Introdução aos Proc. Estocásticos - ENG 430

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução aos Proc. Estocásticos - ENG 430"

Transcrição

1 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

2 1 Motivação 2 Conceitos Básicos 3 Processo Estocástico Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

3 Motivação V V a R = V I I a I Leis naturais não são determinísticas, mas uma representação do comportamento médio de um fenômeno. Como as incertezas sobre os resultados obtidos a partir da lei de Ohm são pequenas, pode-se considerá-la determinística. Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

4 Motivação Desvios entre os dados teóricos e experimentais pressupõe a existência de fenômenos que não foram considerados no modelo. Na maioria das vezes, essas manifestações são aleatórias. O modelo deve ser analisado com o uso da teoria de probabilidades. IMPORTANTE: O método probabiĺıstico inclui o resultado determinístico como um caso especial. Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

5 Determinístico x Aleatório Sinal determinístico: Apresenta uma representação matemática exata. Ex.: Sinal senoidal, x(t) = Acos(ω o t + θ) Mais : Degrau, impulso, exponencial complexa. Sinal aleatório: Apresenta alguma quantidade de incerteza. Ex.: sinal de voz, vídeo, número de veículos em um sistema de controle de tráfego, variação de temperatura, sinal de um sensor de pressão. Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

6 Situações Práticas e Sistemas Aleatórios O sistema possui características que variam aleatoriamente, por exemplo : O número de usuários em um sistema telefônico; O consumo de energia em um sistema de distribuição de energia elétrica; O peso em um controle de velocidade de uma esteira; O canal de comunicações de um telefone celular. Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

7 Espaço Amostral - Teoria Básica de Probabilidade 1 Espaço Amostral - S: Conjunto de todos os possíveis resultados de um experimento. Por exemplo: Jogar um dado. 2 Evento - A : Subconjunto do espaço amostral. Espaço Amostral - S Evento A Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

8 Conceito de Probabilidade 1 Considere que um experimento seja realizado N vezes e que o resultado A 1 tenha ocorrido N(A 1 ) vezes. A frequência relativa de A 1 é dada por f r (A 1 ) = N(A 1) N 2 Mas, com o aumento do valor de N é possível identificar uma regularidade estatística, um padrão no comportamento do valor de f r. Para n : N(A 1 ) P(A 1 ) = lim n n Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

9 Probabilidade de um Evento 1 Probabilidade de ocorrer o evento A, P(A), é a soma da probabilidade de cada elemento que compõe o subconjunto A. Se os elementos forem mutuamente exclusivos, então P(A) = P(A 1 ) + P(A 2 ) P(A N ) 2 Entretanto, se todos os resultados (elementos) ocorrem com a mesma probabilidade (eventos equiprováveis), então: Exemplo 1 P(A) = N(A) N(S) Probabilidade de ocorrer o evento A = {3, 5} é dada por P(A) = 2 6 = 1 3 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

10 Axiomas de Kolmogorov 1 P(A) 0; 2 0 P(A) 1; 3 P(A B) = P(A) + P(B) P(A B), Se os eventos A e B são mutuamente exclusivos, ou seja, 4 P(A B) = P(A) + P(B) A B = Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

11 Probabilidade 1 Probabilidade de ocorrer o evento A E o evento B : P(A B) = P(A)P(B), se os eventos forem independentes. 2 Probabilidade de ocorrer o evento A OU o evento B : para P(A B) = Exemplo 2 P(A B) = P(A) + P(B), Considere o lançamento de um dado. Qual a probabilidade de ocorrer o evento B = {1} OU o evento A = {6}? P(A B) = P(A) + P(B) = = 1 3 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

12 Probabilidade Condicional 1 P(A/B) - Probabilidade de ocorrer A dado que B ocorreu. P(A/B) = P(A B), P(B) 0 P(B) 2 Os eventos são independentes quando a ocorrência do evento A não depende do evento B, então: P(A B) = P(A)P(B) e P(A/B) = P(A). Regra de Bayes P(B/A) = P(A/B)P(B), P(A) 0 P(A) Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

13 Adição e Multiplicação Regras de Adição P( n i=1a i ) = n P(A i ) P(A i A j ) + P(A i A j A k ) i=1 Regras de Multiplicação ( 1) n P(A i... A k ) P(A 1 A 2... A k ) = P(A 1 )P(A 2 /A 1 )P(A 3 /A 1 A 2 ) P(A k /A 1 A 2... A k 1 ) Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

14 Aplicação 1 - Engenharia de Confiabilidade Sabendo que a probablidade dos sistemas A e B funcionarem é p, qual a probabilidade do sistema completo funcionar? A p i(t) L B p R i(t) Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

15 Variável Aleatória 1 É uma variável cujo valor (um número real) depende da ocorrência do evento. Evento X = f(evento) nível baixo 0 Mapeamento nível alto 1 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

16 Variável Aleatória Discreta f(x) Fonte Digital X 1 1/2 P (X = 0) = 0,5 P (X = 1) = 0,5 0 Espaço Amostral de X 0 1 x Distribuição de Probabilidade 1 O par (x i, P x (x i )) é uma distribuição de probabilidade se c) P x (x i ) é a probabilidade de ocorrer x i. a) P x (x i ) 0; b) i P x(x i ) = 1; Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

17 Variável Aleatória Contínua 1 Exemplo: x(t) variação contínua da amplitude Ruído Térmico x t a b p x(x) x 2 Propriedades: P(a < x < b) = b a p x (x) 0 p x (x)d x Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

18 Momentos de Ordem n Variável Aleatória Contínua E[x n ] = Variável Aleatória Discreta x n p x (x)dx E[x n ] = i x n i P x (x i ) Mais importantes : Ordens 1 e 2. µ x = E[x] = xp x (x)dx E[x 2 ] = x 2 p x (x)dx Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

19 Momento Centrais O n-ésimo momento central da variável aleatória x é dado por E[(x µ x ) n ] = Resultados importantes E[(x µ x )] = 0 (x µ x ) n p x (x)dx E[(x µ x ) 2 ] = σ 2 x σ 2 x é a variância da variável aleatória x. σ 2 x é o desvio padrão. Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

20 Variáveis Aleatórias Conjuntas Em alguns experimentos, o resultado depende de duas ou mais variáveis aleatórias; Vamos considerar as variáveis aleatórias discretas x e y, cuja probabilidade de x = x i e y = y j é representada por P xy (x i, y j ) Se as variáveis aleatórias são independentes, então : P xy (x i, y j ) = P x (x i )P y (y j ) E considerando variáveis aleatórias contínuas, p xy (x, y) = p x (x)p y (y) Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

21 Variáveis Aleatórias Conjuntas e Contínuas Probabilidade de x 1 x x 2 e y 1 y y 2 é dada por P(x 1 x x 2, y 1 y y 2 ) = x2 y2 x 1 y 1 Funções de densidade de probabilidade marginal p x (x) = p y (y) = p xy (xy)d y p xy (xy)d x p xy (x, y)d x d y Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

22 Probabilidade Condicional 1 A função de densidade de probabilidade condicionada p x/y (x, y) é dada por p x/y (x/y) = p x,y (x, y) p y (y), p y (y) = p x,y (x, y)d x 2 Mas, para variáveis x e y independentes, temos que 3 Então: p x,y (x, y) = p x (x)p y (y) p x/y (x/y) = p x (x) Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

23 Aplicação 2 1 Determine as probabilidades P y (0) e P y (1) P X (0) = q X 1 P e P e Y 0 P Y (0) =? 1 P X (1) = 1-q 1 P e P e 1 P Y (1) =? Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

24 Teorema Central do Limite Sejam as variáveis aleatórias x 1, x 2, x 3,..., x n, a nova variável aleatória y dada por y = i=1 x i, é modelada por uma função densidade de probabilidade p y (y) gaussiana; Gráfico de p y (y) para uma soma de n variáveis aleatórias. 2 Variaveis p y (y) y Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

25 Teorema Central do Limite Sejam as variáveis aleatórias x 1, x 2, x 3,..., x n, a nova variável aleatória y dada por y = i=1 x i, é modelada por uma função densidade de probabilidade p y (y) gaussiana; Gráfico de p y (y) para uma soma de n variáveis aleatórias. 4 Variaveis p y (y) y Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

26 Teorema Central do Limite Sejam as variáveis aleatórias x 1, x 2, x 3,..., x n, a nova variável aleatória y dada por y = i=1 x i, é modelada por uma função densidade de probabilidade p y (y) gaussiana; Gráfico de p y (y) para uma soma de n variáveis aleatórias. 8 Variaveis p y (y) y Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

27 Teorema Central do Limite Sejam as variáveis aleatórias x 1, x 2, x 3,..., x n, a nova variável aleatória y dada por y = i=1 x i, é modelada por uma função densidade de probabilidade p y (y) gaussiana; Gráfico de p y (y) para uma soma de n variáveis aleatórias. 10 Variaveis p y (y) y Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

28 Teorema Central do Limite Sejam as variáveis aleatórias x 1, x 2, x 3,..., x n, a nova variável aleatória y dada por y = i=1 x i, é modelada por uma função densidade de probabilidade p y (y) gaussiana; Gráfico de p y (y) para uma soma de n variáveis aleatórias. 12 Variaveis p y (y) y Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

29 Processo Estocástico Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

30 Espaço Amostral de um Processo Estocástico O espaço amostral é constituído por funções no domínio do tempo, ou seja, as realizações do evento dependem do tempo. x 3(t) x 2(t) t x 1(t) t t x 4(t) t Espaço Amostral Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

31 Espaço Amostral de um Processo Estocástico Cada membro x n (t) do processo x(t) é uma amostra, uma possível realização; E o valor de uma amostra no instante t a, ou seja, x n (t a ), é uma variável aleatória. Espaço Amostral do Processo x(t) x 1 (t) t a t x 2 (t) t Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

32 Processo Estocástico - Definições 1 É uma extensão do conceito de variável aleatória, compreendendo o espaço amostral, o conjunto de formas de onda e as funções densidade de probabilidade associadas. 2 É um experimento aleatório cujos resultados é uma forma de onda em função do tempo. Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

33 Contínuo e Discreto Contínuo Variável aleatória assume qualquer valor dentro do intervalo [a,b]. Por exemplo, o ruído branco. Discreto Variável aleatória assume valores isolados (pontuais) dentro do intervalo [a,b]. Por exemplo, o sinal quantizado e o número de ligações em um sistema telefônico. x(t) y(t) t t t t ta tb tc td te Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

34 Estacionário Definição Processo aleatório cuja estatística não muda com o tempo, ou seja, p x (x; t) = p x (x) Os valores médio e outros momentos não dependem do tempo. Importante Na prática, não existe processo estacionário. Por isso, é adotada a Estacionaridade no Sentido Amplo. Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

35 Estacionário no Sentido Amplo Definição A média de x(t) independe do tempo e a autocorrelação entre x(t 1 ) e x(t 2 ) depende apenas da diferença t 2 t 1. Essa condição implica, com relação ao tempo, em: Valor médio (E[x(t)]) é constante; Valor médio quadrático (E[x(t) 2 ]) constante; Variância constante; Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

36 Não estacionário Definição O valor médio e/ou algum momento de ordem n > 1 dependem do tempo; A função densidade de probabilidade depende do tempo. p x (x; t) Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

37 Ergodicidade Considere um problema de estimação da média: Para um instante t o, x(t o ) é uma variável aleatória. A média pode ser calculada por ˆη(t o ) = 1 x(t o, ξ i ), N em que ξ i representa a i-ésima função amostral dentre N funções amostrais e ˆη(t o ), a estimativa da média no instante t o. Problema Para fazer essa estimativa, eu preciso de um número grande de funções amostrais. Na prática, tenho somente uma. Como isso pode ser resolvido? i Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

38 Ergodicidade Ocorre quando as suas médias estatísticas podem ser aproximadas pelas suas médias temporais. Todo processo Ergódico é estacionário. E[x n (t)] = x(t) n x(t) n 1 T p x (x)dx = lim x n (t)dt T 2T T Na prática, o conceito de ergodicidade é importante porque é possível, por exemplo, estimar a sua média a partir de uma função amostral. Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG de novembro de / 34

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade

Leia mais

PRINCÍPIOS DE COMUNICAÇÃO

PRINCÍPIOS DE COMUNICAÇÃO PRINCÍPIOS DE COMUNICAÇÃO RUÍDO EM MODULAÇÕES ANALÓGICAS Evelio M. G. Fernández - 2011 Processo Aleatório (ou Estocástico): Função aleatória do tempo para modelar formas de onda desconhecidas. Processos

Leia mais

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf Parte 7 Processos Estocásticos Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Processos Estocásticos 2 Classicação

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas e Sinais CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

Processos Aleatórios e Ruído

Processos Aleatórios e Ruído Processos Aleatórios e Ruído Luis Henrique Assumpção Lolis 11 de abril de 2014 Luis Henrique Assumpção Lolis Processos Aleatórios e Ruído 1 Conteúdo 1 O Experimento Aleatório / Espaço de Amostras 2 Algebra

Leia mais

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes. TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Conceitos Básicos, Básicos,Básicos de Probabilidade

Conceitos Básicos, Básicos,Básicos de Probabilidade Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013 Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2013 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições

Leia mais

Objetivos. Frequência Relativa X Probabilidade. Probabilidade. 1. Definições: Experimento Espaço Amostral Evento Probabilidade

Objetivos. Frequência Relativa X Probabilidade. Probabilidade. 1. Definições: Experimento Espaço Amostral Evento Probabilidade Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática DI Laboratório de Pesquisas em Redes Multimidia LPRM Objetivos 1. Definições: Experimento Espaço Amostral Evento

Leia mais

canal para sinais contínuos

canal para sinais contínuos Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20)

M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20) M. Eisencraft 6.3 Funções de correlação 81 R XY (τ) = E[X(t)Y(t+τ)] e (6.17) R YX (τ) = E[Y(t)X(t+τ)]. (6.18) As propriedades de correlação de dois processos X(t) e Y(t) podem ser mostradas convenientemente

Leia mais

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1 Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Análise de Sinais e Sistemas

Análise de Sinais e Sistemas Universidade Federal da Paraíba Departamento de Engenharia Elétrica Análise de Sinais e Sistemas Luciana Ribeiro Veloso luciana.veloso@dee.ufcg.edu.br ANÁLISE DE SINAIS E SISTEMAS Ementa: Sinais contínuos

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução.

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução. Parte 2 Introdução à Teoria da Probabilidade Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Introdução 2 Espaço

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação

Leia mais

Módulo I: Introdução a Processos Estocásticos

Módulo I: Introdução a Processos Estocásticos Módulo I: Introdução a Processos Estocásticos Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo I:

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

Processos estocásticos

Processos estocásticos 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

Leia mais

Processos aleatórios - características

Processos aleatórios - características Capítulo 6 Processos aleatórios - características temporais 6.1 O conceito de processo aleatório Um processo aleatório ou estocástico é um espaço de amostras em que cada elemento é associado a uma função

Leia mais

Probabilidade e Modelos Probabilísticos. Conceitos básicos, variáveis aleatórias

Probabilidade e Modelos Probabilísticos. Conceitos básicos, variáveis aleatórias robabilidade e Modelos robabilísticos Conceitos básicos, variáveis aleatórias 1 Incerteza e robabilidade Tomar decisões: Curso mais provável de ação: Se desejamos passear de barco e não sabemos nadar,

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sistemas Sinais e Sistemas Fundamentos Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Classificação de Sinais Sinal de Tempo Contínuo: É definido para todo tempo

Leia mais

Teoria da Informação

Teoria da Informação Charles Casimiro Cavalcante charles@gtel.ufc.br Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/

Leia mais

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas;

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali Eperiência na qual o resultado é incerto. E : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; E : Joga-se uma

Leia mais

Modelagem de um sistema por cadeias de Markov

Modelagem de um sistema por cadeias de Markov Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Probabilidade Revisão de Conceitos

Probabilidade Revisão de Conceitos Probabilidade Revisão de Conceitos Espaço de Amostras A totalidade dos possíveis resultados de um experimento aleatório. Exemplo: jogar dados S = {(1,1),(1,),... (,1),(,)... (6,6)} S é dito o número de

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/~viali Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

SISTEMAS DE MANUTENÇÃO E CONFIABILIDADE TP077

SISTEMAS DE MANUTENÇÃO E CONFIABILIDADE TP077 SISTEMAS DE MANUTENÇÃO E CONFIABILIDADE TP077 6 DISPONIBILIDADE DE EQUIPAMENTOS 6.1 INTRODUÇÃO Diversas teorias em confiabilidade pressupõem o descarte dos componentes de interesse após a primeira falha.

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

Sistemas lineares. Aula 1 - Sinais

Sistemas lineares. Aula 1 - Sinais Sistemas lineares Aula 1 - Sinais Conceitos Sinais e sistemas Definições Descrições Representações matemáticas Classificações Sinais Elementares (básicos) Operações Sinais Definição: Um sinal é a representação

Leia mais

2. Probabilidade. Aula 3

2. Probabilidade. Aula 3 Aula 3 2. Probabilidade 2-1 Espaços de amostragem e eventos 2-1.1 Experimentos randômicos 2-1.2 Espaços de amostragem 2-1.3 Eventos 2-2 Interpretações de probabilidade 2-2.1 Introdução 2-2.2 Axiomas de

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade Introdução à Probabilidade Silvia Shimakura silvia.shimakura@ufpr.br Probabilidade O que é probabilidade? Medida que quantifica a incerteza de um acontecimento futuro. Como quantificar incerteza? Definição

Leia mais

Física Experimental I

Física Experimental I Medidas em Física Teoria do Erro Física Experimental I Medidas Físicas Diretas: leitura de uma magnitude mediante o uso de instrumento de medida, ex: Comprimento de uma régua, a corrente que passa por

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Probabilidade Condicional e Independência

Probabilidade Condicional e Independência Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 17/08/2011 Probabilidade

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos Mutuamente

Leia mais

Escola Politécnica da USP Engenharia de Petróleo e Gás OUTRAS DISTRIBUIÇÕES CONTÍNUAS. Aula 14 - Prof. Regina Meyer Branski

Escola Politécnica da USP Engenharia de Petróleo e Gás OUTRAS DISTRIBUIÇÕES CONTÍNUAS. Aula 14 - Prof. Regina Meyer Branski Escola Politécnica da USP Engenharia de Petróleo e Gás OUTRAS DISTRIBUIÇÕES CONTÍNUAS Aula 14 - Prof. Regina Meyer Branski Distribuições Contínuas Distribuição Normal Outras Distribuições Contínuas Exponencial

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

2 Modelos de sintetização de séries temporais de atenuação por chuva

2 Modelos de sintetização de séries temporais de atenuação por chuva 2 Modelos de sintetização de séries temporais de atenuação por chuva Alguns modelos estocásticos de sintetização de séries temporais de atenuação por chuva são baseados no modelo proposto por Maseng &

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 7 - Probabilidade condicional e independência Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Probabilidade condicional Seja (Ω, A, P) um espaço de probabilidade. Se

Leia mais

Noções sobre probabilidade

Noções sobre probabilidade Capítulo 3 Noções sobre probabilidade Um casal tem dois filhos. Qual é a probabilidade de: o primogênito ser homem? os dois filhos serem homens? pelo menos um dos filhos ser homem? A teoria das probabilidades

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Conceitos básicos de teoria da probabilidade

Conceitos básicos de teoria da probabilidade Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Modelagem Estocástica e Quantificação de Incertezas

Modelagem Estocástica e Quantificação de Incertezas Modelagem Estocástica e Quantificação de Incertezas Rubens Sampaio rsampaio@puc-rio.br Roberta de Queiroz Lima robertalima@puc-rio.br Departamento de Engenharia Mecânica DINCON 2015 Organização do curso

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos Cristina Maria Martins Maria da Graça Temido Departamento de Matemática Universidade de Coimbra Hidrologia Urbana Módulo I Conceitos básicos Probabilidade Experiência aleatória Acontecimentos

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

Introdução aos Sinais e Sistemas

Introdução aos Sinais e Sistemas Introdução aos Sinais e Sistemas Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia

Leia mais

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade.

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade. PROBABILIDADE CAPÍTULO 4 PROBABILIDADE UFRGS A Teoria das s estuda os fenômenos aleatórios. Fenômeno Aleatório: são os fenômenos cujo resultado não pode ser previsto exatamente. Se o fenômeno se repetir,

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais