Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq /2010-2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)"

Transcrição

1 Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner

2 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo... 7 Classificação dos triângulos quanto aos lados... 8 Classificação dos triângulos quanto aos ângulos... 9 Trapézio Pentágono Círculo Questionário Uma palavra final Marcadores... 15

3 2 UMA PALAVRA INICIAL Este livro versa sobre geometria plana e espacial, de uma maneira geral, explorando fórmulas para o cálculo de perímetro, área e volume das figuras geométricas. Trata também sobre as figuras tridimensionais e casos especiais das diferentes figuras geométricas. O livro aborda seis figuras, sendo elas: retângulo, quadrado, triângulo, trapézio, pentágono e círculo. Geometria é o estudo do espaço e das figuras que estão neste espaço, de forma a explorar o modo como elas se dispõem no mesmo. Na sua forma mais simples, a geometria trata de problemas métricos, como o cálculo da área e do diâmetro de figuras planas e da superfície e volume de corpos sólidos, abordagem que será enfocada neste livro. O livro trata particularmente dos casos especiais do triângulo, que são o equilátero, o isósceles, o escaleno, o retângulo, o acutângulo e o obtusângulo. Todas as figuras geométricas tem um resumo de seu estudo escrito no livro, além de diretrizes para utilização da ferramenta de Realidade Aumentada. Uma aplicação de Realidade Aumentada permite que, a partir de uma imagem capturada pela webcam, a ela sejam adicionadas figuras, animações e sons. A cena resultante é exibida na tela do computador e assim é possível observar o que acontece com cada objeto e interagir com eles. Para ativar os efeitos de Realidade Aumentada é necessário trabalhar com um objeto que funciona como referência, o marcador (Figura 1). Posicionando o marcador em frente à webcam, o computador o reconhece e cria os objetos virtuais na cena de acordo com ele.

4 3 INSTRUÇÕES INICIAIS Figura 1: Marcador. Para iniciar os estudos de geometria, siga os seguintes passos: 1. Destaque o marcador do final do livro (Página 16) e cole-o em um material mais resistente. Construa a forma de ponteiro do marcador utilizando dois palitos. Os palitos devem ser colados no marcador de acordo com a Figura 2. O marcador avançará para as próximas animações de uma mesma figura geométrica. 2. Inicie a aplicação de Realidade Aumentada. 3. Tecle A para que as animações sejam ativadas. 4. Em cada página relacionada a uma figura geométrica haverá um marcador específico. Posicione esse marcador de forma que a webcam consiga capturá-lo e exiba o ponto referente à ativação da animação representado por uma esfera azul. Figura 2: Marcador

5 4 INSTRUÇÕES INICIAIS Figura 3 Marcador com ponteiro 5. Para avançar para as animações de cada figura geométrica, utilize o ponteiro do marcador. Observe na Figura 3 que sobre o marcador é projetada a imagem de uma mão e na extremidade do ponteiro há uma esfera azul. Esta esfera azul deve colidir com cada esfera referente aos marcadores específicos do livro. Isso pode ser feito tocando o círculo branco desenhado ao lado de cada marcador neste livro, utilizando a extremidade do ponteiro. Realize os passos 4 e 5 para cada marcador de figura geométrica mostrado no livro. 6. Finalize seus estudos respondendo ao questionário de avaliação de aprendizagem. Bons estudos!

6 RETÂNGULO 35 O Retângulo é um quadrilátero, ou seja, um polígono de quatro lados. Os lados opostos entre si possuem a mesma medida. No retângulo, todos os ângulos internos são retos, ou seja, possuem medida igual a 90º. Assim, a soma dos seus ângulos internos é igual a 360º, como em qualquer quadrilátero. Fórmulas P=2 *(B+H) S=B*H V=B*H*L Onde: - L é a largura; - B é a base; - H é a altura; - P é o perímetro; - S é a área; - V é o volume. H B O cálculo do perímetro do retângulo é feito somando-se as medidas de cada um dos lados. Como lados opostos possuem a mesma medida, pode-se somar duas vezes a base e duas vezes a altura, ou mesmo somar a base e a altura e, então, multiplicar por dois. O cálculo da área é feito multiplicando-se a medida da base do retângulo pela medida da sua altura. O paralelepípedo é um sólido em que todas as faces são retangulares. Assim, o paralelepípedo possui a medida de volume. Para o cálculo do volume do paralelepípedo, faz-se base vezes altura vezes largura. L

7 6 QUADRADO O quadrado, assim como o retângulo, é um polígono de quadro lados. A diferença é que no quadrado, os quatro lados e os quatro ângulos internos são iguais. O quadrado é considerado um caso especial de retângulo. Assim, seu perímetro, sua área e seu volume são medidos da mesma maneira, no entanto, as fórmulas podem ser simplificadas. Fórmulas P=4*L S=L*L =L 2 V=L*L*L =L 3 Onde: - L é a medida do lado do quadrado; - P é o perímetro; - S é a área; - V é o volume. L L O cálculo do perímetro do quadrado é feito somando-se as medidas de cada um dos lados. Como todos os lados possuem a mesma medida, pode-se multiplicar o lado por quatro. O cálculo da área é feito multiplicando-se a medida da base do quadrado pela medida da altura. Como base e altura têm a mesma medida, então se pode fazer lado ao quadrado. O cubo é um sólido em que todas as suas faces são quadradas. Para o cálculo do volume do cubo, faz-se a medida da área da base vezes a largura vezes a altura do quadrado. Como todos os lados são iguais, calcula-se lado ao cubo. L

8 7 TRIÂNGULO O triângulo pode ser imaginado como a metade de um retângulo. Ele é formado por três lados que se juntam e formam três vértices. A soma dos seus ângulos internos é igual a 180º. Fórmulas P= L1+L2+L3 S= (B*h)/2 V=(Bp*hp)/3 Onde: - L1, L2 e L3 indicam os lados do triângulo; - B é a base; - h é a altura; - hp é altura da pirâmide; - Bp é a área da base da pirâmide; - P é o perímetro; - S é a área; - V é o volume. B hp h O cálculo do perímetro é feito somando-se as medidas de cada um dos lados. O cálculo da área é feito multiplicando-se a medida da base do triângulo pela medida da altura, e dividindo-se o resultado por dois. Uma pirâmide é todo poliedro formado por uma face inferior e um vértice que une todas as faces laterais. As faces laterais de uma pirâmide são regiões triangulares, e o vértice que une todas as faces laterais é chamado de vértice da pirâmide. O número de faces laterais de uma pirâmide corresponde ao número de lados do polígono da base. Se o polígono da base for um quadrado, a pirâmide é quadrada, se for um triângulo, a pirâmide é triangular (ou tetraedro), e assim por diante. Para o cálculo do volume da pirâmide, faz-se a medida da área do polígono da base vezes altura da pirâmide, dividido por três.

9 8 Classificação dos triângulos quanto aos lados O triângulo pode ser classificado de acordo com as medidas dos seus lados (Figura 4): Triângulo equilátero: possui os três lados com medidas iguais. Triângulo isósceles: possui dois lados com medidas iguais. Triângulo escaleno: possui os três lados com medidas diferentes. Figura 4 Classificação dos triângulos quanto aos lados Observação: O cálculo do perímetro e da área é o mesmo para qualquer tipo de triângulo, como foi mostrado na página 7.

10 9 Classificação dos triângulos quanto aos ângulos O triângulo também pode ser classificado de acordo com as medidas dos seus ângulos (Figura 5): Triângulo retângulo: possui um ângulo com medida igual a 90º. Triângulo acutângulo: possui todos os ângulos com medidas menores que 90º. Triângulo obtusângulo: possui um ângulo obtuso, ou seja, maior que 90º. Figura 5 Classificação dos triângulos quanto aos ângulos Observação: O cálculo do perímetro e da área é o mesmo para qualquer tipo de triângulo, como foi mostrado na página 7.

11 10 TRAPÉZIO O trapézio é um quadrilátero, assim a soma das medidas de seus ângulos internos é 360º. A principal característica do trapézio é possuir dois lados paralelos que correspondem às suas bases, uma maior e outra menor. Fórmulas P=B+b+L 1 +L 2 S= ((B+b)*h)/2 V=S*Lg, onde: - L 1 e L 2 indicam os lado; - B é a base maior; - b é a base menor; - h é a altura; - Lg é largura do prisma; - P é o perímetro; - S é a área; - V é o volume. b B h Lg O cálculo do perímetro do trapézio é feito somando-se as medidas de cada um dos lados, ou seja: base maior mais base menor mais os outros dois lados não-paralelos. O cálculo da área é feito multiplicando-se a soma das medidas das bases pela altura e, em seguida, dividindo-se o resultado por dois. Um prisma é todo poliedro formado por uma face superior e uma face inferior paralelas e congruentes (também chamadas de bases), e as laterais, que são paralelogramos. O prisma recebe um nome de acordo com a forma das bases. Por exemplo, se a base é um trapézio, tem-se o prisma de base trapezoidal. Para o cálculo do volume do prisma, faz-se a medida da área da base vezes a largura do prisma.

12 11 PENTÁGONO O pentágono é uma figura de cinco lados. A soma dos seus ângulos internos é 540º. Quando o pentágono possui todos os seus cinco lados com a mesma medida, ele é chamado de pentágono regular. Se os lados possuem medidas diferentes, o pentágono é dito irregular. Neste tópico será estudado o pentágono regular. Fórmulas P=L+L+L+L+L S= Área triângulo + Área trapézio V=S*Lg Onde: - L indica cada lado; - Lg é a largura; - P é o perímetro - S é a área; - V é o volume. O cálculo do perímetro do pentágono é feito somando-se as medidas de cada um dos lados. O pentágono pode ser dividido em um triângulo e um trapézio, como pode ser observado na figura abaixo. Assim, o cálculo da área é obtido somando a área do triângulo e a área do trapézio. L Para o cálculo do volume do prisma de base pentagonal, faz-se a medida da área da base (que é um pentágono) vezes a largura do prisma. Lg

13 12 CÍRCULO Para entender o que é um círculo, considere um ponto no espaço que será chamado de centro. O círculo é o conjunto de todos os pontos do espaço que estão distantes do centro a uma distância menor ou igual a r. Essa distância r é chamada raio do círculo. A circunferência é o contorno do círculo, ou seja, apenas os pontos que estão exatamente a uma distância r do centro. Fórmulas P = 2*π*r S = π*r² V = (4/3)* π*r³ Onde: - π vale 3,14; - r é o raio do círculo; - P é o comprimento da circunferência; - S é a área do círculo; - V é o volume da esfera. O cálculo do comprimento da circunferência, também chamado de perímetro, é feito multiplicando o fator pelo raio e por 2. O cálculo da área é obtido fazendo a multiplicação do fator pelo raio elevado ao quadrado. A esfera é o sólido obtido a partir da revolução de uma semicircunferência (a metade de uma circunferência) em torno do diâmetro. Para o cálculo do volume da esfera, faz-se quatro terços vezes o fator vezes o raio ao cubo. r

14 13 QUESTIONÁRIO Este questionário visa avaliar os conhecimentos adquiridos após o estudo do livro sofre formas geométricas. Para responder as perguntas sobre geometria, coloque o artefato de Perguntas e Respostas sob a webcam. O artefato possui 6 pontos: um para mostrar a pergunta (P), um para verificar a resposta correta (R), três pontos para as alternativas da resposta (1, 2, 3), e um ponto para visualizar a animação em 3D (X). (Figura 6) P X R Figura 6 Artefato do Questionário Além deles, na parte inferior do artefato estarão posicionados 10 pontos de ativação, referentes ao gabarito do questionário, que servirão para marcar cada pergunta que o usuário acertar. Para acionar cada um desses pontos, deve-se utilizar o marcador com o ponteiro. Posicionando-se a extremidade desse ponteiro exatamente dentro dos círculos, cada ponto é acionado. Assim, para responder as perguntas, siga os seguintes passos: 1. Tecle a para ativar todos os pontos; 2. Clique em P para ver a pergunta; 3. Clique em X para visualizar a animação; 4. Clique em uma das alternativas para responder (1, 2 ou 3); 5. Clique em R para ver a resposta. Aparecerá uma esfera azul embaixo da alternativa correta; 6. Caso tenha acertado a pergunta, clique na esfera correspondente do gabarito para marcar o acerto; 7. Clique novamente em X e em R para desativá-los. 8. Repita todos os passos para as próximas perguntas. 9.

15 14 UMA PALAVRA FINAL Este livro de geometria busca oferecer uma alternativa interativa aos livros tradicionais utilizando os conceitos de Realidade Aumentada. Porém, seu propósito é apenas complementar o ensino de geometria com a utilização de recursos multimídia, e não substituir os livros de matemática atuais. Com as animações tridimensionais oferecidas a partir da Realidade Aumentada, é possível prender a atenção dos alunos e permitir que eles manipulem cada objeto referente às formas geométricas. Assim, o ensino se torna interativo e a experiência do aprendizado se faz mais prazerosa. Referências Bibliográficas Apostila de Matemática do Curso Positivo 4ª e 5ª séries

16 15 MARCADORES

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 06 matemática Calculando volume de sólidos geométricos Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 GEOMETRIA Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 O MATERIAL COMO SUPORTE DO PENSAMENTO Muita gente usa o material na sala de aula como se a Geometria estivesse no material.

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

UNITAU APOSTILA PRISMAS

UNITAU APOSTILA PRISMAS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PRISMAS Nome: nº: blog.portalpositivo.com.br/capitcar 1 PRISMAS São os poliedros convexos que têm duas faces paralelas e congruentes (chamadas

Leia mais

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Geometria Espacial Prismas e Cilindros Tarefa 2 Cursista: Maria Candida Pereira

Leia mais

Matemática GEOMETRIA ESPACIAL. Professor Dudan

Matemática GEOMETRIA ESPACIAL. Professor Dudan Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica

Leia mais

Geometria Espacial Profº Driko

Geometria Espacial Profº Driko Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos

Leia mais

CENTRO EDUCACIONAL CHARLES DARWIN ENSINO FUNDAMENTAL. DIRETRIZES CURRICULARES 1º ao 5º ANO MATEMÁTICA

CENTRO EDUCACIONAL CHARLES DARWIN ENSINO FUNDAMENTAL. DIRETRIZES CURRICULARES 1º ao 5º ANO MATEMÁTICA CENTRO EDUCACIONAL CHARLES DARWIN ENSINO FUNDAMENTAL 2015 DIRETRIZES CURRICULARES 1º ao 5º ANO MATEMÁTICA OBJETIVOS GERAIS Reconhecer a Matemática como instrumento de compreensão e de transformação do

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte

Leia mais

Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações

Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações Rita de Cássia Pavani Lamas, Departamento de Matemática, IBILCE-UNESP rita@ibilce.unesp.br Uma aplicação da congruência de triângulos e polígonos

Leia mais

CADERNO DE EXERCÍCIOS 2F

CADERNO DE EXERCÍCIOS 2F CADERNO DE EXERCÍCIOS F Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Números inteiros (positivos e negativos) H9 Proporcionalidade H37 3 Média aritmética H50 4 Comprimento

Leia mais

GEOMETRIA DESCRITIVA A

GEOMETRIA DESCRITIVA A GEOMETRIA DESCRITIVA A 10.º Ano Sólidos I - Poliedros antónio de campos, 2010 GENERALIDADES - Sólidos O sólido geométrico é uma forma limitada por porções de superfícies, O sólido geométrico é uma forma

Leia mais

Prof. Regis de Castro Ferreira

Prof. Regis de Castro Ferreira PROJEÇÕES ORTOGRÁFICAS 1. INTRODUÇÃO A projeção ortográfica é uma forma de representar graficamente objetos tridimensionais em superfícies planas, de modo a transmitir suas características com precisão

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE EDUCAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS E MATEMÁTICA JOSÉ WELLINGTON SANTOS SILVA

UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE EDUCAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS E MATEMÁTICA JOSÉ WELLINGTON SANTOS SILVA UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE EDUCAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS E MATEMÁTICA JOSÉ WELLINGTON SANTOS SILVA SEQUÊNCIA DIDÁTICA PARA O ESTUDO DE SÓLIDOS GEOMÉTRICOS COM

Leia mais

PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.

PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases. PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)

Leia mais

Seções de Prismas Julho/ 2009

Seções de Prismas Julho/ 2009 Seções de Prismas Heloiza Rangel da Silva Josie Pacheco de Vasconcellos Souza Paula Eveline da Silva dos Santos Orientadora: Gilmara Teixeira Barcelos Julho/ 2009 Apostila de atividades disponível em http://www.es.iff.edu.br/softmat/projeto_tic/prismas

Leia mais

Conteúdo: Usar a realidade aumentada para mostrar os elementos da pirâmide para cálculo do volume.( base e a altura da pirâmide).

Conteúdo: Usar a realidade aumentada para mostrar os elementos da pirâmide para cálculo do volume.( base e a altura da pirâmide). ORIENTAÇÕES PARA O PROFESSOR PRESENCIAL Componente Curricular: Matemática Professores Ministrantes: Leandro Série/ Ano letivo: 2º ano 2013 Data: AULA 2.1 Conteúdo: Usar a realidade aumentada para mostrar

Leia mais

Explorando Poliedros

Explorando Poliedros Reforço escolar M ate mática Explorando Poliedros Dinâmica 6 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Geométrico Introdução à geometria espacial Aluno Primeira

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

Cones, cilindros, esferas e festividades, qual a ligação?

Cones, cilindros, esferas e festividades, qual a ligação? Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo hmelo@uac.pt Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

Lista de exercícios Geometria Espacial 2º ANO Prof. Ulisses Motta

Lista de exercícios Geometria Espacial 2º ANO Prof. Ulisses Motta Lista de exercícios Geometria Espacial º ANO Prof. Ulisses Motta 1. (Uerj) Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros regulares. Se os dodecaedros estão justapostos por

Leia mais

FORMAÇÃO SOBRE CONTEÚDOS DE MATEMATICA DOS 4º E 5º ANOS DO ENSINO FUNDAMENTAL FIGURAS PLANAS E ESPACIAIS

FORMAÇÃO SOBRE CONTEÚDOS DE MATEMATICA DOS 4º E 5º ANOS DO ENSINO FUNDAMENTAL FIGURAS PLANAS E ESPACIAIS FORMAÇÃO SOBRE CONTEÚDOS DE MATEMATICA DOS 4º E 5º ANOS DO ENSINO FUNDAMENTAL FIGURAS PLANAS E ESPACIAIS Professora: Vanessa Bayerl Cesana PLANA Figuras poligonais e não poligonais. Forma, número de lados,

Leia mais

48 3cm. 1) A aresta da base e a altura de um prisma regular triangular medem 8cm e 6cm, respectivamente. Calcule:

48 3cm. 1) A aresta da base e a altura de um prisma regular triangular medem 8cm e 6cm, respectivamente. Calcule: LISTA DE EXERCÍCIO 01 GEOMETRIA ESPACIAL - PRISMA - 2019 1) A aresta da base e a altura de um prisma regular triangular medem 8cm e 6cm, respectivamente. Calcule: a) a área de cada face lateral (AF) 48cm

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Geometria espacial: Prismas e cilindros

Geometria espacial: Prismas e cilindros Formação Continuada em Matemática Matemática º ano/º bim 013 Plano de Trabalho Geometria espacial: Prismas e cilindros Tarefa Cursista: Igor de Freitas Leardini Tutora: Maria Cláudia Padilha Tostes Sumário

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

10 11 Escola Municipal Francis Hime SÓLIDOS GEOMÉTRICOS 6º ANO Nome: 1601 Geometria: Uma ciência de muitos povos A geometria, assim como as ciências, nasceu das necessidades e das observações do homem.

Leia mais

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ COLÉGIO ESTADUAL DOM JOÃO VI Professora: ANA PAULA LIMA Matrículas: 09463027/09720475 Série: 2º ANO ENSINO MÉDIO Tutora: KARINA

Leia mais

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro

Leia mais

Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA

Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA 1 PRISMA: DEFINIÇÃO PRISMA O prisma é um poliedro irregular compreendido entre dois polígonos iguais e paralelos, e cujas faces laterais são paralelogramos. Os dois polígonos iguais e paralelos são as

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Geometria Plana: Polígonos regulares & Áreas de Figuras Planas.

Geometria Plana: Polígonos regulares & Áreas de Figuras Planas. Geometria Plana: Polígonos regulares & Áreas de Figuras Planas. Bruno Cervelin DME IFM Universidade Federal de Pelotas 27 de Junho de 2019 B Cervelin (UFPel) Polígonos 27 de Junho de 2019 1 / 17 Polígonos

Leia mais

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V Matemática Pedro Paulo GEOMETRIA ESPACIAL V 1 ELEMENTOS DA PIRÂMIDE Pirâmide é um poliedro formado por um polígono que é a base e um ponto fora do plano da base que é o vértice. Cada lado do polígono da

Leia mais

Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PIRÂMIDES Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PIRÂMIDES... 1 CLASSIFICAÇÃO DE UMA PIRÂMIDE... 1 EXERCÍCIOS FUNDAMENTAIS... 2 ÁREAS EM UMA PIRÂMIDE...

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

Unidade 9 Geometria Espacial. Poliedros Volume de sólidos geométricos Princípio de Cavalieri

Unidade 9 Geometria Espacial. Poliedros Volume de sólidos geométricos Princípio de Cavalieri Unidade 9 Geometria Espacial Poliedros Volume de sólidos geométricos Princípio de Cavalieri Poliedros palavra poliedro tem sua origem no idioma grego (poly significa, muitos, e hedra, faces). Poliedro

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro.

Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro. Capítulo 1 Números Naturais Múltiplos e Divisores Se um número natural é múltiplo de outro número, este é divisor do primeiro. Números primos e números compostos Decomposição de um número em factores primos

Leia mais

Lista 19 GEOMETRIA ESPACIAL (Prismas)

Lista 19 GEOMETRIA ESPACIAL (Prismas) Lista 19 GEOMETRIA ESPACIAL (Prismas) 1) A diagonal da base de um prisma quadrangular regular mede 6 dm e a altura do sólido, volume do sólido, em dm, vale a) c) 6 dm. O ) O volume de um prisma reto, cuja

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos

Leia mais

Matemática Régis Cortes GEOMETRIA ESPACIAL

Matemática Régis Cortes GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL 1 GEOMETRIA ESPACIAL PIRÂMIDE g g = apótema da pirâmide ; a p = apótema da base h g 2 = h 2 + a p 2 a p Al = p. g At = Al + Ab V = Ab. h 3 triangular quadrangular pentagonal hexagonal

Leia mais

Ambiente Virtual de Aprendizagem Moodle 3.0 Orientações Didático-Pedagógicas e Tutoriais. O Ambiente Moodle ferramentas e funcionalidades

Ambiente Virtual de Aprendizagem Moodle 3.0 Orientações Didático-Pedagógicas e Tutoriais. O Ambiente Moodle ferramentas e funcionalidades Universidade de Cruz Alta UNICRUZ Pró-Reitoria de Graduação Núcleo de Educação a Distância Ambiente Virtual de Aprendizagem Moodle 3.0 Orientações Didático-Pedagógicas e Tutoriais O Ambiente Moodle ferramentas

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies

Leia mais

Noções de Geometria. Professora: Gianni Leal 6º B.

Noções de Geometria. Professora: Gianni Leal 6º B. Noções de Geometria Professora: Gianni Leal 6º B. Figuras geométricas no espaço: mundo concreto e mundo abstrato Mundo concreto: é mundo no qual vivemos e realizamos nossas atividades. Mundo abstrato:

Leia mais

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008 DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4

Leia mais

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples

Leia mais

Volume e Área de Superfície, Parte I

Volume e Área de Superfície, Parte I AULA 14 14.1 Introdução Nesta aula vamos trabalhar com os conceitos que você, aluno já está habituado: volume e área de superfície. Nesta aula, trataremos de volumes de sólidos simples como cilindros,

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3. Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem

Leia mais

ÁREA DO PROFESSOR (TUTOR)

ÁREA DO PROFESSOR (TUTOR) ÁREA DO PROFESSOR (TUTOR) O MOODLE (Modular Object Oriented Dynamic Learning Environment) é um Ambiente Virtual de Ensino-Aprendizagem (AVEA) de código aberto, livre e gratuito que se mantém em desenvolvimento

Leia mais

MATEMÁTICA. Geometria Espacial

MATEMÁTICA. Geometria Espacial MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 GEOMETRIA... Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Maio/2015 FIGURAS GEOMÉTRICAS PLANAS São representações das faces dos sólidos. Essas formas são chamadas de bidimensionais por

Leia mais

ATIVIDADES COM GEOPLANO ISOMÉTRICO

ATIVIDADES COM GEOPLANO ISOMÉTRICO ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento

Leia mais

Exercícios de Matemática Poliedros

Exercícios de Matemática Poliedros Exercícios de Matemática Poliedros 3. (Unitau) Se dobrarmos convenientemente as linhas tracejadas das figuras a seguir, obteremos três modelos de figuras espaciais cujos nomes são: 1. (Uerj) O poliedro

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

PRISMAS E CILINDROS. Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ. Matemática 2º ano / 2º Bimestre/ 2013 PLANO DE TRABALHO

PRISMAS E CILINDROS. Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ. Matemática 2º ano / 2º Bimestre/ 2013 PLANO DE TRABALHO Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano / 2º Bimestre/ 2013 PLANO DE TRABALHO PRISMAS E CILINDROS TAREFA 2: Cursista: Vanessa de Souza Machado Matrícula: 00/0974440-0

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Desenho Técnico. Projeções Ortogonais 01. Prof. João Paulo Barbosa

Desenho Técnico. Projeções Ortogonais 01. Prof. João Paulo Barbosa Desenho Técnico Projeções Ortogonais 01 Prof. João Paulo Barbosa Projeção Ortogonal Nos desenhos projetivos, a representação de qualquer objeto ou figura será feita por sua projeção sobre um plano. Os

Leia mais

FÁTIMA HELENA COSTA DIAS. institucional: MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE. Tutor: Daiana da Silva Leite

FÁTIMA HELENA COSTA DIAS.  institucional: MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE. Tutor: Daiana da Silva Leite FÁTIMA HELENA COSTA DIAS e-mail institucional: fhelena@educacao.rj.gov.br MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE Tutor: Daiana da Silva Leite Grupo: 05 Tarefa 4 Duração Prevista: 290 minutos, distribuídos

Leia mais

Responder todas as questões em folha A4. Entregar na data da realização da prova.

Responder todas as questões em folha A4. Entregar na data da realização da prova. INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo

Leia mais

Resoluções das atividades

Resoluções das atividades Resoluções das atividades Porcentagem 7 a) 6 = d) 6 0 = 0 Noções de porcentagem a) 7% d) % 7% e) % 9% f) 0% a) 0 0 a) 0 = = 0% 0 = = % 0 0 d) B, C, D, A 77 0 d) 0 0 (A) 6 (B) = 0% (D) 7 = = 7% 0 = = %

Leia mais

Matemática Fascículo 07 Manoel Benedito Rodrigues

Matemática Fascículo 07 Manoel Benedito Rodrigues Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

Olhando por esse Prisma...

Olhando por esse Prisma... Reforço escolar M ate mática Olhando por esse Prisma... Dinâmica 7 2º Série 2º Bimestre DISCIPLINA série CAMPO CONCEITO Matemática Ensino Médio 2ª Geométrico Geometria Espacial: Prismas e Cilindros Primeira

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2. Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 -

Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2. Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 - Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2 Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 - Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ MATEMÁTICA 2º ANO/ENS.

Leia mais

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Volumes de Sólidos Semelhantes. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Volumes de Sólidos Semelhantes. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Espacial - Volumes e Áreas de Prismas e Pirâmides Volumes de Sólidos Semelhantes Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha

Leia mais

Com base no texto e assuntos ligados a ele, marque a alternativa correta nas questões 02 e 03.

Com base no texto e assuntos ligados a ele, marque a alternativa correta nas questões 02 e 03. 1º BIM P2 HABILIDADES LISTA DE EXERCÍCIOS MATEMÁTICA 6º ANO Aluno (a): Professor: Turma: Turno:... Data: / /2014 Unidade: ( ) Asa Norte ( ) Águas Lindas ( )Ceilândia ( ) Gama ( )Guará ( ) Pistão Norte

Leia mais

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos: EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2

Leia mais

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3 e) 4 GEOMETRIA ESPACIAL FGV Questão 01 - (FGV /017) O líquido AZ não se mistura com a água. A menos que sofra alguma obstrução, espalha-se de forma homogênea sobre a superfície da água formando uma fina

Leia mais

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral

Leia mais

Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ. Matemática 2º Ano 3º Bimestre/2012

Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ. Matemática 2º Ano 3º Bimestre/2012 Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 3º Bimestre/2012 Plano de Trabalho 2 Pirâmides e Cones Cursista: Ângela Pereira Cerqueira Halfeld Tutora: Ana Paula

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas

PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas 1 Escalas escala medida _ no _ desenho medida _ real _ ou _ verdadeira _ grandeza D VG Escala de ampliação Objeto real

Leia mais

Triângulos DEFINIÇÃO ELEMENTOS

Triângulos DEFINIÇÃO ELEMENTOS Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

Figuras Geométricas planas e espaciais. Rafael Carvalho

Figuras Geométricas planas e espaciais. Rafael Carvalho Figuras Geométricas planas e espaciais Rafael Carvalho Figuras geométricas planas Na geometria plana vamos então nos atentar ao método de cálculo da área das figuras geométricas planas. Sendo elas os polígonos,

Leia mais

Domínio: Geometria. CONSELHO de DOCENTES 1.º Ciclo Página 1

Domínio: Geometria. CONSELHO de DOCENTES 1.º Ciclo Página 1 Domínio: Geometria Subdomínio/Conteúdos Localização e orientação no espaço - Ângulo formado por duas direções; vértice de um ângulo; - Ângulos com a mesma amplitude; - A meia volta e o quarto de volta

Leia mais

Mat. Monitor: Roberta Teixeira

Mat. Monitor: Roberta Teixeira Professor: Rafael Jesus Monitor: Roberta Teixeira Exercícios de revisão sobre geometria espacial 22 set EXERCÍCIOS DE AULA 1. Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais