1 Exercícios de Aplicações da Integral

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "1 Exercícios de Aplicações da Integral"

Transcrição

1 Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área da região delimitada por: (a) = e +, = e, =, = 5. (b) =, = cos(), = /, = /. Fi.: Considere os grácos de = f() e = g() representadas na gura abaio. f() 6 g() Escreva uma (ou a soma de) integral(is) denida(s) que calcule a área delimitada por: (a) = f() e = g() para [, ]; (b) = f() e = g() para [, ]. Fi.: Considere os grácos de = f() e = g() do eercício anterior. Escreva uma (ou a soma de) integral(is) denida(s) que calcule o volume do sólido de revolução obtido pela rotação em torno do: (a) eio da região delimitada por = e = f() para [, ]; (b) eio da região delimitada por = f() e = g() para [, ]; (c) eio da região do item (b). Fi.4: Considere a região do plano delimitada por = f() e = g() indicada na gura abaio. Escreva uma integral que determine a área da região. = g() = f() Fi.5: Suponha que Π(s) é o plano = s em R. Seja Ω R um sólido contido entre os planos = e = 4. Seja A(s) a área da interseção de Π(s) com Ω. Escreva uma integral que determine o volume de Ω.. Problemas Prob.: Calcule as áreas hachuradas das guras (a) e (b) abaio.

2 (a) (b) Prob.: Esboce e calcule a área da região limitada: (a) = 6, = e + =. Dica: = é raiz de = + 6. (b) por = + 4 e por =. (c) inferiormente por =, superiormente por = e lateralmente por =. Prob.: Considere a região do plano limitada superiormente por = e inferiormente por = 4 e = 6, conforme indicada na gura abaio. Determine sua área. = = 6 = 4 Prob.4: Calcule o volume do sólido de revolução gerado quando a região hachurada na gura abaio é girada em torno do eio e do eio. Prob.5: Esboce a região do plano, determine sua área e calcule o volume do sólido de revolução obtido pela rotação em torno do eio da região do plano delimitada: (a) por =, = e = ; (b) acima por = e, abaio pelo eio e a esquerda pela reta = (uma região innita). Prob.6: (sólido de revolução girado em torno de outros eios) Determine o volume do sólido de revolução obtido quando a região limitada por = e = é girada em torno da reta: (a) = ; (b) =. Prob.7: Na gura abaio, seja A o ponto de interseção da curva = e com a reta L, e seja B o vértice da parábola 4 = ( ). Suponha que a reta L passe por A e B. A reta L, a parábola e o gráco de = e delimitam uma região Ω. Escreva uma soma de integrais que determine o volume do sólido de revolução obtido ao girar Ω em torno do eio.

3 = e A Ω B L 4 = ( ) Prob.8: Um buraco cilíndrico de raio a é feito passando pelo centro de uma esfera de raio r. Determine o volume do sólido (esfera com buraco no meio) remanescente. Prob.9: Determine o volume do sólido cuja base é o círculo (no plano ) + = r e cujas seções perpendiculares ao eio são quadrados com um lado na base (no plano ). Prob.: Determine o volume do sólido cuja base é limitada por = e = e cujas seções perpendiculares ao eio são quadrados com um lado na base (no plano ). Prob.: Para cada n >, seja Ω n a região limitada pelo gráco de = n, o eio e a reta =. Se W n é o volume do sólido obtido girando Ω n em torno do eio, e V n é o volume do sólido obtido V n girando-se Ω n em torno do eio, determine lim. n W n Prob.: Uma calota esférica é uma porção da esfera obtida através de um corte por um plano de uma esfera (veja gura abaio). Se o raio da esfera é r, a altura da calota é h e o raio da calota é a, determine o volume desta calota. Prob.: Deduza a fórmula do comprimento de gráco de função e da área de superfície de sólido de revolução. Prob.4: Determine o comprimento do gráco da função: (a) = f() = log( + ) para [, ]. (b) = f() = 6 para [, 4]; (c) = f() = log para [, ]; (d) = g() = log( cos ) para [ /4, /4]. Prob.5: Calcule a área da superfície de revolução gerada pela rotação em torno do eio da curva: (a) = para [, ]. (b) = para [, ]. (c) = e para.

4 Respostas dos Eercícios Aplicações da Integral. Eer. de Fiação p. Fi.: (a) Uma função é a translação da outro por unidades. Assim a área é igual a 5 (e + e ) d = 5 d = 5 =. 8 = = 6 (b) Está área é igual Fi.: (a) (b) Fi.: (a) (b) (c) Fi.4: 6 / / (g() f()) d. (f() g()) d + [f()] d. [g()] d [g ()] d cos() d =. (g() f()) d. [f()] d. (g() f()) d. Fi.5: O volume de Ω é. Problemas p. 4 [f ()] d. A(s) ds. Prob.: (a) A interseção ocorre quando = =, ou seja, quando = ( ) =. Assim a interseção é em = e = /. Logo a área / é igual a ( ) d = / = 4 (b) A interseção ocorre é quando cos = sen, que ocorrerá dentro de um ciclo do seno ([, ]) em /4 e + /4 = 5/4. Assim a área é igual a cos ) d = 8. 5/4 /4 (sen Prob.: (a) A interseção de = = + 6 é em = e = 8. A interseção de = e = + 6 é em (, ). Assim o esboço é: Assim a área é: Como (( + 6) ( /)) d + (( + 6) ( /)) d = e + = (( + 6) ( )) d. (( + 6) ( )) d =, a área é. (b) Para facilitar, o primeiro passo é trocar com e resolver o problema: Calcule a região delimitada por por = +4 e por =. Assim, = e = +. A interseção ocorrerá quando = = +, isto é se = ou se = 4. Assim a área é igual a 4 (( + ) ( / )) d = 8. 4 = = + Resolvendo o problema original ( = + 4 e = ) e integrando em teríamos que escrever como soma de duas integrais (verique): + 4 d + 6 ( + 4 ( )) d = = = 8. (c) Fazendo o esboço observamos que a interseção ocorrerá em = e em =. Assim a área é igual a ( ) d =. Outra possibilidade é integrar em. Como =, =. Assim, a área é. d = 4

5 = = Prob.: Sua área será determinada por 4 ( ) d = (6 4) d. A primeira integral é igual a metade da área do círculo de raio 4: 8. R: 8 8. Prob.4: Note que a região é limitada superiormente por = +. Assim, rodando no eio o volume será ( + ) d = 7. O sólido obtido será um tronco de cone. Girando em torno do eio vamos obter um cilindro de e altura menos o sólido obtido girando = (já que = + ) para [, ]. O cilindro possui volume (r h, com r = e h = ). Devemos subtrair = 5. Prob.5: (a) Primeiro o esboço. = ( ) d =. Assim o volume é Ω Sua área é igual a 8 8 ( ) d = 4. = O volume será calculado como a diferença entre dois volumes: 8 d 8 (b) Primeiro o esboço. ( ) d = 96 5 = Ω = = e Sua área é igual a O volume é igual a (e ) d e d = e. Prob.6: Primeiro o esboço: = = (e ) d = e. = = (a) Note que =. Como a rotação é em torno de =, o raio maior é + e o menor é +, ao invés de e se fosse rotação em torno de = (eio ). O volume será dado pela diferença de volumes: ( + ) d ( + ) d = =. (b) De forma análoga, o raio maior é + e o menor +. O volume será dado pela diferença de volumes: ( + ) d ( + ) d = = 7 5. Prob.7: Note que A = (, e) pois está na curva = e, e portanto, = e = e = e. Por outro lado B está parábola. Como =, =. Assim B = (, ). Assim a equação da reta L (que passa em A e B) é = e + e, ou = /e. A função = e intersepta o eio em =. O volume será igual ao volume do tronco de cone obtido ao girar a reta L para [, e] menos o volume ao girar = e para [, e] e menos o volume ao girar a parábola para [, ]. Invertendo as funções, como = e, log =, = log. Assim o integrando será = log. Como 4 = ( ), e na região (veja gura) =, ( ) = ( ) =. Assim, =. Logo, =. Assim o volume é igual a e ( /e) d ( ) d e log d. 5

6 Prob.8: A primeira coisa a ser observada é que a resposta não é o volume da esfera menos o volume do cilindro de raio a. Isto porque o nal do cilindro retirado pelo furo é arredondado (está na superfície da esfera). A esfera é o sólido de revolução de = f() = r em torno do eio. Como o buraco tem raio a (veja gura), o valor = k para que f(k) = a = r será k = r a. k a Assim o volume será dado por k k onde k = r a. = r ( r ) d = kr k, Prob.9: Como = ± r, o lado do quadrado para cada é r. A área de cada corte A() = 4(r ). Assim, o volume é r r 4(r ) d = 6 r. Prob.: Faça a gura e observe que a interseção é em (, ) e (, ). O lado do quadrado para cada é. A área de cada corte A() = ( ). Assim, o volume é ( ) d =. a k Outra solução é utilizando somente o princípio de Cavalieri e a ralação entre volume de cone, cilindro e esfera. É solução elementar, que pode ser feita no Ensino médio. Prob.: Veja num livro de Cálculo I ou na internet na Wikipedia. Prob.4: (a) Calculando + [f ()] =. A integral que determina o comprimento possui primitiva. R:. (b) Calculando, + [f ()] = 6 6. A integral que determina o comprimente possui primitiva 4 arcsen(/4). R:. + (c) Vamos ter que calcular d. Fazendo substituição hiperbólica, obtemos a primitiva + arcsenh(/). R: 5 + arcsenh() arcsenh(/). (d) Como g () = tan, calculamos + tan d = sec d = log(sec + tan ). Substituindo( os limites de integração obtemos: + ) R: log. Prob.5: (a) 7 (/ ). (b) (8 5 log( + 5)). (c) ( + log( + )). Prob.: Note que W n = ( n ) d = n + e V n = ( ( /n ) ) d = V. Logo, n lim = n + n W n (n + ) lim = 4. n n + Prob.: De forma análoga a um eercício anterior onde determinamos o volume de uma esfera com um furo. Por Pitágoras, r = a + (r h). Rodando a gura em 9 graus, pensando na esfera como o sólido de revolução de = f() = r em torno do eio e denindo k = r h, o volume da calota será r k ( r ) d = (r kr + k ). Substituindo k = r h, obtemos que o volume é (h r h /). Com mais alguma manipulação também obtemos que o volume é h 6 (a + h ). 6

Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo Cálculo I (015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.015 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio

Leia mais

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO APLICAÇÕES DE INTEGRAÇÃO 6.2 Volumes Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. SÓLIDOS IRREGULARES Começamos interceptando S com um plano e obtemos uma região plana

Leia mais

Aplicações de integração. Cálculo 2 Prof. Aline Paliga

Aplicações de integração. Cálculo 2 Prof. Aline Paliga Aplicações de integração Cálculo Prof. Aline Paliga Áreas entre curvas Nós já definimos e calculamos áreas de regiões que estão sob os gráficos de funções. Aqui nós estamos usando integrais para encontrar

Leia mais

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. 8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração

Leia mais

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π.

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π. Aula 9 Superfícies de Revolução Seja C uma curva e r uma reta contidas num plano π. Fig. 1: Superfície de revolução S, geratriz C e eixo r contidos no plano π A superfície de revolução S de geratriz C

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Lista de Exercícios 02: Reta, Plano, Cônicas e Quádricas

Lista de Exercícios 02: Reta, Plano, Cônicas e Quádricas Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologias Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental - UACTA Disciplina: Geometria Analítica e Álgebra

Leia mais

1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014

1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014 Sumário 1 Questões de Vestibular 1 1.1 UFPR 2014.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

a, em que a e b são inteiros tais que a é divisor de 3

a, em que a e b são inteiros tais que a é divisor de 3 Matemática 0. Considere a expressão x x 3 5x x 6. Pede-se: A) encontrar o valor numérico da expressão para x. B) obter todas as raízes complexas do polinômio p(x) x x 3 5x x 6. Questão 0 Comentários: A

Leia mais

PARTE 11 VETOR GRADIENTE:

PARTE 11 VETOR GRADIENTE: PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

3. (Uerj 98) a) Calcule o comprimento da corda AB, do círculo original, em função de R e m.

3. (Uerj 98) a) Calcule o comprimento da corda AB, do círculo original, em função de R e m. 1. (Unicamp 91) Uma esfera de raio 1 é apoiada no plano xy de modo que seu pólo sul toque a origem desse plano. Tomando a reta que liga o pólo norte dessa esfera a qualquer outro ponto da esfera, chamamos

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

Cálculo III-A Módulo 5 Tutor

Cálculo III-A Módulo 5 Tutor Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo Tutor Eercício : Calcule + )dv, onde é a região interior ao cilindro + = e

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada Eercícios de Derivada Eercícios de Fiação Cálculo I (0/) IM UFRJ Lista : Derivadas Prof Milton Lopes e Prof Marco Cabral Versão 7040 Fi : Determine a equação da reta tangente ao gráco de f() no ponto =

Leia mais

Primeiro Teste de Cálculo Infinitesimal I

Primeiro Teste de Cálculo Infinitesimal I Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5

Leia mais

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS() FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.

Leia mais

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii)

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii) MINISTÉRIO DA EDUCAÇÃO DESEMPENHO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a Dayse Batistus, Dr a.

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel

18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel 18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18)

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) UFPR - Universidade Federal do Paraná Departamento de Matemática CM4 - Cálculo I a. Lista de Eercícios Integrais definidas. Calcule as integrais definidas abaio: () (4) (7) () () (6) (9) () (5) (8) /4

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais

INTEGRAIS INTEGRAL INDEFINIDA

INTEGRAIS INTEGRAL INDEFINIDA INTEGRAIS INTEGRAL INDEFINIDA A integração indefinida ou anti-derivação é a operação inversa da derivação, da mesma forma que a subtração é a operação inversa da adição ou a divisão é a operação inversa

Leia mais

Matemática Fascículo 07 Manoel Benedito Rodrigues

Matemática Fascículo 07 Manoel Benedito Rodrigues Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou

Leia mais

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var.

PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ. 8 100% 0,3 x% x = 3,75%. GABARITO: C. Classes D e E 2009 30,8% 2014 17% Taxa var. PROVA MATEMÁTICA UFRGS CORREÇÃO DO PROFESSOR ALEXANDRE FAÉ 6. ASSUNTO: MATEMÁTICA BÁSICA gotas ml 1 0, 5 5 ml em um minuto ml minutos 5 1 y 4 60 y 700 ml 7, litros 60per 7. ASSUNTO: MATEMÁTICA BÁSICA 60

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Geometria Espacial. Revisão geral

Geometria Espacial. Revisão geral Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,

Leia mais

MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x

MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x MATEMÁTICA 01. O preço pago por uma corrida de táxi normal consiste de uma quantia fixa de R$ 3,50, a bandeirada, adicionada de R$ 0,25 por cada 100 m percorridos, enquanto o preço pago por uma corrida

Leia mais

Cálculo I - Lista 7: Integrais II

Cálculo I - Lista 7: Integrais II Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo - Prof. Responsável: Andrés Vercik. Use o teorema fundamental do calculo para achar a derivada da função. g( ) = + tdt g ( ) =

Leia mais

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais Frente ula 0 GEOETRI NLÍTI oordenadas artesianas Ortogonais Sistema cartesiano ortogonal Sabemos que um sistema cartesiano ortogonal é formado por dois eios perpendiculares entre si com uma origem comum.

Leia mais

Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 06/11/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES.

Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 06/11/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 6// Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno: Matrícula Nota: : :. (3 pontos) Calcule as integrais inde nidas (i) + d (ii) +

Leia mais

A integral indefinida

A integral indefinida A integral indefinida Introdução Prof. Méricles Thadeu Moretti MTM/CFM/UFSC. A integração é uma operação fundamental na resolução de problemas de matemática, física e outras disciplinas, além de fazer

Leia mais

GEOMETRIA ANALÍTICA II

GEOMETRIA ANALÍTICA II Conteúdo 1 O PLANO 3 1.1 Equação Geral do Plano............................ 3 1.2 Determinação de um Plano........................... 7 1.3 Equação Paramétrica do Plano........................ 11 1.4 Ângulo

Leia mais

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.

P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas. Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:

Leia mais

Soluções Comentadas das Questões de Matemática do Processo Seletivo de Admissão à Escola Naval - PSAEN

Soluções Comentadas das Questões de Matemática do Processo Seletivo de Admissão à Escola Naval - PSAEN Soluções Comentadas das Questões de Matemática do Processo Seletivo de Admissão à Escola Naval - PSAEN Questão 1 Concurso 000/001 Num triângulo retângulo, a hipotenusa é o triplo de um dos catetos. Considerando

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

4 + x6 3a. Lista de Exercícios. (3x + 1) 2 dx (3) x cos(nx)dx, n N (9) cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) x 2 x + 1dx (21)

4 + x6 3a. Lista de Exercícios. (3x + 1) 2 dx (3) x cos(nx)dx, n N (9) cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) x 2 x + 1dx (21) UFPR - Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Matemática Prof. José Carlos Eidam PROFMAT - MA - Fundamentos de Cálculo Integrais definidas e indefinidas. Calcule as integrais

Leia mais

NOTAÇÕES : conjunto dos números naturais : conjunto dos números reais + : conjunto dos números reais não-negativos

NOTAÇÕES : conjunto dos números naturais : conjunto dos números reais + : conjunto dos números reais não-negativos MATEMÁTICA NOTAÇÕES : conjunto dos números naturais : conjunto dos números reais + : conjunto dos números reais não-negativos i: unidade imaginária; i = P(A): conjunto de todos os subconjuntos do conjunto

Leia mais

O cilindro deitado. Eduardo Colli

O cilindro deitado. Eduardo Colli O cilindro deitado Eduardo Colli São poucas as chamadas funções elementares : potências e raízes, exponenciais, logaritmos, funções trigonométricas e suas inversas, funções trigonométricas hiperbólicas

Leia mais

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

Sejam VÛ, V½, VÝ os volumes dos sólidos gerados pela rotação do triângulo em torno dos lados A, B e C, respectivamente.

Sejam VÛ, V½, VÝ os volumes dos sólidos gerados pela rotação do triângulo em torno dos lados A, B e C, respectivamente. 1. (Ufpe 96) O trapézio 0ABC da figura a seguir gira completamente em torno do eixo 0x. Calcule o inteiro mais próximo do volume do sólido obtido. 2. (Fuvest 91) Considere um triângulo retângulo com hipotenusa

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015] Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica

Leia mais

Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas.

Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Equações Trigonométricas Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Por exemplo: A maioria das equações trigonométricas

Leia mais

PROVA DE MATEMÁTICA _ VESTIBULAR DA FUVEST- 2005 _ FASE 1. a) 37 b) 36 c) 35 d) 34 e) 33

PROVA DE MATEMÁTICA _ VESTIBULAR DA FUVEST- 2005 _ FASE 1. a) 37 b) 36 c) 35 d) 34 e) 33 PROV MTMÁTI _ VSTIBULR FUVST- 005 _ FS Professora MRI NTONI ONIÇÃO GOUVI 0) Um supermercado adquiriu detergentes nos aromas limão e coco. compra foi entregue, embalada em 0 caias, com frascos em cada caia.

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

3, 2, 1 -Mistério. Série Matemática na Escola

3, 2, 1 -Mistério. Série Matemática na Escola 3, 2, 1 -Mistério Série Matemática na Escola Objetivos 1. Apresentar o Princípio de Cavalieri para figuras planas; 2. Apresentar o Princípio de Cavalieri para sólidos; 3. Apresentar a relação 3:2:1 entre

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data EXAME NACIONAL DO ENSINO BÁSICO Prova 23/ 1.ª Chamada/ 2008 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Bilhete de Identidade n.º Emitido em (Localidade) Assinatura

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Mudança de Coordenadas Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região ser mais bem adaptada

Leia mais

Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas

Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas Engrenagens Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas alavancas. Classificação das Engrenagens As engrenagens

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Geometria - Revisões º no Nome: Nº: Turma: região do espaço definida, num referencial ortonormado, por + + = é: [] a circunferência

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA Sistema ELITE de Ensino IME - 01/01 1 COMENTÁRIO DA PROVA 01. O polinômio P() = 5 + 10 0 + 81 possui raízes compleas simétricas e uma raiz com valor igual ao módulo das raízes compleas. Determine todas

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos

Leia mais

Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares. f(x) lim x a g(x) = lim x a f(x)

Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares. f(x) lim x a g(x) = lim x a f(x) Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares Anteriormente, vimos que um dos problemas no cálculo de ites surge quando desejamos f() calcular a. A estratégia incial é calcular

Leia mais

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS 1 O CONCEITO DE CAMPO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q1, e a seguir coloquemos em suas proximidades uma segunda

Leia mais

a 21 a 22... a 2n... a n1 a n2... a nn

a 21 a 22... a 2n... a n1 a n2... a nn Projeto TEIA DO SABER 2006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP. Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof. Dr. José Ricardo Zeni Metodologias de Ensino

Leia mais

GEOMETRIA NO PLANO E NO ESPAÇO I Alguns exercícios saídos em provas globais, exames e testes intermédios

GEOMETRIA NO PLANO E NO ESPAÇO I Alguns exercícios saídos em provas globais, exames e testes intermédios Escola Secundária de Francisco Franco Matemática A 10.º ano GEMETRIA N PLAN E N ESPAÇ I Alguns eercícios saídos em provas globais, eames e testes intermédios 1. Num referencial o.n. z, a intersecção das

Leia mais

PUC-Rio Desafio em Matemática 23 de outubro de 2010

PUC-Rio Desafio em Matemática 23 de outubro de 2010 PUC-Rio Desafio em Matemática 3 de outubro de 010 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 1,0 3 1,0 4 1,5 5 1,5 6,0 7,0 Nota final 10,0 Instruções Mantenha seu

Leia mais

Aula 4 Função do 2º Grau

Aula 4 Função do 2º Grau 1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função

Leia mais

Planificação do 2º Período

Planificação do 2º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 2º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 0 Ano

Leia mais

Metrologia Professor: Leonardo Leódido

Metrologia Professor: Leonardo Leódido Metrologia Professor: Leonardo Leódido Sumário Definição Conceitos Básicos Classificação de Forma de Orientação de Posição Definição Tolerância pode ser definida como um intervalo limite no qual as imperfeições

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 07: Teorema do Valor Intermediário, Teorema do Confronto e Limite Trigonométrico Fundamental Objetivos da Aula Conhecer e aplicar o Teorema

Leia mais

NOTAS DE AULA - GEOMETRIA ANALÍTICA CÔNICAS E POLARES ERON E ISABEL

NOTAS DE AULA - GEOMETRIA ANALÍTICA CÔNICAS E POLARES ERON E ISABEL NOTAS DE AULA - GEOMETRIA ANALÍTICA CÔNICAS E POLARES ERON E ISABEL SALVADOR BA 007 Conteúdo destas notas Cônicas Translação dos eios coordenados Rotação dos eios coordenados Parábola Elipse Hipérbole

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º 1- Função exponencial Propriedades de potenciação Equações exponenciais Função exponencial Condição de existência: Domínio Inequações exponenciais 2 - Logaritmos Definição

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos: EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2

Leia mais

Por que as antenas são parabólicas?

Por que as antenas são parabólicas? Por que as antenas são parabólicas? Adaptado do artigo de Eduardo Wagner A palavra parábola está, para os estudantes do ensino médio, associada ao gráfico da função polinomial do segundo grau. Embora quase

Leia mais

Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura.

Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. A aresta VA é perpendicular ao plano da base e tem a mesma medida do segmento AD. O seguimento AB mede 6 cm. Determine o volume

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o Semestre de - a Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. 7 5. 6. 9. tg. e. tg sec 7..

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa 1 1. (Fgv 2001) a) No plano cartesiano, considere a circunferência de equação x +y -4x=0 e o ponto P(3,Ë3). Verificar se P é interior, exterior ou pertencente à circunferência. b) Dada a circunferência

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 21 DE JULHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 21 DE JULHO 2015 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa 1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx

Leia mais

PUC-Rio Desafio em Matemática 21 de outubro de 2012

PUC-Rio Desafio em Matemática 21 de outubro de 2012 PUC-Rio Desafio em Matemática 21 de outubro de 2012 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 2 1,0 3 1,5 4 1,5 5 1,5 6 1,5 7 2,0 Nota final 10,0 Instruções Mantenha

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o. Semestre de - a. Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. e. cos 7 4. tg 7 sen 5. 6.

Leia mais

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura:

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura: REVISÃO RELAÇÕES TRIGONOMÉTRICAS E REDUÇÃO AO PRIMEIRO QUADRANTE DO CICLO TRIGONOMÉTRICO TURMA: ª SÉRIE DO ENSINO MÉDIO PROF. LUCAS FACTOR Trigonometria no Triangulo Retângulo Considere o triangulo retângulo

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 7 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 7 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Udesc 96) DETERMINE as áreas dos triângulos ABM e BCM. COMENTE estes resultados comparados com a área total. 2. (Fuvest 93) a) Calcule a área do quadrilátero inscrito numa circunferência

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Calculando seno(x)/x com o interpretador Hall.

Calculando seno(x)/x com o interpretador Hall. Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-45 Cálculo Diferencial e Integral I (Escola Politécnica) Terceira Lista de Eercícios - Professor: Equipe de Professores. APLICAÇÕES DE

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente

Leia mais

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL EXAME NACIONAL DE MATEMÁTICA 2005 9.º ANO DE ESCOLARIDADE / 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome

Leia mais

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo

1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero

Leia mais