CÓDIGO Turmas NOME 2FIS /2000 ELETROMAGNETISMO I Centro de Ciências Exatas Departamento de Física Ano Letivo - 2013 PLANO DE CURSO (Res. CEPE nº 144/98) CENTRO DE CIÊNCIAS EXATAS ANO LETIVO Departamento de Física 2013 CÓDIGO Turmas NOME 2FIS031 1000/2000

Leia mais

= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1

= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1 Definição 0.1. eja F : R n R n um campo de vetores (diferenciável. screva F = (F 1,..., F n. (i O divergente de F é a função div F : R n R definida por div F. = m particular, para n = temos n F i = F 1

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

Regras de Feynman no espaço das posições

Regras de Feynman no espaço das posições em termos de diagramas (note que os fatores de simetria também já saíram certos): Teoria Quântica de Campos I 115 Regras de Feynman no espaço das posições Primeiramente vamos re-escrever o teorema de Wick

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2 Eletromagnetismo I Prof. Dr. R.M.O Galvão - 1 Semestre 2015 Preparo: Diego Oliveira Aula 2 Na aula passada recordamos as equações de Maxwell e as condições de contorno que os campos D, E, B e H devem satisfazer

Leia mais

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ]

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ] SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé 1 o sem/2016 Nome: 1 a Prova - 07/10/2016 Apresentar todos os cálculos - casas decimais 1. Considere a família de funções da forma onde

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísica INTRODUÇÃO À ASTROFÍSICA LIÇÃO 21 O EQUILÍBRIO HIDROSTÁTICO Lição 20 O Equilíbrio Hidrostático As estrelas se formam a partir de regiões densas e frias, chamadas de nebulosas.

Leia mais

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 03 O FLUXO ELÉTRICO Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

EAC-082: Geodésia Física. Aula 6: Altitudes e o Geopotencial

EAC-082: Geodésia Física. Aula 6: Altitudes e o Geopotencial EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 6: Altitudes e o Geopotencial 1 https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1/33 Potencial Gravitacional Vimos anteriormente

Leia mais

PLANO DE ATIVIDADE ACADÊMICA NOME

PLANO DE ATIVIDADE ACADÊMICA NOME ANO LETIVO Centro: CENTRO DE CIÊNCIAS EXATAS - CCE Departamento: FÍSICA 2016 CÓDIGO 2FIS068 PLANO DE ATIVIDADE ACADÊMICA NOME MECÂNICA GERAL CURSO FÍSICA 3ª SÉRIE CARGA HORÁRIA SEM. DE OFERTA HABILITAÇÃO(ÕES)

Leia mais

Energia Potencial e Forças Conservativas

Energia Potencial e Forças Conservativas Energia Potencial e Forças Conservativas Evandro Bastos dos Santos 22 de Maio de 217 1 Trabalho O trabalho realizado por uma força, quando do deslocamento de uma partícula entre dois pontos, envolve uma

Leia mais

Para entendermos esse resultado, primeiro consideremos o seguinte lema: ˆ. d 3 r f z =

Para entendermos esse resultado, primeiro consideremos o seguinte lema: ˆ. d 3 r f z = Eletromagnetismo I Aula 2 Eercícios: faça os problemas numerados de 15 a 26 do Capítulo 1 do livro-teto. O Teorema da Divergência de Gauss: http://en.wikipedia.org/wiki/divergence_theorem d 3 r F ( ) da

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação www.engenhariafacil.net Resumo com exercícios resolvidos do assunto: Dinâmica do Movimento de Rotação (1)- TORQUE, CONSIDERAÇÕES INICIAIS: Já estudamos que a atuação de forças em um corpo altera o movimento

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

PLANO DE ATIVIDADE ACADÊMICA NOME

PLANO DE ATIVIDADE ACADÊMICA NOME ANO LETIVO Centro: CENTRO DE CIÊNCIAS EXATAS - CCE Departamento: FÍSICA 2015 CÓDIGO 2FIS066 PLANO DE ATIVIDADE ACADÊMICA NOME MECÂNICA GERAL CURSO FÍSICA 3ª SÉRIE CARGA HORÁRIA SEM. DE OFERTA HABILITAÇÃO(ÕES)

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Regras de Feynman no espaço dos momentos (Euclideano): Regras de Feynman para a matriz S (Minkowski / Momentos):

Regras de Feynman no espaço dos momentos (Euclideano): Regras de Feynman para a matriz S (Minkowski / Momentos): Regras de Feynman no espaço dos momentos (Euclideano): Teoria Quântica de Campos I 193 propagador do férmion: (Euclid.) índices espinoriais (α,β=1...4) ( eq. 193.1 ) o sentido do momento não importa (Euclid.)

Leia mais

Lei de Gauss Φ = A (1) E da = q int

Lei de Gauss Φ = A (1) E da = q int Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS Prof. Bruno Farias Introdução Na Física, uma ferramenta importante para a

Leia mais

Análise Diferencial dos Movimentos dos Fluidos

Análise Diferencial dos Movimentos dos Fluidos Análise Diferencial dos Movimentos dos Fluidos As equações na forma diferencial aplicam-se quando: 1. estamos interessados no comportamento detalhado de um campo de escoamento, ponto a ponto, e 2. desejamos

Leia mais

Rotação de Corpos Rígidos

Rotação de Corpos Rígidos Fisica I IO Rotação de Corpos Rígidos Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Rotação de Corpos Rígidos Movimentos de corpos contínuos podiam em muitos casos ser descritos

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

Funções de Correlação. Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: Paremos aqui um momento para notar duas coisas:

Funções de Correlação. Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: Paremos aqui um momento para notar duas coisas: Teoria Quântica de Campos II 13 ( eq. 13.1 ) Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: ( eq. 13.2 ) Paremos aqui um momento para notar duas coisas: (1) As equações 10.1

Leia mais

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright.

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Métodos de regiões de confiança Marina Andretta ICMC-USP 17 de setembro de 2014 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear

Leia mais