TE802 Processos Estocásticos em Engenharia

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "TE802 Processos Estocásticos em Engenharia"

Transcrição

1 TE802 Processos Estocásticos em Engenharia Duas Variáveis Aleatórias 29 de agosto de 2017 Duas Variáveis Aleatórias Função Distribuição Acumulada Conjunta: F X,Y (x,y) = P[X x, Y y] Propriedades: (a) 0 F X,Y (x,y) 1, (b) F X (x) = F X,Y (x, ), (c) F Y (y) = F X,Y (,y), (d) F X,Y (,y) = F X,Y (x, ), (e) Se x x 1 e y y 1, então F X,Y (x,y) F X,Y (x 1,y 1 ) (f) F X,Y (, ) = 1.

2 Função Massa de Probabilidade Conjunta P X,Y (x,y) = P[X = x,y = y]. x S X y S Y P X,Y (x,y) = 1. P[B] = P X,Y (x,y). (x,y) B Exemplo 1 A PMF conjunta, P Q,G (q,g), das variáveis aleatórias Q e G é dada pela seguinte tabela: Determine: (1) P[Q = 0] (2) P[Q = G] (3) P[G > 1] (4) P[G > Q] P Q,G (q,g) g = 0 g = 1 g = 2 g = 3 q = 0 0,06 0,18 0,24 0,12 q = 1 0,04 0,12 0,16 0,08

3 Função Massa de Probabilidade Marginal Considerando as variáveis aleatórias X e Y com PMF conjunta, P X,Y (x,y), temos que Exemplo 2: P X (x) = Determine P X (x) e P Y (y). y S Y P X,Y (x,y), P Y (y) = P X,Y (x,y) y = 0 y = 1 y = 2 x = 0 0, x = 1 0,09 0,09 0 x = ,81 x S X P X,Y (x,y). Função Densidade de Probabilidade Conjunta F X,Y (x,y) = x y f X,Y (u,v)dvdu P[x < X x + dx, y < Y y + dy] = f X,Y (x,y)dxdy 2 F X,Y (x,y) x y f X,Y (x,y)dxdy = 1 P[A] = f X,Y (x,y)dxdy A

4 Função Densidade de Probabilidade Conjunta Exemplo 3: As V.A.s X e Y tem PDF conjunta dada por: { c, 0 x 5, 0 y 3, Determine: a) O valor da constante c; b) P[A] = P[2 X < 3, 1 Y < 3]. Exemplo 4: As V.A.s X e Y tem PDF conjunta dada por: { 1/15, 0 x 5, 0 y 3, Determine: P[A] = P[Y > X]. Funções Densidade de Probabilidade Marginais f X (x) = f Y (y) = f X,Y (x,y)dy f X,Y (x,y)dx Exemplo 5: As V.A.s X e Y tem PDF conjunta dada por: { 5y/4, 1 x 1, x 2 y 1, Determine as PDF marginais f X (x) e f Y (y).

5 Funções de Duas Variáveis Aleatórias Sejam X e Y duas variáves aleatórias discretas. A variável aleatória W = g(x,y ) tem PMF dada por, P W (w) = (x,y):g(x,y)=w P X,Y (x,y). Exemplo 6: As V.A.s X e Y tem PMF conjunta dada por: P X,Y (x,y) = { 1 28xy, x = 1,2,4; y = 1,3, Considerando a função W = X Y, determine: a) P W (w) b) E[W ] c) P[W > 0] Funções de Duas Variáveis Aleatórias Sejam X e Y duas variáves aleatórias contínuas. A variável aleatória W = g(x,y ) tem CDF dada por, F W (w) = P[W w] = f X,Y (x,y)dxdy. g(x,y) w Exemplo 7: As V.A.s X e Y tem PDF conjunta dada por: { λµe (λx+µy), x 0, y 0, Determine a PDF de W = Y/X

6 Valores Esperados Para duas variáveis aleatórias X e Y, o valor esperado de W = g(x,y ) é: Discreta: E[W ] = Contínua: E[W ] = x S X y S Y g(x,y)p X,Y (x,y), g(x,y)f X,Y (x,y)dxdy. E[g 1 (X,Y )+ +g n (X,Y )] = E[g 1 (X,Y )]+ +E[g n (X,Y )] E[X + Y ] = E[X] + E[Y ] Var[X + Y ] = Var[X] + Var[Y ] + 2E[(X µ X )(Y µ Y )] Valores Esperados Covariância: Cov[X,Y ] = E[(X µ X )(Y µ Y )] Correlação: r X,Y = E[XY ] Cov[X,Y ] = r X,Y µ X µ Y Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ] Se X = Y, Cov[X,Y ] = Var[X] = Var[Y ] e r X,Y = E[X 2 ] = E[Y 2 ] X e Y são ortogonais se r X,Y = 0 X e Y são descorrelacionadas se Cov[X,Y ] = 0 Coeficiente de Correlação: ρ X,Y = Cov[X,Y ] = Cov[X,Y ], 1 ρ X,Y 1 Var[X]Var[Y ] σ X σ Y

7 Coeficiente de Correlação Sejam X e Y duas variáveis aleatórias tal que Y = ax + b. Então, 1, a < 0, ρ X,Y = 0, a = 0, 1, a > 0. Exemplos de V.A.s e seus coeficientes de correlação: X é a altura de um estudante e Y é o peso do mesmo estudante 0 < ρ X,Y < 1 X é distância de um telefone celular até a estação rádio base e Y é a potência do sinal recebido pelo telefone 1 < ρ X,Y < 0 X é a temperatura de um resistor medida em graus Celsius e Y é a temperatura do mesmo resistor medida em graus Kelvin ρ X,Y = 1 X é o ganho de um circuito elétrico medido em decibéis e Y é a atenuação, medida em decibéis, do mesmo circuito ρ X,Y = 1 X é o número de um telefone celular e Y é o RG do dono do celular ρ X,Y = 0 Exemplo 8 As variáveis aleatórias L e T representam, respectivamente, o número de páginas e o tempo de transmissão por página de modelos de fax. A PMF conjunta destas V.A.s é dada pela seguinte tabela: Determine: P L,T (l,t) t = 40s t = 60s l = 1 página 0,15 0,1 l = 2 páginas 0,30 0,2 l = 3 páginas 0,15 0,1 (1) E[L] e Var[L] (2) E[T ] e Var[T ] (3) r L,T = E[LT ] (4) Cov[L,T ] (5) ρ L,T

8 Exemplo 9 As V.A.s X e Y tem PDF conjunta dada por: { xy, 0 x 1, 0 y 2, Determine: a) E[X] e Var[X] b) E[Y ] e Var[Y ] c) r X,Y = E[XY ] d) Cov[X,Y ] e) ρ X,Y Condicionamento por um Evento P X,Y B (x,y) = P[X = x,y = y B] { PX,Y (x,y) P X,Y B (x,y) = P[B], (x,y) B, { fx,y (x,y) f X,Y B (x,y) = P[B], (x,y) B, E[W B] = g(x,y)p X,Y B (x,y), y S Y E[W B] = x S X g(x,y)f X,Y B (x,y)dxdy. Var[W B] = E [ (W µ W B ) 2 B ] = E[W 2 B] (µ W B ) 2

9 Exemplo 10 As V.A.s X e Y tem PDF conjunta dada por: { 1/15, 0 x 5, 0 y 3, a) Determine a PDF condicional de X e Y dado o evento B = {X + Y 4} b) Determine o valor esperado condicional de W = XY dado o evento B = {X + Y 4} Condicionamento por uma Variável Aleatória P X Y (x y) = P[X = x Y = y] P X,Y (x,y) = P X Y (x y)p Y (y) = P Y X (y x)p X (x) E[g(X,Y ) Y = y] = x S X g(x,y)p X Y (x y) E[X Y = y] = f X Y (x y) = f X,Y (x,y) f Y (y) x S X xp X Y (x y) f Y X (y x) = f X,Y (x,y) f X (x) { 2, 0 y x 1, Exemplo 11: Dada, determinar f X Y (x y) para 0 y 1 e f Y X (y x) para 0 x 1.

10 Condicionamento por uma Variável Aleatória E[g(X,Y ) Y = y] = E[X Y = y] = g(x,y)f X Y (x y)dx xf X Y (x y)dx Exemplo 12: Com relação à PDF condicional, f X Y (x y), obtida no Exemplo 11, determinar E[X Y ]. E[E[X Y ]] = E[X] E[E[g(X) Y ]] = E[g(X)] Variáveis Aleatórias Independentes As variáveis aleatórias X e Y são independentes se e somente se: Caso Discreto: P X,Y (x,y) = P X (x)p Y (y) Caso Contínuo: f X (x)f Y (y) Propriedades: (a) E[g(X)h(Y )] = E[g(X)]E[h(Y )] (b) r X,Y = E[XY ] = E[X]E[Y ] (c) Cov[X,Y ] = ρ X,Y = 0 (d) Var[X + Y ] = Var[X] + Var[Y ] (e) E[X Y = y] = E[X] y S Y (f) E[Y X = x] = E[Y ] x S X

11 Distribuição Gaussiana Bivariada exp [ ( ) x µ1 2 ( ) 2ρ(x µ 1 )(y µ 2 ) y µ2 2 + σ 1 σ 1 σ 2 σ 2 2(1 ρ 2 ) 2πσ 1 σ 2 1 ρ 2 ]

12 Distribuição Gaussiana Bivariada Se X e Y são as V.A.s Gaussianas bivariadas definidas anteriormente, X é Gaussiana (µ 1,σ 1 ) e Y é Gaussiana (µ 2,σ 2 ) f Y X (y x) = 1 σ 2 2π e (y µ 2(x)) 2 /2 σ 2 2, onde, dado X = x, µ 2 (x) = µ 2 + ρ σ 2 σ 1 (x µ 1 ), σ 2 2 = σ2 2 (1 ρ2 ) f X Y (x y) = 1 σ 1 2π e (x µ 1(y)) 2 /2 σ 2 1, onde, dado Y = y, µ 1 (y) = µ 1 + ρ σ 1 σ 2 (y µ 2 ), σ 2 1 = σ2 1 (1 ρ2 ) ρ X,Y = ρ PDF Gaussiana Conjunta com µ 1 = µ 2 = 0, σ 1 = σ 2 = 1 e ρ = 0,9

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

Probabilidades. Ricardo S. Ehlers. Departamento de Matemática Aplicada e Estatística Universidade de São Paulo.

Probabilidades. Ricardo S. Ehlers. Departamento de Matemática Aplicada e Estatística Universidade de São Paulo. Ricardo S. Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo. Ricardo Ehlers 1 1 NOÇÕES BÁSICA 1 Noções Básicas Os métodos estatísticos para análise de dados estão associados

Leia mais

Momentos de uma variável aleatória

Momentos de uma variável aleatória Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA LISTA N O 4 Prof.: William Morán Sem. I - 0 ) Duas máquinas são usadas para encher garrafas de plástico que têm um volume

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

Lista 1: Processo Estocástico I

Lista 1: Processo Estocástico I IFBA/Introdução aos Processos Estocásticos/ Prof. Fabrício Simões 1 Lista 1: Processo Estocástico I 1. Esboce o espaço amostral do processo estocástico x(t) = acos(ωt + θ), em que ω e θ constantes e a

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Operações sobre uma variável aleatória

Operações sobre uma variável aleatória Capítulo 3 Operações sobre uma variável aleatória - Esperança matemática Neste capítulo, introduz-se algumas operações importantes que podem ser realizadas sobre uma variável aleatória. 3.1 Esperança Valor

Leia mais

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno

Leia mais

Terminologias Sinais Largura de Banda de Dados Digitais. Sinais e Espectro

Terminologias Sinais Largura de Banda de Dados Digitais. Sinais e Espectro Sinais e Espectro Edmar José do Nascimento (Tópicos Avançados em Engenharia Elétrica I) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas

Aula de Exercícios - Variáveis Aleatórias Discretas Aula de Exercícios - Variáveis Aleatórias Discretas Organização: Airton Kist Digitação: Guilherme Ludwig Valor Médio de uma variável aleatória Considere uma urna contendo três bolas vermelhas e cinco pretas.

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias 4 Equações Diferenciais Ordinárias 4.1 Descrição Matemática da Dinâmica de Sistemas Suponhamos que a função y = f(x) expressa quantitativamente um fenômeno. Ao estudar este fenômeno é em geral impossível

Leia mais

Aula 9 - Questões Comentadas e Resolvidas

Aula 9 - Questões Comentadas e Resolvidas Aula 9 - Questões Comentadas e Resolvidas Variável Aleatória Bivariada: função de probabilidade conjunta, função de probabilidade marginal, função de probabilidade condicional. Variáveis aleatórias independentes.

Leia mais

ESTATÍSTICA. Comando da Aeronáutica. EXAME DE ADMISSÃD Estágio de Adaptação de Oficiais Temporários da Aeronáutica 2013

ESTATÍSTICA. Comando da Aeronáutica. EXAME DE ADMISSÃD Estágio de Adaptação de Oficiais Temporários da Aeronáutica 2013 ESTATÍSTICA Comando da Aeronáutica EXAME DE ADMISSÃD Estágio de Adaptação de Oficiais Temporários da Aeronáutica 013 1 8 Poisson ESPECIALIDADE 31) Seja X uma variável aleatória com função de densidade

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

UNESP - Faculdade de Engenharia de Guaratinguetá 1

UNESP - Faculdade de Engenharia de Guaratinguetá 1 ANÁLISE GRÁFICA UNESP - Faculdade de Engenharia de Guaratinguetá 0.. Introdução Neste capítulo abordaremos princípios de gráficos lineares e logarítmicos e seu uso em análise de dados. Esta análise possibilitará

Leia mais

Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F.

Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F. Problema Conversão Matricial Maria Cristina F. de Oliveira Traçar primitivas geométricas (segmentos de reta, polígonos, circunferências, elipses, curvas,...) no dispositivo matricial rastering = conversão

Leia mais

1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar.

1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar. Fundação Universidade Federal do Vale do São Francisco - UNIVASF Colegiado de Engenharia de Produção - CPROD Prof. Felipe Wergete a Lista de Exercícios de Álgebra Linear - 202.. Mostre que o conjunto R

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

Diferenciais inexatas e o fator integrante

Diferenciais inexatas e o fator integrante Métodos Matemáticos 202 Notas de Aula Equações Diferenciais Ordinárias III A C Tort 2 de outubro de 202 Diferenciais inexatas e o fator integrante imos que a EDO implícita: é exata se e apenas se: M(x,

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II 1 álculo Diferencial e Integral II Exercícios para as aulas práticas - 5 1. alcule o integral estendido a, ds, em que é o segmento de recta de x y extremos A(0, 2) e B(4, 0), percorrido de A para B. 2.

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec o semestre 011/01 1 o Teste B 1/04/01 11:00 Duração: 1 hora e 30 minutos Justifique

Leia mais

Equações Diferenciais e Equações de Diferenças

Equações Diferenciais e Equações de Diferenças Equações Diferenciais e Equações de Diferenças Jaime E. Villate Faculdade de Engenharia da Universidade do Porto Dezembro de 21 Última revisão: 26 de Abril de 211 Equações Diferenciais e Equações de Diferenças

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

LINEARIZAÇÃO DE GRÁFICOS

LINEARIZAÇÃO DE GRÁFICOS LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em uma

Leia mais

Conceitos Básicos de Estatística Aula 2

Conceitos Básicos de Estatística Aula 2 Conceitos Básicos de Estatística Aula 2 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 13 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Estatística 13 de Setembro

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.

Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real. Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração

Leia mais

FÍSICA. A) 2 J B) 6 J C) 8 J D) 10 J E) Zero. A) 6,2x10 6 metros. B) 4,8x10 1 metros. C) 2,4x10 3 metros. D) 2,1x10 9 metros. E) 4,3x10 6 metros.

FÍSICA. A) 2 J B) 6 J C) 8 J D) 10 J E) Zero. A) 6,2x10 6 metros. B) 4,8x10 1 metros. C) 2,4x10 3 metros. D) 2,1x10 9 metros. E) 4,3x10 6 metros. FÍSICA 16) Numa tempestade, ouve-se o trovão 7,0 segundos após a visualização do relâmpago. Sabendo que a velocidade da luz é de 3,0x10 8 m/s e que a velocidade do som é de 3,4x10 2 m/s, é possível afirmar

Leia mais

Retorno e risco de carteiras de investimento. Copyright Pereira, F. I

Retorno e risco de carteiras de investimento. Copyright Pereira, F. I Retorno e risco de carteiras de investimento OBJETIVOS DA UNIDADE DE ESTUDO Compreender o processo de avaliação do risco de uma carteira. Definir e mensurar a covariancia entre duas variáveis Definir e

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira Revisão estatística e probabilidade Prof. Anderson Almeida Ferreira População População é o conjunto de elementos (indivíduos, objetos, etc.) que formam o universo de nosso estudo e que são passíveis de

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

Processos Aleatórios

Processos Aleatórios Processos Aleatórios Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Roteiro 1 Introdução 2 Densidade Espectral

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Processamento de Imagens COS756 / COC603

Processamento de Imagens COS756 / COC603 Processamento de Imagens COS756 / COC603 aula 03 - operações no domínio espacial Antonio Oliveira Ricardo Marroquim 1 / 38 aula de hoje operações no domínio espacial overview imagem digital operações no

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Distribuições Contínuas Apresentaremos agora alguns dos

Leia mais

Prof. Daniela Barreiro Claro

Prof. Daniela Barreiro Claro O volume de dados está crescendo sem parar Gigabytes, Petabytes, etc. Dificuldade na descoberta do conhecimento Dados disponíveis x Análise dos Dados Dados disponíveis Analisar e compreender os dados 2

Leia mais

Transformações geométricas nos espaços bidimensional e tridimensional

Transformações geométricas nos espaços bidimensional e tridimensional Transformações geométricas nos espaços bidimensional e tridimensional Prof. Dr. Carlos A. Nadal CALIBRAÇÃO DA MESA DIGITALIZADORA pontos homólogos Mesa digitalizadora coordenadas x,y mapa coordenadas N,E

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

3.1. TRANSFORMAÇÕES LINEARES 79

3.1. TRANSFORMAÇÕES LINEARES 79 31 TRANSFORMAÇÕES LINEARES 79 Exemplo 317 Mostre que existe uma função T : R R satisfazendo à condição aditiva T (x + y) =T (x)+t (y), x, y R, mas não é uma transformação linear, isto é, T (x) 6= ax, paraalgumx

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Inferência Estatística

Inferência Estatística Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência Estatística Ana Maria Lima de Farias Departamento de Estatística Conteúdo 1 Inferência estatística Conceitos básicos 1 1.1

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

EXERCÍCIOS 01. Desvio-padrão dos pixels da imagem 1 133 43,2 2 179 51,0 3 108 43,2 4 189 21,6

EXERCÍCIOS 01. Desvio-padrão dos pixels da imagem 1 133 43,2 2 179 51,0 3 108 43,2 4 189 21,6 Questão 1 EXERCÍCIOS 01 Suponha que foram tomadas 4 imagens de satélite com 256 tonalidades de cinza. A cena captada apresenta casas, ruas, jardins, etc. A média e o desvio-padrão dos valores dos pixels

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção Exercícios Operações Lógicas sobre Predicados Condicional Quantificador de Unicidade (Rosen 37) Quantificadores com Restrição (Rosen 38) Tradução Português-Lógica

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

DISCIPLINA: LINGUA PORTUGUESA

DISCIPLINA: LINGUA PORTUGUESA DISCIPLINA: LINGUA PORTUGUESA 1 A partir da tese defendida pelo autor, é correto afirmar que: (A) a ética é condicionante da existência humana e fundamenta qualquer tipo de ação que envolva uma escolha

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2

Probabilidade e Estatística 2009/1 Prof. Fernando Deeke Sasse CCT-UDESC Exercícios 2 Distribuição exponencial Solução. (a) f := (lambda, x) -> lambda*exp(-lambda*x); f := l, x /l e Kl x Probabilidade e Estatística 009/ Prof. Fernando Deeke Sasse CCT-UDESC Exercícios A distância entre os

Leia mais

Correção dos Exercícios

Correção dos Exercícios Faculdade Novo Milênio Engenharia da Computação Engenharia de Telecomunicações Algoritmos I 2006/1 Correção dos Exercícios Questão 1: Construa um algoritmo que, tendo como dados de entrada dois pontos

Leia mais

RUÍDOS. São sinais elétricos não desejados que interferem num sistema de telecomunicações. Possíveis classificações: Quanto a fonte:

RUÍDOS. São sinais elétricos não desejados que interferem num sistema de telecomunicações. Possíveis classificações: Quanto a fonte: RUÍDOS São sinais elétricos não desejados que interferem num sistema de telecomunicações. Possíveis classificações: Quanto a fonte: Ruído externo: quando a fonte é externa ao sistema de telecomunicações

Leia mais

3 - Bacias Hidrográficas

3 - Bacias Hidrográficas 3 - Bacias Hidrográficas A bacia hidrográfica é uma região definida topograficamente, drenada por um curso d água ou um sistema interconectado por cursos d água tal qual toda vazão efluente seja descarregada

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Algumas Aplicações da Integral Dupla

Algumas Aplicações da Integral Dupla Algumas Aplicações da Integral upla META: Apresentar algumas aplicações das integrais duplas de funções de valores reais e domínio em R 2 OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: eterminar

Leia mais

Andrés Eduardo Coca Salazar Tutor: Prof. Dr. Zhao Liang

Andrés Eduardo Coca Salazar Tutor: Prof. Dr. Zhao Liang : Finding Structures in Bach s, Chopin s and Mozart s NOLTA 08, Hungary, 2008 Complex network structure of musical composition: Algoritmic generation of appealing music Physica A 389 (2010) 126-132 Chi

Leia mais

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Códigos de bloco Prof. Diego da Silva de Medeiros São José, maio de 2012 Codificação

Leia mais

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução: EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

Uma Iniciação aos Sistemas Dinâmicos Estocásticos

Uma Iniciação aos Sistemas Dinâmicos Estocásticos Uma Iniciação aos Sistemas Dinâmicos Estocásticos Publicações Matemáticas Uma Iniciação aos Sistemas Dinâmicos Estocásticos Paulo Ruffino UNICAMP impa 27 o Colóquio Brasileiro de Matemática Copyright

Leia mais

1.10 Sistemas de coordenadas cartesianas

1.10 Sistemas de coordenadas cartesianas 7 0 Sistemas de coordenadas cartesianas Definição : Um sistema de coordenadas cartesianas no espaço é um v v conjunto formado por um ponto e uma base { } v3 Indicamos um sistema de coordenadas cartesianas

Leia mais

TEORIA DO CONSUMIDOR BIBLIOGRAFIA. Samuelson e Nordhaus (2005), Economia., Procura e Comportamento do Consumidor; Capítulo 5 e apêndice.

TEORIA DO CONSUMIDOR BIBLIOGRAFIA. Samuelson e Nordhaus (2005), Economia., Procura e Comportamento do Consumidor; Capítulo 5 e apêndice. TEORIA DO CONSUMIDOR BIBLIOGRAFIA Samuelson e Nordhaus (2005), Economia., Procura e Comportamento do Consumidor; Capítulo 5 e apêndice. A RESTRIÇÃO ORÇAMENTAL R = P x.x + P y.y y = R / P y P x / P y. x

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

Restauração de Imagens. Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática

Restauração de Imagens. Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática Restauração de Imagens Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática 1 Tópicos Introdução Modelo de degradação/restauração Modelo

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais