MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução"

Transcrição

1 MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde a uma rotação de rad da imagem geométrica desse número complexo, temos que: B é a imagem geométrica de iz C é a imagem geométrica de i i z i z D é a imagem geométrica de i i i z i 3 z A D i i B C i Exame 17, Ép. especial. Temos que: os argumentos dos complexos z e 5z são iguais Arg 5z Arg z 5 os argumentos de complexos simétricos, 5z e 5z, diferem de Arg 5z Arg 5z 5 5 a multiplicação por i de um complexo corresponde a somar ao seu argumento Arg 5iz Arg 5z Resposta: Opção A Exame 17, a Fase Página 1 de 15

2 3. Escrevendo o número complexo 3 na forma trigonométrica, vem 3 3 cis Desta forma, temos que: Logo, como θ z 3 cis θ 3 cis cis θ 3 1 cis + θ 3 cis θ ], 3 [, então < θ < 3, pelo que: Ou seja, arg z quadrante. < θ < 3 < θ < ], [, logo a imagem geométrica do número complexo z é um ponto do primeiro Resposta: Opção A Exame 16, 1 a Fase. A operação multiplicar por i corresponde a fazer uma rotação de centro em O e amplitude radianos, pelo que a imagem geométrica de i está no primeiro quadrante a igual distância da origem do que a imagem geométrica de z 1 i A operação multiplicar por corresponde a fazer duplicar a distância à origem, mantendo o argumento do número complexo, pelo que i z 1 z i Finalmente, a imagem geométrica de um número complexo, e do seu simétrico correspondem a rotações de centro em O e amplitude radianos, pelo que i z z i z 3 Exame 1, Ép. especial 5. As operações multiplicar por i e transformar no conjugado correspondem geometricamente a fazer uma rotação de centro em O e amplitude radianos e encontrar o ponto simétrico relativamente ao eixo real, respetivamente. i z 1 z z 1 z Assim, se considerarmos as operações inversas, pela ordem inversa, a partir da imagem geométrica de z, como indicado na figura, obtemos como resposta a imagem geométrica de z. z Ou, dizendo de outra forma, se z, temos que z z 1 e i i z 1 z, pelo que z. z 3 z 6. Se z + bi, então z bi Exame 13, Ép. especial Assim temos Re z > e como b <, Im z >, pelo que sabemos que representação geométrica de z pertence ao primeiro quadrante, logo Arg z não pode ser α Por outro lado z + b, como b >, temos que z >, logo z não pode ser 3 Exame 13, a Fase Página de 15

3 7. cos α + i cos α cos α + i sen α cos α + i sen α cos α + i sen α Porque cos α sen α cos α + i sen α cos α + i sen α Porque sen α sen α cis α cis α cis α α Fazendo a divisão na forma trigonométrica cis α Como queriamos mostrar 8. Temos que: z e sabemos que Arg z α, pelo que podemos escrever que z 1 cis α Assim, temos que Exame 13, a Fase i z z do enunciado i 1 cis α 1 cis α calculado z e escrevendo z na f.t. i 1 cis α α fazendo a divisão na f.t. cis 1 cis 3α escrevendo i na f.t. 1 cis + 3α 1 cis 3α fazendo o produto na f.t. Resposta: Opção A Exame 13, 1 a Fase 9. Sabemos que i 1, i 1 i, i 1 e i 3 i, e que é válida a igualdade i n i k, onde k é o resto da divisão inteira de n por. Assim, como 8n n+, temos que i 8n i 1 como 8n 1 8n + 3 n 1+3 temos que i 8n 1 i 3 i como 8n 8n + n 1+ temos que i 8n i 1 Temos que i 8n i 8n 1 + i 8n i i 3 + i 1 i + 1 i 1 Logo a imagem geométrica de i 8n i 8n 1 + i 8n pertence ao terceiro quadrante. Exame 13, 1 a Fase Página 3 de 15

4 1. Como z cis θ, então z cis θ. Como 3 < θ <, então 3 < θ <, ou seja θ ] 3, [ Logo z pertence ao o quadrante e z 1, ou seja z é da forma a + bi, com < a < 1 e 1 < b <. z 1 Assim z a + bi, em que a < e b <, pelo que z pertence ao 3 o quadrante. z z Teste Intermédio 1 o ano Sabemos que i 6 i 1 e que i 7 i 3 i. Logo i6 + i 7 i 1 + i i 1 i + i i + i i i i 5i + i 5i i Teste Intermédio 1 o ano Se z e são inversos um do outro, temos que 1 z Por um lado 1 z i 1 i 1 i1 i 1 i 1 i 1 i 1 1 i Por outro lado. como , sabemos que i 11 i 3 i e assim k 1 + pi 11 k 1 + p i k 1 pi Como 1 z temos que 1 1 i k 1 pi Logo 1 k 1 1 p k 1 p 3 k 1 p Assim temos que k + p Exame 1, Ép. especial 13. Como z 3 + ki temos: z 1 z + i3 + ki 6 + ki + 3i + ki 6 1 k + ik k + k + 3i Para que z 1 z seja um imaginário puro Re z 1 z Logo 6 k 6 k Exame 1, a Fase Página de 15

5 1. Sabemos que i 1, i 1 i, i 1 e i 3 i, e que é válida a igualdade i n i k, onde k é o resto da divisão inteira de n por. Assim, como n 6 n 8 + n + temos que i n 6 i 1 Devemos escrever cis cis 6 na f.a. para podermos somar as parcelas do numerador: 3 1 i cos + i sen cos i sen Assim temos que: 3 i n 6 + cis i i i cis cis cis cis cis cis 5 1 cis 5 1 cis cis 1 Exame 1, a Fase 15. As operações dividir por i e dividir por 3 correspondem geometricamente a fazer uma rotação de centro em O e amplitude radianos e dividir a distância ao centro por 3, respetivamente. z Assim, podemos fazer as operações por qualquer ordem e, por isso, temos duas alternativas: i z 3 z 3 Resposta: Opção A e e z 3 z 1, ou então z 3 i z 1 z 3 z z 1 Exame 1, 1 a Fase Página 5 de 15

6 16. Como o ponto M é a imagem geométrica do número complexo z 1 que vamos designar por z 1 ρ 1 cis θ, em que < θ < porque M é um ponto do primeiro quadrante e Rez 1 > Imz 1. Podemos excluir o ponto da opção D, o ponto S porque é a imagem geométrica de um número complexo z da forma z ρ 3 cis, e assim, z 1 z ρ 1 ρ 3 cis + θ; e como < θ < então a imagem geométrica de z 1 z seria um ponto do 3 o quadrante e não o ponto N Podemos excluir o ponto da opção B, o ponto Q porque é a imagem geométrica de um número complexo z da forma z ρ cis, e assim, z 1 z ρ 1 ρ 3 cis + θ ; ou seja a imagem geométrica de z 1 z seria um ponto sobre a reta perpendicular a à reta OM pelo ponto O e não o ponto N Podemos excluir o ponto da opção A, o ponto P porque é a imagem geométrica de um número complexo z da forma z ρ 5 cis α, e assim, z 1 z ρ 1 ρ 5 cis θ + α; e como α <, então a imagem geométrica de z 1 z seria um ponto do quadrante definido pela reta OM e pela perpendicular pelo ponto O e não o ponto N Logo o ponto R é o único, de entre as opções apresentadas, que pode ser a imagem geométrica do número complexo z N R Q P M S θ Exame 11, Prova especial 17. Para que z 1 seja igual ao conjugado de z, tem que se verificar a condição Rez 1 Rez Imz 1 Imz Logo: Rez 1 Rez Imz 1 Im 3k + 3p p 5k 3k + 6 3p p 5k k + p k + 5k k + p + 5k k k + p k 1 + p 1 k 3 p 1 k Exame 11, Ép. especial 18. Pela observação da figura podemos adicionar geometricamente os afixos de z e de z e temos que z + z z 3 A operação multiplicar por i corresponde geometricamente a fazer uma rotação de centro em O e amplitude, pelo que z 3 i z 5. Logo z + z i z 3 i z 5. z z 5 z 3 z 1 z z 6 Exame 11, a Fase Página 6 de 15

7 19. Sabemos que i 1, i 1 i, i 1 e i 3 i, e que é válida a igualdade i n i k, onde k é o resto da divisão inteira de n por. Assim, como n n +, temos que i n i 1 como n + 1 n +1 temos que i n+1 i 1 i como n + n + temos que i n+ i 1 Assim temos que: z 3 z z 1 i n + i n+1 + i n+ 1 + i 1 i, pelo que, de acordo com a z figura, temos que i n + i n+1 + i n+ z Exame 11, 1 a Fase. Designando por, z 1 e z os números complexos cujas imagens geométricas são os pontos B, A e C, respetivamente, temos que z 1, porque os pontos A e B estão à mesma distância da origem; logo arg arg z 9, como arg z 3, temos que arg Assim temos que 5 cis 5 18 Teste Intermédio 1 o ano A operação multiplicar por i corresponde geometricamente a fazer uma rotação de centro em O e amplitude radianos. Q Assim temos que i z, sendo o número complexo que tem por imagem geométrica o ponto Q. R P Logo i z, ou seja o número complexo que tem por imagem geométrica o ponto T. S T Exame 1, Ép. especial Página 7 de 15

8 . z é um imaginário puro, se arg z + k, k Z Assim temos que: 8 θ + k, k Z θ 8 k, k Z θ 8 8 k, k Z θ 3 8 k, k Z Atribuindo valores a k, temos: Se k, θ 3 8 Se k 1, θ Exame 1, 1 a Fase 3. Como i 6 i + i 1 i 7 i +3 i 3 i 1 + i3 + i 3 + i + 6i + i i 1 + 7i Temos que: 1 + i3 + i i 6 + i 7 3i 1 + 7i 1 i 3i + 6i 3i + 6i i 3i i i + 6i 3i i i 3 3 i. Como i cis, podemos fazer a multiplicação na forma trigonométrica: z i. cis θ cis cis θ cis + θ Teste Intermédio 1 o ano Assim o conjugado de z é: z cis + θ cis θ Resposta: Opção A Exame 9, Ép. especial 5. Temos que i 3 i 1+3 i 3 i Calculando z1 temos: z1 3 i 3 3i + i 9 1i + i 9 1i 5 1i 3 Como 8 cis 8i, calculando z na forma algébrica, temos: z z 1 + z1 + i cis 3 i + 5 1i + i 8i 8 16i 8i 1 i i 1 i i i i i i i i i Exame 9, Ép. especial Página 8 de 15

9 6. Se arg z 3 então arg z 3 Escrevendo i na f.t. temos i cis Assim, sendo ρ z e por isso também ρ z e fazendo a divisão na f.t. temos que: i z ρ cis Logo arg cis 3 ρ cis 3 ρ cis ρ cis ρ cis 5 6 i 5 z 6 Exame 9, 1 a Fase 7. Como i 18 i + i 1, temos que: z 1 i 1 i i1 + i i + i18 i 1 1 i1 + i 1 i i i i i Escrevendo z 1 na f.t. temos z 1 ρ cis θ, onde: ρ z tg θ 1 ; como sen θ > e cos θ >, θ é um ângulo do 1 1 o quadrante, logo θ Logo z 1 cis Exame 9, 1 a Fase 8. A imagem geométrica do número complexo ρ cis α é um número complexo tal que: z apenas os pontos B e C verificam esta condição arg argz apenas os pontos A e B verificam esta condição Assim o ponto B é a imagem geométrica de ρ cis α A B C α P D Teste Intermédio 1 o ano Como i 35 i 8 +3 i 3 i, e + i + i + i + i + i + i 1 + i 3 + i temos que: + i i i 3 + i i 1 + i i 6i 1 + i i i1 i 1 + i 1 + i1 i 8i i + i 1 i 1i 1i i Teste Intermédio 1 o ano Página 9 de 15

10 3. Como cis i, temos que: z 1 1 i.1 + i 1 i Na f.t.: z 1 cis Fazendo a divisão na f.t.: z 1 z 8 cis cis 8 cis 1 cis 31. Os números complexos z e z, têm argumentos que diferem de radianos, logo, temos que: Exame 8, Ép. especial arg z + arg z Como i 18 i + i i 1 1 1, temos que: z 1 i i 1 i i i i i i i Exame 8, a Fase i i1 + i i i 1 i 1 i1 + i 1 i Exame 8, a Fase 33. O número complexo 3i tem a sua representação geométrica sobre a parte positiva do eixo imaginário, pelo que define um ângulo de radianos com o semieixo real positivo, logo argz 1 Exame 8, 1 a fase 3. Sabemos que i 1, i 1 i, i 1 e i 3 i, e que é válida a igualdade i p i k, onde k é o resto da divisão inteira de p por. Assim, como i n i, temos que i n i i 3 i p+3, para p N. Logo i n+1 i p+3+1 i p+ i p+1 i p+1+ i 1 Resposta: Opção A 35. Como arg z 1 α, temos que z 1 ρ cis α Como z iz 1, temos que z iz 1 Como i cis 3, fazendo a multiplicação na f.t. temos que: z iz 1 cis 3 3 ρ cis α ρ cis + α ] Assim, como α, [, temos que arg z 3 + α Exame 7, a fase Exame 7, a fase Página 1 de 15

11 36. Designando por, z 1 e z os números complexos cujas imagens geométricas são os pontos C, A e B, respetivamente, temos que z 1, porque os pontos A e C estão à mesma distância da origem; logo Como rad rad rad, então: 1 arg arg z Assim temos que 5 cis 3 5 Exame 6, Ép. especial 37. Como cis i temos que: z 1 i + cis i + i i 1 5 Escrevendo z 1 na f.t. temos z cis Fazendo a divisão na f.t. vem: z 1 z 5 cis 1 5 cis 7 5 cis 5 cis Exame 6, a fase 38. Seja z a + bi com a R \ {} e b R \ {}, cuja imagem geométrica é o ponto A. Assim z a bi, cuja imagem geométrica é o ponto A, simétrico do ponto A relativamente ao eixo real. Logo z a bi a + bi, cuja imagem geométrica é o ponto B, simétrico do ponto A relativamente ao eixo imaginário. Exame 5, Ép. especial Página 11 de 15

12 39. Escrevendo 1 na f.t. temos 1 ρ cis θ, onde: ρ tg θ ; como sen θ > e cos θ >, θ é um ângulo do 1o quadrante, logo θ Assim 1 cis Calcular o produto 1 na f.t., e escrevendo o resultado na f.a. vem: 1 cis cis cis cis cos + i sen i 1 + 3i Podemos ainda escrever 3 na f.a.: 3 3 cis 3i cis 1 cis 3 Assim temos que: i 3 3i 1 + 3i 3i 1 + 3i i 3i i i + 3i 3i i i i Exame 5, a fase. + i + i1 + i + i + i + i i i 1 i 1 i1 + i 1 i i + 3i i 1 + 3i i 1 + i i Escrevendo na f.t. temos ρ cis θ, onde: ρ tg θ Assim 1 1 ; como sen θ > e cos θ >, θ é um ângulo do 1 1 o quadrante, logo θ cis 1. Exame 5, 1 a fase 1.1. Como 3i 3i 16 1i 1i + 9i 16 i 9 7 i i + i i + 7 i i i + 7 i i i i i + 7i i 7i + i i + i 7i 5i Se arg α então ρ cis α, sendo ρ Assim 5 cis α Como i cis, fazendo o produto na f.t., temos: i cis 5 cis α 5 cis α Exame, a fase Página 1 de 15

13 . Como i 3 i 5+3 i 3 i temos que: z 1 + i i + i 6 + i 1 + i z 1 i 1 i 1 + i 1 1i 1 1i i Escrevendo i na f.t. temos i ρ cis θ, onde: 6 1i + i + i 6 1i 1 i 1 i ρ i + + tg θ 1 ; como sen θ < e cos θ <, θ é um ângulo do 3o quadrante, logo θ + 5 Assim z 1 + i 3 z cis 5 3. Para que z seja um número real arg z arg z Exame, 1 a fase Assim θ 5 θ 5 θ 5 θ + 5 θ 5 θ 6 5 Resposta: Opção A Exame 3, Prova para militares. Como Re > 1 então Re 1 > e Im Im 1, pelo que é razoável admitir que 1 z 1 z z 1 1 Como Re z 3 Re z 1 Im z 3 Im z 1, temos que z 3 z 1 1 Assim temos que z 3 z z 3 z Exame 3, a fase 5. Escrevendo z 1 na f.t. temos z 1 ρ cis θ, onde: ρ z tg θ 1 ; como sen θ < e cos θ >, θ é um ângulo do o quadrante, logo θ Assim z 1 cis 7 Fazendo a divisão na f.t. e escrevendo o quociente na f.a., temos: z cis 7 1 z 7 cis 5 cis 5 cis cis i Exame 3, 1 a fase - 1 a chamada Página 13 de 15

14 6. Como < Re z < 1 < Im z < 1 e Re z Re z Im z Im z Temos que, também, < Re z < 1 < Im z < 1 Logo a imagem geométrica de z também pertence ao interior do retângulo i i 1 + i i i i i + i i 1 i 1 Escrevendo na f.t. temos ρ cis θ, onde: ρ i Exame, a fase tg θ ; como sen θ > e cos θ >, θ é um ângulo do 1o quadrante, logo θ Assim cis, e por isso: arg 3 arg z 1, pelo que z 1 z, pelo que z Exame, 1 a fase - a chamada 8. Como i 3 i 5+3 i 3 i, temos que: z 1 + i 3 + i 1 + i + i + i 5 i 5 + i i + i 1 + 5i 1 + 5i 1 + 5i + i i Se + i, então i 1 i + i i i i i 1 i i Escrevendo cis 3 na f.a., temos que: 3 cis cos 3 + i sen 3 Logo 1 cis 3 + i i Exame 1, Ép. especial Exame 1, a fase Página 1 de 15

15 5. Se a imagem geométrica de está no primeiro quadrante e pertence à bissetriz dos quadrantes ímpares, então arg, e é da forma ρ cis Assim temos que ρ cis Logo ρ cis ρ cis ρ ρ cis 1 cis + cis cis Logo a representação geométrica de está sobre a parte positiva do eixo imaginário, como a imagem geométrica de z z Exame 1, 1 a fase - 1 a chamada 51. Se arg z 5, então z tem a imagem geométrica no 1o quadrante. b z Se z a + bi, com a > b >, então z a bi, com a > b >, logo arg z + 5 z a + 5 b 5 a 5. Sabemos que z A se z < 1. Como 1 + 3i , sendo θ arg 1 + 3i podemos escrever 1 + 3i cis θ, Assim temos que : 1 + 3i cis cis θ cis 6 6 Logo, como 1 + 3i cis 1, e 1 6 cis θ 1 6 cis θ i < 1, podemos afirmar que cis 6 Exame, 1 a fase - a chamada pertence ao conjunto A. Exame, 1 a fase - 1 a chamada 53. A operação multiplicar por i corresponde geometricamente a fazer uma rotação de centro em O e amplitude radianos pelo que a imagem geométrica de i, está sobre a circunferência de centro na origem que contem. z i A operação multiplicar por corresponde a duplicar a distância à origem, mantendo o ângulo que com o sei-eixo real positivo. i Assim temos que i z Exame, Prova modelo Página 15 de 15

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

NUMEROS COMPLEXOS NA FORMA TRIGONOMÉTRICA

NUMEROS COMPLEXOS NA FORMA TRIGONOMÉTRICA NUMEROS COMPLEXOS NA FORMA TRIGONOMÉTRICA Na representação trigonométrica, um número complexo z = a + bi é determinado pelo módulo do vetor que o representa e pelo ângulo que faz com o semi-eixo positivo

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

NÚMEROS COMPLEXOS (TUTORIAL: BÁSICO 01)

NÚMEROS COMPLEXOS (TUTORIAL: BÁSICO 01) MATEMÁTICA: Números Complexos - C; - Maior dos conjuntos - engloba todos os outros e acrescenta recursos especiais como raiz quadrada de número negativo; - Para darmos interpretação às raízes quadradas

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

=...= 1,0 = 1,00 = 1,000...

=...= 1,0 = 1,00 = 1,000... OPERAÇÕES COM NÚMEROS DECIMAIS EXATOS Os números decimais exatos correspondem a frações decimais. Por exemplo, o número 1,27 corresponde à fração127/100. 127 = 1,27 100 onde 1 representa a parte inteira

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

Função Seno. Gráfico da Função Seno

Função Seno. Gráfico da Função Seno Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja:

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja: MATEMÁTICA BÁSICA 4 Frações Leitura Três quartos da população do estado X recebe até um salário mínimo A herança será dividida, cabendo um sétimo do total a cada um dos herdeiros A parede será azulejada

Leia mais

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3 MATEMÁTICA NÚMEROS COMPLEXOS 1. U. Católica Dom Bosco-MS O valor do número real x para que o conjugado do número complexo (x + i)(1 + xi) seja igual a i é: a) b) 1 c) 1 d) e) 1. UFCE Considere o número

Leia mais

Um triângulo é retângulo quando um de seus ângulos internos é reto. Observando o triângulo

Um triângulo é retângulo quando um de seus ângulos internos é reto. Observando o triângulo Capítulo 7 Trigonometria 7. Introdução à trigonometria A Trigonometria, que é uma palavra de origem grega: trigono (triangular) e metria (medida), tem por objetivo estabelecer relações entre os elementos

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π.

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π. Aula 9 Superfícies de Revolução Seja C uma curva e r uma reta contidas num plano π. Fig. 1: Superfície de revolução S, geratriz C e eixo r contidos no plano π A superfície de revolução S de geratriz C

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio.

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio. NÚMEROS COMPLEXOS Prof Eduardo Nagel. DEFINIÇÃO No conjunto dos números reais R, temos que a = a. a é sempre um número não negativo para todo a. Ou seja, não é possível extrair a rai quadrada de um número

Leia mais

CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta

CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta CARTOGRAFIA Sistemas de Coordenadas Prof. Luiz Rotta SISTEMA DE COORDENADAS Por que os sistemas de coordenadas são necessários? Para expressar a posição de pontos sobre uma superfície É com base em sistemas

Leia mais

Ensinando a trigonometria através de materiais concretos

Ensinando a trigonometria através de materiais concretos UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA SEMANA DA MATEMÁTICA 2014 Ensinando a trigonometria através de materiais concretos PIBID MATEMÁTICA 2009 CURITIBA

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre 1 MATEMÁTICA II Aula 5 Trigonometria na Circunferência Professor Luciano Nóbrega 1º Bimestre 2 ARCOS e ÂNGULOS A medida de um arco é, por definição, a medida do ângulo central correspondente. As unidades

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

Actividade de enriquecimento. Algoritmo da raiz quadrada

Actividade de enriquecimento. Algoritmo da raiz quadrada Actividade de enriquecimento Algoritmo da raiz quadrada Nota: Apresenta-se uma actividade de enriquecimento e de um possível trabalho conjunto com as disciplinas da área de informática: os alunos poderão

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA Escola Secundária de Francisco Franco Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA 1. Na figura está representado o círculo trigonométrico e um triângulo [OPR]. O ponto P desloca-se ao longo

Leia mais

Planos e Retas. Equações do Plano e da Reta. Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins

Planos e Retas. Equações do Plano e da Reta. Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins Planos e Retas Uma abordagem exploratória das Equações do Plano e da Reta Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins Na geometria, um plano é determinado se

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013 Economia I; 01/013 (º semestre) Prova da Época Recurso 3 de Julho de 013 [RESOLUÇÃO] Distribuição das respostas correctas às perguntas da Parte A (6 valores) nas suas três variantes: ER A B C P1 P P3 P4

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

Sistemas de equações do 1 grau com duas variáveis LISTA 1

Sistemas de equações do 1 grau com duas variáveis LISTA 1 Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Soluções das Questões de Matemática do Concurso de Admissão ao Curso de Formação de Oficiais da Academia da Força Aérea AFA

Soluções das Questões de Matemática do Concurso de Admissão ao Curso de Formação de Oficiais da Academia da Força Aérea AFA Soluções das Questões de Matemática do Concurso de Admissão ao Curso de Formação de Oficiais da Academia da Força Aérea AFA Questão Considere a função quadrática f : A Concurso 00/0 do vértice são iguais.

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou.

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou. , 6 ; 4, 86 ; (A); (D); 4 permite resolver o problema é 0 problema é ( ) SOLUÇÕES Fichas de Trabalho de Apoio FT Apoio 7 S 6 = 7, + ); [, [ Escola EB, de Ribeirão (Sede) ANO LETIVO 0/0 ; 4 ; [ 0, [ 9º

Leia mais

RELAÇÕES TRIGONOMÉTRICAS

RELAÇÕES TRIGONOMÉTRICAS REAÇÕES TRIGONOMÉTRICAS As relações trigonométricas, são estudadas no triângulo retângulo que você já viu é um triângulo que tem um ângulo reto e seus lados indicados por hipotenusa e dois catetos. No

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler CAPITALIZAÇÃO COMPOSTA CAPITALIZAÇÁO COMPOSTA: MONTANTE E VALOR ATUAL PARA PAGAMENTO ÚNICO Capitalização composta é aquela em que a taxa de juros incide sobre o capital inicial, acrescido dos juros acumulados

Leia mais

INICIADOS - 2ª Sessão ClubeMath 7-11-2009

INICIADOS - 2ª Sessão ClubeMath 7-11-2009 INICIADOS - 2ª Sessão ClubeMath 7-11-2009 Adivinhar o dia de aniversário de outra pessoa e o mês Temos uns cartões mágicos, que vão permitir adivinhar o dia de aniversário de qualquer pessoa e outros que

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

1 Exercícios de Aplicações da Integral

1 Exercícios de Aplicações da Integral Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

Exercícios de Revisão: Análise Complexa 1- Números Complexos

Exercícios de Revisão: Análise Complexa 1- Números Complexos Exercícios de Revisão: Análise Complexa - Números Complexos Exercícios Propostos Globais I... Soluções dos Exercícios Propostos Globais I... Introdução... 4 Definições e propriedades elementares... 4.

Leia mais

PUC-Rio Desafio em Matemática 15 de novembro de 2008

PUC-Rio Desafio em Matemática 15 de novembro de 2008 PUC-Rio Desafio em Matemática 5 de novembro de 2008 Nome: Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão.0 2.0 3.0 4.0 5a.0 5b.0 6a.0 6b.0 7 2.0 Nota final 0.0 Instruções Mantenha seu celular

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO EXPONENCIAL PROF. CARLINHOS 1 Antes de iniciarmos o estudo da função eponencial faremos uma revisão sobre potenciação. 1. Potência com epoente natural

Leia mais

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2) Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...

Leia mais

RELATÓRIO DE AVALIAÇÃO DEPARTAMENTO DE EDUCAÇÃO PRÉ ESCOLAR. Ano Letivo 2014/2015-1.º Período

RELATÓRIO DE AVALIAÇÃO DEPARTAMENTO DE EDUCAÇÃO PRÉ ESCOLAR. Ano Letivo 2014/2015-1.º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro RELATÓRIO DE AVALIAÇÃO DEPARTAMENTO DE EDUCAÇÃO PRÉ ESCOLAR Ano Letivo 04/05 -.º Período A Coordenadora Francisca Oliveira

Leia mais

Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário.

Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário. 10. NÚMEROS COMPLEXOS 10.1 INTRODUÇÃO Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário. O número a é denominado parte real do número complexo

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Tópico 2. Funções elementares

Tópico 2. Funções elementares Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano

Leia mais

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:

Leia mais

MATRIZ - FORMAÇÃO E IGUALDADE

MATRIZ - FORMAÇÃO E IGUALDADE MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Por que as antenas são parabólicas?

Por que as antenas são parabólicas? Por que as antenas são parabólicas? Adaptado do artigo de Eduardo Wagner A palavra parábola está, para os estudantes do ensino médio, associada ao gráfico da função polinomial do segundo grau. Embora quase

Leia mais

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 1. Escreva os elementos de S 4 nas duas notações. Observe que S 4 = 4! = 24. Os elementos de S 4 tem a forma 1 a, 2 b, 3 c, 4 d onde a sequência abcd é uma das seguintes: 1234, 1243, 1324, 1342, 1423,

Leia mais

OS ELEMENTOS BÁSICOS E OS FASORES

OS ELEMENTOS BÁSICOS E OS FASORES CAPITULO 14 OS ELEMENTOS BÁSICOS E OS FASORES Como foi definido anteriormente a derivada dx/dt como sendo a taxa de variação de x em relação ao tempo. Se não houver variação de x em um instante particular,

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Os dados quantitativos também podem ser de natureza discreta ou contínua.

Os dados quantitativos também podem ser de natureza discreta ou contínua. Natureza dos Dados Às informações obtidas acerca das características de um conjunto dá-se o nome de dado estatístico. Os dados estatísticos podem ser de dois tipos: qualitativos ou quantitativos. Dado

Leia mais

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ângulo BDA é reto (porque está inscrito numa semicircunferência),

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura:

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura: REVISÃO RELAÇÕES TRIGONOMÉTRICAS E REDUÇÃO AO PRIMEIRO QUADRANTE DO CICLO TRIGONOMÉTRICO TURMA: ª SÉRIE DO ENSINO MÉDIO PROF. LUCAS FACTOR Trigonometria no Triangulo Retângulo Considere o triangulo retângulo

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM 8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM Introdução: histórico; definições O Sistema de Projeção UTM é resultado de modificação da projeção Transversa de Mercator (TM) que também é

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

Resolução Comentada Unesp - 2013-1

Resolução Comentada Unesp - 2013-1 Resolução Comentada Unesp - 2013-1 01 - Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t0 = 0 s. A bola atinge, no instante t4, um

Leia mais

Equações paramétricas da Reta

Equações paramétricas da Reta 39 6.Retas e Planos Equações de Retas e Planos Equações da Reta Vamos supor que uma reta r é paralela a um vetor V = a, b, c) não nulo e que passa por um ponto P = x, y, z ). Um ponto P = x, pertence a

Leia mais

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação:

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação: 16. Escala Absoluta Termodinâmica Kelvin propôs uma escala de temperatura que foi baseada na máquina de Carnot. Segundo o resultado (II) na seção do ciclo de Carnot, temos que: O ponto triplo da água foi

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais