Processos estocásticos

Tamanho: px
Começar a partir da página:

Download "Processos estocásticos"

Transcrição

1 Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

2 Definições Processo estocástico: x t (ω) com t sendo o tempo e ω Ω. Portanto x t (ω) é uma v.a. e x (ω) é uma realização do processo. Classificação: x t classificação contínuo contínuo função aleatória contínuo discreto seqüência aleatória discreto contínuo cadeia de parâmetro contínuo discreto discreto cadeia de parâmetro discreto Exemplos: I. x t = acos(ωt + φ), com a e φ sendo v.a.s II. x t = 0,8x t 1 com x 0 N(0,σ 2 0) 1

3 III. Passeio aleatório (random walk): x t = x t 1 + w t com w t = { + com probabilidade p com probabilidade 1 p 2

4 Caracterização de processos estocásticos Caso parâmetro contínuo: x t1, x t2,,x tn FDP conjunta: p(x t1,x t2,, x tn ) (1) Caso parâmetro discreto: x 1, x 2,,x n FDP conjunta: p(x 1,x 2,,x n ) (2) Exemplo 1: Considerando x t = a + bt, com [a,b] T N(0,P), determinar p(x t1, x t2,,x tn ). 3

5 Caracterização de processos estocásticos Particular interesse nas densidades de primeira e segunda ordens: p(x t ) e p(x t1,x t2 ),que são funções de t e t 1 e t 2, respectivamente. Valor médio (processos escalares e vetoriais) : m X (t) E{x t } (3) Função de auto-correlação (processos escalares): R X (t, τ) E{x t x τ } (4) Função de auto-covariância (processos escalares): C X (t,τ) E {(x t m X (t))(x τ m X (τ))} (5) = R X (t,τ) m X (t)m X (τ) (6) 4

6 Caracterização de processos estocásticos Matriz de auto-correlação cruzada (processos vetoriais): Processo X R n Γ X (t, τ) E{x t x T τ } (7) Processo X C n Γ X (t,τ) E{x t x τ} (8) com representanto complexo conjugado. Verificar propriedades de Γ X (t,τ). 5

7 Caracterização de processos estocásticos Matriz de covariância cruzada (processos vetoriais): { P X (t,τ) E (x t m X (t))(x τ m X (τ)) T} (9) = Γ X (t,τ) m X (t)m X (τ) T (10) cujos elementos são dados pelas funções de covariância cruzada (processos escalares): C Xi X j (t,τ) E { (x i,t m Xi (t)) ( x j,τ m Xj (τ) )} Os elementos da diagonal P X (t,τ) são C Xi X i (t,τ) = C Xi (t, τ). No caso especial de t = τ, P X (t,t) = P X (t) que é a matriz de covariâncias do vetor x t. 6

8 Caracterização de processos estocásticos Exemplo 2: Considerando x t = acos(ωt + φ) com a e φ sendo v.a.s independentes e φ U( π,π), tem-se que m X (t) = 0 (11) R X (t,τ) = E{a2 } E {cos(ωt ωτ)} 2 (12) C X (t,τ) = R X (t,τ) (13) Coeficiente de correlação (processos escalares): ρ X (t,τ) = C X (t,τ) CX (t,t)c X (τ, τ) que assume valores 1 ρ X (t,τ) 1. 7

9 Propriedades de processos estocásticos Estacionaridade Processo estacionário no sentido estrito (ESE): p(x t ) = p(x t+τ ) = p(x) (14) que significa m X (t) = E{x t } = x t p(x t )dt = = m X (t + τ) = m X = constante. x t+τ p(x t+τ )d(t + τ) 8

10 Propriedades de processos estocásticos Estacionaridade Processo estacionário no sentido amplo (ESA): satisfaz simultaneamente a (i) ESE e (ii) R X (t,t + τ) depende apenas de τ: R X (t, t + τ) = R X (τ) Exemplo 3: Sendo x t = acos(ωt) + b sin(ωt) com a e b v.a.s independentes: a) O processo é ESE se E{a} = E{b} = 0 b) O processo é ESA se E{a} = E{b} = 0 e E{a 2 } = E{b 2 } = σ 2 resultando em m X (t) = 0 R X (τ) = σ 2 cos(ωτ) 9

11 Propriedades de processos estocásticos Exemplo 4: Considerando x t ESA com m X (t) = 0 e R X (τ) = sin(ωτ) ωτ então a matrix de covariâncias cruzadas do processo vetorial x t = [ x t1 x t2 ] T com t 1 = t e t 2 = t + τ 12 é dada por P X (t,τ) = E {(x t m X (t))(x τ m X (τ)) T} [ E {x = t x τ } E {x t x τ+τ12 } E {x t+τ12 x τ } E {x t+τ12 x τ+τ12 } ] 10

12 Propriedades de processos estocásticos Exemplo 5: (Papoulis, pp 388) Sendo x t ESA com R X (τ) = aexp( α τ ) determinar E{[x 8 x 5 ] 2 }. 11

13 Propriedades de processos estocásticos Ergodicidade na média Cálculo empírico de m X (t): m X (t) = E{x t } = 1 M x t (ω m ) M m=1 em que x t (ω m ) é a m-ésima realização do processo. Convergência se x t é ESE e M. 12

14 Propriedades de processos estocásticos Ergodicidade na média Um PE é ergódico na média se: as expectâncias estatísticas puderem ser substituídas por médias temporais de uma única realização : E{x t } = ˆm X = lim T 1 M M m=1 x m 1 2T T T x t dt com x m sendo a m-ésima amostra da realização x t (ω). Sendo x t ESE, E{ ˆm X } = m X, ou seja ˆm X é não polarizado. 13

15 Propriedades de processos estocásticos Ergodicidade na média Teorema 1 (Slutsky): x t é ergódico na média se e somente se for ESA e lim T 1 T T 0 C X (τ)dτ = 0 em que C X (τ) = C X (t,t + τ) = E {(x t m X (t))(x t+τ m X (t + τ))} 14

16 Propriedades de processos estocásticos Exemplo 6: Considerando x t = acos(ωt) + b sin(ωt) + c com a e b sendo v.a.s independentes, e ω e c são constantes. Seria este processo ergódico na média? O mesmo é ESA se E{a} = E{b} = 0 E{a 2 } = E{b 2 } = σ 2 que resulta em C X (τ) = σ 2 cos(ωτ) 15

17 Propriedades de processos estocásticos Exemplo 7: Considerando x t e y t dois processos ergódicos na média, com médias m X e m Y. Sendo z t = x t + cy t (15) com c sendo uma v.a. tal que c = { 0, com probabilidade 0,5 1, com probabilidade 0,5 Que condições seriam necessárias para que z t seja ergódico na média? Solução: Pela eq. (15) e com E{c} = E{c 2 } = 1/2, e x t e y t processos descorrelacionados, i.e., C XY (τ) = E{(x t m X )(y t+τ m Y )} = 0 = R XY (τ) = m X m Y 16

18 obtem-se E{z t } = m X + m Y (16) 2 R Z (t,t + τ) = E{z t z t+τ } (17) = E{x t x t+τ + cx t y t+τ + cx t+τ y t + c 2 y t y t+τ } (18) = R X (τ) m Xm Y m Xm Y + R Y (τ) 2 (19) = R X (τ) + R Y (τ) + m X m Y 2 (20) Assim, sendo E{z t } constante e R Z (t,t + τ) = R Z (τ), conclui-se que z t é ESA. C Z (τ) é portanto dado por C Z (τ) = R Z (τ) m 2 Z (21) = R X (τ) + R Y (τ) 2 + m X m Y m 2 X m X m Y m2 Y 4 (22) 17

19 Sendo R X (τ) = C X (τ) + m 2 X e R Y (τ) = C Y (τ) + m 2 Y, obtem-se C Z (τ) = C X (τ) C Y (τ) + m2 Y 4 (23) Aplicando o teorema de Slutsky, e sendo x t e y t ergódicos na média, tem-se que 1 T lim C X (τ)dτ = m2 Y (24) T T 4 0 Isto significa que z t não é ergódico para quaisquer processos x t e y t. De fato, conforme o valor da v.a. c, tem-se a seguinte forma para a média temporal ˆm Z, que dependente da realização c(ω): ˆm Z = { m X, com probabilidade 0,5 m X + m Y, com probabilidade 0,5 enquanto que E{z t } é dado por (16). Se m Y = 0, tem-se então que E{z t } = ˆm Z, o que significaria que z t é ergódico na média. Esta solução satisfaz o Teorema de Slutsky no sentido que faz (24) 0. (25) 18

20 Exemplo 8: Considere um processo estacionário no sentido amplo x t com função de auto-correlação R X (τ) = a τ com 0 < a < 1 e E{x t } = µ. Seria x t ergódico na média? Caso não, quais condições seriam necessárias para que x t seja ergódico na média? 19

21 Movimento Browniano Também conhecido como Processo de Wiener. Definição de incrementos independentes: um PE x t possui incrementos independentes se x t2 x t1,x t3 x t2, são independentes para todo t 1 < t 2 < t 3 <. Ou seja, p(x t2 x t1,x t3 x t2, ) = p(x t2 x t1 )p(x t3 x t2 ) Incrementos independentes estacionários: para t > τ e h > 0. p(x t+h x τ+h ) = p(x t x τ ) 20

22 Movimento Browniano Propriedades de um processo Movimento Browniano x t : P1: t [0, ) P2: x t tem incrementos independentes estacionários P3: x t tem distribuição normal para todo t 0 P4: E{x t } = 0 P5: Pr{x 0 = 0} = 1 Derivação de p(x t ): De P3, x t e x τ são Gaussianas, então x t x τ, t > τ, é Gaussiano com média E{x t x τ } = E{x t x τ } = 0 (26) de P2 e P4. Mas ainda var{x t x τ } = E{(x t x τ ) 2 } (27) 21

23 Em se tratando de incrementos estacionários independentes, para todo h > 0 p(x t+h x τ+h ) = p(x t x τ ) (28) que implica que os incrementos possuem a mesma variância. Assim var{x t+h x τ+h } = var{x t x τ }. (29) De P5, tem-se que var{x 0 } = 0. (30) Empiricamente, var{x t x τ } = σ 2 (t τ) (31) satisfaz a todas as condições acima. Sendo τ = 0, tem-se para t [0, ) var{x t } = σ 2 t (32) que também satisfaz P5. 22

24 Portanto, o Movimento Browniano é um processo Gaussiano, de média nula (P4) e variância crescendo linearmente com o tempo: p(x t ) = { 1 2πσ2 t exp 1 2 x 2 t σ 2 t } (33) Pode-se mostrar que o Movimento Browniano é um caso limite do Passeio Aleatório: Passeio Aleatório: x tn = x tn 1 + x tn com t = t n t n 1 x tn = { + x com probabilidade p x com probabilidade 1 p Movimento Browniano: x 0 e t 0, σ 2 = lim x 0, t 0 ( x) 2 t. 23

25 Processos Gaussianos Processos com função de densidade Gaussiana. Exemplo 1: sendo [a,b] T de distribuição Gaussiana, x t = a + bt. Exemplo 2: Movimento Browniano p(x t ) = { 1 2πσ2 t exp 1 2 x 2 } t σ 2. t Exemplo 3: Equação de diferenças estocástica, com v k+1 um processo Gaussiano e/ou x 0 sendo uma v.a. Gaussiana: x k+1 = Ax k + v k+1 24

26 Processos Markovianos No contexto de equações diferenciais determinísticas, a solução de dx(t) dt = f(x(t)) para t > t 0, dado x(t 0 ) = x 0, é uma função do tipo x(t) = g(t, x 0, t 0 ) Esta solução não depende de x(t 1 ), se t 1 < t 0. 25

27 Processos Markovianos Propriedade fundamental de processos Markovianos: Pr{x tn λ x t0,,x tn 1 } = Pr{x tn λ x tn 1 } (34) p(x tn λ x t0,,x tn 1 ) = p(x tn λ x tn 1 ) para todo λ R n e t i < t j, com i < j. No caso de parâmetro contínuo, Pr{x n λ x τ,τ t 1 } = Pr{x tn λ x t1 } (35) p(x n λ x τ,τ t 1 ) = p(x tn λ x t1 ) 26

28 Processos Markovianos FDP conjunta de um processo Markoviano: p(x tn,x tn 1,,x t0 ) = p(x tn x tn 1,,x t0 )p(x tn 1,,x t0 ) (36) = p(x tn x tn 1 )p(x tn 1,,x t0 ) = p(x tn x tn 1 )p(x tn 1 x tn 2,,x t0 )p(x tn 2,,x t0 ) = p(x tn x tn 1 )p(x tn 1 x tn 2 )p(x tn 2,,x t0 ). = p(x tn x tn 1 )p(x tn 1 x tn 2 ) p(x t1 x t0 )p(x t0 ) (37) Assim, se p(x t0 ) for Gaussiano e p(x ti x ti 1 ), 0 < i n, for também Gaussiano, então p(x tn,x tn 1,,x t0 ) é Gaussiano! 27

29 Processos Markovianos Exemplo 9: Seria este o caso do processo a parâmetro discreto x k+1 = Ax k + v k+1 com v k+1 N(0,Q k+1 ) e x 0 N(0,P 0 ) independentes? Como seria a FDP p(x k x k 1 )? p V (v k+1 ) = 1 (2π) n/2 det(q k+1 ) 1/2 exp{ 1 2 vt k+1q 1 k+1 v k+1} 28

30 Processos Markovianos Exemplo 10: Seria o Movimento Browniano um processo Markoviano? Solução: Considere a FDP condicional p(x tn x tn 1,,x t1 ). Sendo x 0 = 0, t 0 = 0 e x tn 1 x tn 1 = 0, obtem-se incrementos independentes p(x tn x tn 1,,x t1 ) = p(x tn x tn 1 + x tn 1 x 0 x tn 1 x 0,,x t1 x 0 ). Sendo x tn x tn 1 + x tn 1 x 0 dependente apenas de x tn 1 x 0, p(x tn x tn 1,, x t1 ) = p(x tn x tn 1 + x tn 1 x 0 x tn 1 x 0 ), = p(x tn x tn 1 ) 29

31 Processos Markovianos FDPs de instantes de tempo não adjacentes: p(x n x n 2 ) = = p(x n,x n 1 x n 2 )dx n 1, p(x n x n 1, x n 2 )p(x n 1 x n 2 )dx n 1. Sendo o processo Markoviano, p(x n x n 2 ) = p(x n x n 1 )p(x n 1 x n 2 )dx n 1. que é conhecida com Equação de Chapman-Kolmogorov. 30

32 p(x n ) pode ser obtido por meio de p(x n ) = E xn 2 {p(x n x n 2 )} = E xn 2 { p(x n x n 1 )p(x n 1 x n 2 )dx n 1 } = = p(x n x n 1 )E xn 2 {p(x n 1 x n 2 )}dx n 1 p(x n x n 1 )p(x n 1 )dx n 1 = E xn 1 {p(x n x n 1 )} que é um resultado conhecido. 31

33 Ruído Branco Recurso matemático de não previsibilidade ; Recurso prático para justificar o nível de ruído. Propriedade principal do Ruído Branco: p(x k x i ) = p(x k ) com k > i, significando que o conhecimento de x i não ajuda em nada na determinação de x k. 32

34 Ruído Branco Ruído Branco Gaussiano: p(x k ) N, caracterizada pela média e pela função/matriz de auto-covariância. Caso parâmetro discreto: E{(x n E{x n })(x m E{x m }) T } = Q n δ nm com Q n > 0 e o Delta de Kronecker dado por δ nm = { 1, n = m 0, n m Caso parâmetro contínuo: p(x t x τ ) = p(x t ), t > τ E{(x t E{x t })(x τ E{x τ }) T } = Q(t)δ(t τ) 33

35 com Q(t) > 0 e o Dirac possuindo as propriedades seguintes: δ(t τ) = 0, t τ 0 δ(t τ)dt = 1 Dificuldade em determinar C X (t, t + τ) de um ruído branco devido à função Dirac. No caso escalar, um artifício consiste em avaliar o ruído branco como um caso particular de um Processo Gaussiano ESA x t com média nula e função de auto-covariância C X (τ) = E{(x t E{x t})(x t+τ E{x t+τ}) T } = σ 2 δ( τ) = σ 2 δ(τ) com δ(τ) = δ( τ) ( ρ ) δ(τ) = exp{ ρ τ } 2 34

36 Pode-se verificar que δ(t τ)dt = 1. Na verdade δ(τ) é uma aproximação para o Dirac: δ(τ) = lim δ(τ). ρ Assim x t x t (ruído branco) com ρ e C X (τ) = R X (τ) = σ 2 δ(τ) 35

37 Ruído Branco Exemplo 11: Relação entre Movimento Browniano e Ruído Branco Sendo x t um Movimento Browniano, que possui média nula, C X (t,τ) = R X (t,τ) = E{x t x τ } = E{[(x t x τ ) + x τ ] x τ } = E{(x t x τ ) x τ + x 2 τ} = E{(x t x τ ) x τ } + E{x 2 τ} = E{(x t x τ ) (x τ x 0 )} + E{x 2 τ} sendo t > τ > 0, os incrementos são independentes e C X (t,τ) = E{x 2 τ} = σ 2 τ Como C X (t,τ) = C X (τ,t), para quaisquer t,τ, C X (t,τ) = σ 2 min(t, τ). 36

38 Considerando agora o processo obtido pela derivada temporal do Movimento Browniano y t = dx t dt então, de acordo com [1], (teorema 3.6, pp. 64), C Y (t, τ) = 2 C X (t, τ) t τ = σ 2 2 min(t, τ). t τ Sendo a derivada segunda da função min(t,τ) igual a δ(τ t) = δ(t τ), obtem-se C Y (t,τ) = σ 2 δ(t τ) que, por meio da transformação de variáveis, implica em C Y (τ) = σ 2 δ(τ). Ou seja, o Ruído Branco Gaussiano é a derivada do Movimento Browniano. 37

39 Espectro de um processo estocástico Análise espectral: interesse pela distribuição das componentes de um PE estacionário no espaço da freqüência. Potência Média: sendo x t um PE estacionário E{ x t 2 } = E{x t x t } = R X (t,t) = R X (0) Densidade Espectral de Potência (DEP): S X (ω) = F{R X (τ)} = R X (τ)e jωτ dτ com ω sendo a freqüência em rad/s e F{ } é a transformada de Fourier. 38

40 R X (τ) pode ser obtido por R X (τ) = F 1 {S X (ω)} = 1 2π S X (ω)e jωτ dω Mais especificamente, a relação entre Potência Média e DEP é dada por E{ x t 2 } = R X (0) = F 1 {S X (ω)} τ=0 = 1 2π = S X (ω)dω S X (2πf)df com f = ω 2π sendo a freqüência em Hz. Portanto, este resultado justifica o nome Densidade Espectral de Potência. 39

41 Espectro de um processo estocástico Exemplo 12: DEP do Ruído Branco Sendo x t uma aproximação do Ruído Branco, tal que sua DEP é dada por ( R X (τ) = σ 2 ρ ) exp{ ρ τ } 2 S X (ω) = = 1 + σ 2 ( ( σ 2 ρ ) exp{ ρ τ jωτ}dτ 2 ω ρ ) 2 40

42 Como o ruído branco x t é obtido a partir de x t fazendo ρ conclui-se que S X (ω) = σ 2 E{ x t 2 } = R X (0) = Portanto, o Ruído Branco caracteriza-se por: (i) possuir componentes em todas as freqüências (origem do termo Ruído Branco, fazendo referência à luz branca) (ii) ter potência média infinita (o que faz com que não exista na realidade) 41

43 Espectro de um processo estocástico Propriedades da Densidade Espectral de Potência: S X (ω) é uma função real de ω: uma vez que R X (τ) = R X (t, t+τ) = E{x t x t+τ } = E{x t+τ x t } = R X (t+τ, t) = R X ( τ), então R X (τ) é uma função par. Sendo assim, então Portanto, S X (ω) = = R X (τ)e jωτ dτ = R X (τ)sin(ωτ)τ = 0 R X (τ) [cos(ωτ) j sin(ωτ)]dτ R X (τ) cos(ωτ)dτ (38) 42

44 S X (ω) é uma função par de ω: como cos(ωτ) é função par de ω, (38) resulta em uma função par. Referências [1] JAZWINSKI, A. H. Stochastic Processes and Filtering Theory. [S.l.]: Academic Press,

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica

Leia mais

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Luis Henrique Assumpção Lolis 26 de maio de 2014 Luis Henrique Assumpção Lolis Processos Estocásticos 1 Conteúdo 1 Introdução 2 Definição 3 Especificando um processo aleatório 4

Leia mais

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017 TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas e Sinais CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos

Leia mais

Prof. Walter Fetter Lages 4 de outubro de 2004

Prof. Walter Fetter Lages 4 de outubro de 2004 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE7-Tópicos Especiais em Automação e Controle II Introdução

Leia mais

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Processos Estocásticos - Sinais que variam aleatoriamente no tempo. são regidos por processos estocásticos. 2 1 1

Leia mais

canal para sinais contínuos

canal para sinais contínuos Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos

Leia mais

195

195 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

5.3 Variáveis aleatórias gaussianas conjuntas

5.3 Variáveis aleatórias gaussianas conjuntas M. Eisencraft 5.3 Variáveis aleatórias gaussianas conjuntas 64 respectivamente. São as chamadas funções características marginais: Φ X (ω ) = Φ X,Y (ω,0) (5.0) Φ Y (ω ) = Φ X,Y (0,ω ) (5.) Os momentos

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 35 Fabrício Simões

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

ROTEIRO DA APRESENTAÇÃO PROCESSOS ESTOCÁSTICOS

ROTEIRO DA APRESENTAÇÃO PROCESSOS ESTOCÁSTICOS ROTEIRO DA APRESENTAÇÃO MODELOS ESTOCÁSTICOS APLICADOS À INDÚSTRIA Prof. Lupércio França Bessegato Departamento de Estatística Universidade Federal de Juiz de Fora lupercio.bessegato@ufjf.edu.br www.ufjf.br/lupercio_bessegato

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Processos Aleatórios e Ruído

Processos Aleatórios e Ruído Processos Aleatórios e Ruído Luis Henrique Assumpção Lolis 11 de abril de 2014 Luis Henrique Assumpção Lolis Processos Aleatórios e Ruído 1 Conteúdo 1 O Experimento Aleatório / Espaço de Amostras 2 Algebra

Leia mais

Processos de Poisson

Processos de Poisson Processos de Poisson Mauro C. M. Campos 1 SUMÁRIO I Alguns fatos sobre a distribuição exponencial 1 II Alguns fatos sobre a distribuição de Poisson 2 III Processos estocásticos em tempo contínuo 2 IV Processos

Leia mais

Filtragem Adaptativa

Filtragem Adaptativa Charles Casimiro Cavalcante charles@gtel.ufc.br Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/

Leia mais

O movimento Browniano

O movimento Browniano O movimento Browniano R. Vilela Mendes http://label2.ist.utl.pt/vilela/ March 2010 () March 2010 1 / 35 Sumário O movimento Browniano Propriedade Markoviana Probabilidade de transição. Medida de Wiener

Leia mais

CURTA REVISÃO SOBRE PROBABILIDADE E PROCESSOS ESTOCÁSTICOS

CURTA REVISÃO SOBRE PROBABILIDADE E PROCESSOS ESTOCÁSTICOS CURTA REVISÃO SOBRE PROBABILIDADE E PROCESSOS ESTOCÁSTICOS PARTE i Histórico Probabilidade Axiomática de Kolmogorov Variáveis Aleatórias Densidade de Probabilidade Desigualdade de Chebyshev Versão Fraca

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE

Leia mais

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS 4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está

Leia mais

Óptica Coerência e interferência. Princípio da superposição:

Óptica Coerência e interferência. Princípio da superposição: Princípio da superposição: ET () r = E1() r + E() r + E3()... r - Equações de Maxwell são lineares - Em certos meios o princípio falha meios não-lineares Princípio da superposição: caso de duas ondas planas

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Aula 1. Wilson Correa. June 27, 2017

Aula 1. Wilson Correa. June 27, 2017 Aula 1 Definições Básicas Wilson Correa June 27, 2017 Série de Tempo Definição Uma série de tempo é qualquer conjunto de observações ordenadas no tempo. Podem ser: Discretas. Ex: Valores Diários de Poluição,

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável

Leia mais

Comunicações Digitais Prof. André Noll Barreto. Prova /1 (04/04/2017)

Comunicações Digitais Prof. André Noll Barreto. Prova /1 (04/04/2017) Prova 1 17/1 (4/4/17) Aluno: Matrícula: Instruções A prova consiste de quatro questões discursivas A prova terá a duração de h A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas

Leia mais

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf Parte 7 Processos Estocásticos Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Processos Estocásticos 2 Classicação

Leia mais

Teoria da Probabilidade e Modelos Discretos de Mercados Financeiros Edição de 7 de Fevereiro de 2017

Teoria da Probabilidade e Modelos Discretos de Mercados Financeiros Edição de 7 de Fevereiro de 2017 QUESTÕES PARA AS AVALIAÇÕES Teoria da Probabilidade e Modelos Discretos de Mercados Financeiros 2016-2017 Edição de 7 de Fevereiro de 2017 Nota Prévia Todos os exercícios enunciados nas aulas são considerados

Leia mais

ANÁLISE DE SINAIS E SISTEMAS

ANÁLISE DE SINAIS E SISTEMAS ANÁLISE DE SINAIS E SISTEMAS AULA 2: :. Sinais de Tempo Contínuo e Sinais de Tempo Discreto; 2. Sinais Analógicos e Digitais; 3. Sinais Determinísticos e Sinais Aleatórios; 4. Sinais Pares e Sinais Ímpares;

Leia mais

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

Par de Variáveis Aleatórias

Par de Variáveis Aleatórias Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Vetores Aleatórios 10 de setembro de 2017 Modelos Probabiĺısticos para N Variáveis Aleatórias F X1,...,X n (x 1,...,x n) = P[X 1 x 1,..., X n x n] (x 1,...,x

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre

Leia mais

Propriedade Markoviana

Propriedade Markoviana Cadeias de Markov Cadeias de Markov É um tipo especial de processo estocástico, que satisfaz as seguintes condições: o parâmetro n é discreto (ex: tempo) o espaço de estados E é discreto (coleção de estados

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Duas Variáveis Aleatórias 29 de agosto de 2017 Duas Variáveis Aleatórias Função Distribuição Acumulada Conjunta: F X,Y (x,y) = P[X x, Y y] Propriedades: (a) 0

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Processos Estocásticos e Cadeias de Markov Discretas

Processos Estocásticos e Cadeias de Markov Discretas Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,

Leia mais

PRINCÍPIOS DE COMUNICAÇÃO

PRINCÍPIOS DE COMUNICAÇÃO PRINCÍPIOS DE COMUNICAÇÃO RUÍDO EM MODULAÇÕES ANALÓGICAS Evelio M. G. Fernández - 2011 Processo Aleatório (ou Estocástico): Função aleatória do tempo para modelar formas de onda desconhecidas. Processos

Leia mais

Teoria de Filas Aula 10

Teoria de Filas Aula 10 Aula Passada Comentários sobre a prova Teoria de Filas Aula 10 Introdução a processos estocásticos Introdução a Cadeias de Markov Aula de Hoje Cadeias de Markov de tempo discreto (DTMC) 1 Recordando...

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.6: Vetores Aleatórios Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br São José dos Campos,

Leia mais

Probabilidade de Ruína e Processos de Lévy α-estáveis

Probabilidade de Ruína e Processos de Lévy α-estáveis Apresentação Probabilidade de Ruína e Processos de Lévy α-estáveis Universidade de São Paulo IME - USP 08 de abril, 2010 Apresentação Distribuições Estáveis e Processos de Lévy α-estáveis Convergência

Leia mais

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 2

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 2 em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 2 O Modelo Estrutural Seja z t = (z 1t,...,z mt ) R m um vetor composto das variáveis de interesse. Considere

Leia mais

Modelagem de um sistema por cadeias de Markov

Modelagem de um sistema por cadeias de Markov Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para

Leia mais

PROCESSOS ESTOCÁSTICOS. O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial.

PROCESSOS ESTOCÁSTICOS. O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial. 37 PROCESSOS ESTOCÁSTICOS O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial. Ex: i) O valor da temperatura média diária ou semanal numa cidade. O acontecimento

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

TE060 Princípios de Comunicação. Probabilidade. Probabilidade Condicional. Notes. Notes. Notes

TE060 Princípios de Comunicação. Probabilidade. Probabilidade Condicional. Notes. Notes. Notes TE060 Princípios de Comunicação Efeito do Ruído em Sistemas com Modulação de Onda Contínua 5 de novembro de 2013 Probabilidade Uma medida de probabilidade P é uma função que associa um número não negativo

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Análise e Processamento de Sinal e Imagem. III - Sinais Aleatórios e Filtragem Óptima

Análise e Processamento de Sinal e Imagem. III - Sinais Aleatórios e Filtragem Óptima III - Sinais Aleatórios e Filtragem Óptima António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Sinais Aleatórios e Filtragem Óptima 1. Noção de Sinal Aleatório 2. Sinais

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias. TE802 Somas de Variáveis Aleatórias

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias. TE802 Somas de Variáveis Aleatórias TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 27 de setembro de 2017 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] +

Leia mais

3 Esquema de pré-distorção

3 Esquema de pré-distorção 3 Esquema de pré-distorção O objetivo do presente trabalho, conforme foi exposto anteriormente, é a redução dos efeitos causados pelos produtos de intermodulação gerados pela não-linearidade. Para atingir

Leia mais

Modelos Probabilísticos de Desempenho. Profa. Jussara M. Almeida 1º Semestre de 2014

Modelos Probabilísticos de Desempenho. Profa. Jussara M. Almeida 1º Semestre de 2014 Modelos Probabilísticos de Desempenho Profa. Jussara M. Almeida 1º Semestre de 2014 Modelos Probabilísticos Processos Estocásticos Processos de Poisson Filas M/M/1, M/G/1... Mais genericamente: modelos

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 14 de abril de 2014 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Fundamentos da Teoria da Probabilidade

Fundamentos da Teoria da Probabilidade Fundamentos da Teoria da Probabilidade Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Sinais Aleatórios

Leia mais

Estatísticas Inferenciais Distribuições Amostrais. Estatística

Estatísticas Inferenciais Distribuições Amostrais. Estatística Estatística Na descrição dos conjuntos de dados x 1,..., x n, não foi feita menção ao conceito de população. Estatísticas inferenciais: preocupadas com a fonte dos dados e em tentar fazer generalizações

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

Cadeias de Markov de Tempo Contínuo (CTMC)

Cadeias de Markov de Tempo Contínuo (CTMC) Cadeias de Markov de Tempo Contínuo (CTMC) Cadeia de Markov Contínua (1) A análise de cadeias de Markov contínuas (CTMCs) é bem similar a análise em tempo discreto, com a diferença de que as transições

Leia mais

p.1/48 Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte, MG, Brasil

p.1/48 Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte, MG, Brasil p1/48 Capítulo 4 - Métodos ão Paramétricos Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av Antônio Carlos 27, elo Horizonte, MG, rasil p2/48 Introdução Os métodos

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

t X s db s, I t (X) :=

t X s db s, I t (X) := Chapter 3 Integrais estocásticos Neste capítulo vamos definir integrais estocásticos relativamente ao movimento Browniano e estudar algumas das suas propriedades. Estes integrais também são chamados integrais

Leia mais

FUNDAMENTOS DE PROBABILIDADE E

FUNDAMENTOS DE PROBABILIDADE E Variáveis aleatórias Estimação e Filtragem Estocástica Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos e de Automação Departamento de Engenharia Elétrica Universidade de Brasília FUNDAMENTOS

Leia mais

Continuidade de processos gaussianos

Continuidade de processos gaussianos Continuidade de processos gaussianos Roberto Imbuzeiro Oliveira April, 008 Abstract 1 Intrudução Suponha que T é um certo conjunto de índices e c : T T R é uma função dada. Pergunta 1. Existe uma coleção

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 3 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 2 3 4 5 6 7 8 9 0 2 3 4 5 e 6 Introdução à probabilidade (eventos, espaço

Leia mais

Sinais e Sistemas. Luis Henrique Assumpção Lolis. 21 de fevereiro de Luis Henrique Assumpção Lolis Sinais e Sistemas 1

Sinais e Sistemas. Luis Henrique Assumpção Lolis. 21 de fevereiro de Luis Henrique Assumpção Lolis Sinais e Sistemas 1 Sinais e Sistemas Luis Henrique Assumpção Lolis 21 de fevereiro de 2014 Luis Henrique Assumpção Lolis Sinais e Sistemas 1 Conteúdo 1 Classificação de sinais 2 Algumas funções importantes 3 Transformada

Leia mais

Estimação da Resposta em Frequência

Estimação da Resposta em Frequência 27 Estimação da Resposta em Frequência ω = ω ω Objectivo: Calcular a magnitude e fase da função de transferência do sistema, para um conjunto grande de frequências. A representação gráfica deste conjunto

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinais e Sistemas Mecatrónicos Sinais e Sistemas Sinais Contínuos no Tempo José Sá da Costa José Sá da Costa T2 - Sinais Contínuos 1 Sinais Sinal É uma função associada a um fenómeno (físico, químico,

Leia mais

Introdução ao Processamento Estatístico de Sinais

Introdução ao Processamento Estatístico de Sinais Charles Casimiro Cavalcante charles@gtel.ufc.br Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Departamento de Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f(x) 1.e 1 2. x µ σ 2, x R 2π. σ com - < µ < e σ >

Leia mais

TÓPICOS DE RESOLUÇÃO - Exame de Época de Recurso (Diurno) 2009/2010. Primeira Parte. F (b) F (a) =P (a <X<b) P (a <X<b)=

TÓPICOS DE RESOLUÇÃO - Exame de Época de Recurso (Diurno) 2009/2010. Primeira Parte. F (b) F (a) =P (a <X<b) P (a <X<b)= TÓPICOS DE RESOLUÇÃO - Exame de Época de Recurso (Diurno) 009/010 [,0] 1. Considere as seguintes afirmações: Primeira Parte I. Sendo F a função de distribuição da variável aleatória (v.a.) discreta X,

Leia mais

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Aula 1 Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Os modelos utilizados para descrever séries temporais

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

Análise e Transmissão de Sinais

Análise e Transmissão de Sinais Análise e Transmissão de Sinais Edmar José do Nascimento (Princípios de Comunicações) Universidade Federal do Vale do São Francisco Roteiro 1 Transformada de Fourier 2 Sistemas Lineares 3 Filtros 4 Distorção

Leia mais

Controle de Processos

Controle de Processos 17484 Controle de Processos Aula: Função de Transferência Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 217 E. S. Tognetti (UnB) Controle

Leia mais

Aula de Processamento de Sinais I.B De Paula. Tipos de sinal:

Aula de Processamento de Sinais I.B De Paula. Tipos de sinal: Tipos de sinal: Tipos de sinal: Determinístico:Sinais determinísticos são aqueles que podem ser perfeitamente reproduzidos caso sejam aplicadas as mesmas condições utilizadas sua geração. Periódico Transiente

Leia mais

1 [30] A figura ao lado mostra o zoom da discretização de uma função

1 [30] A figura ao lado mostra o zoom da discretização de uma função TT9 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P, 3 mar 22 Prof. Nelson Luís Dias NOME: GABARITO Assinatura: 3] A figura ao lado mostra o zoom da discretização

Leia mais

Fundamentos de Análise Tempo-Frequência

Fundamentos de Análise Tempo-Frequência Fundamentos de com Aplicação a Processamento de Sinais - 4 Luiz W. P. Biscainho 1 Paulo A. A. Esquef 2 1 Programa de Engenharia Elétrica do COPPE Universidade Federal do Rio de Janeiro 2 Coordenação de

Leia mais

Teoria da Informação

Teoria da Informação Charles Casimiro Cavalcante charles@gtel.ufc.br Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22 all Variáveis Aleatórias Bidimensionais & Teoremas de Limite Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário

Leia mais

Controle de Processos

Controle de Processos 17484 Controle de Processos Aula: Função de Transferência Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 216 E. S. Tognetti (UnB) Controle

Leia mais

AGA Análise de Dados em Astronomia I. 2. Probabilidades

AGA Análise de Dados em Astronomia I. 2. Probabilidades 1 / 20 AGA 0505- Análise de Dados em Astronomia I 2. Probabilidades Laerte Sodré Jr. 1o. semestre, 2018 2 / 20 tópicos 1 probabilidades - cont. 2 distribuições de probabilidades 1 binomial 2 Poisson 3

Leia mais

IV CARACTERIZAÇÃO DO CRM EM FAIXA LARGA

IV CARACTERIZAÇÃO DO CRM EM FAIXA LARGA IV CARACTERIZAÇÃO DO CRM EM FAIXA LARGA Ao se projetar um sistema de comunicação móvel não é suficiente que se empregue um dos modelos usuais de propagação existentes. É preciso que se refinem tais modelos,

Leia mais

Controle de Processos Aula: Sistemas de 1ª e 2ª ordem

Controle de Processos Aula: Sistemas de 1ª e 2ª ordem 107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle

Leia mais

Value-at-Risk: Overview. Análise de Risco (1) R.Vicente mpmmf

Value-at-Risk: Overview. Análise de Risco (1) R.Vicente mpmmf Value-at-Risk: Overview Análise de Risco () R.Vicente mpmmf Resumo Objetivos Definição Esquema Geral Dinâmica de Preços Passeio Aleatório Discreto Somas de Variáveis Aleatórias Teorema Central do Limite

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

UFSM-CTISM. Projeto de Redes sem Fio Aula-04

UFSM-CTISM. Projeto de Redes sem Fio Aula-04 UFSM-CTISM Projeto de Redes sem Fio Aula-04 Professor: Andrei Piccinini Legg Santa Maria, 2012 Ocorre quando uma onda eletromagnética em colide com um objeto que possui dimensões muito grandes em comparação

Leia mais

Identificação de parâmetros em um modelo matemático para geração da voz humana

Identificação de parâmetros em um modelo matemático para geração da voz humana Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Identificação de parâmetros em um modelo matemático

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ 2 o semestre 2/22 o TESTE (Época

Leia mais

Econometria IV Modelos Lineares de Séries Temporais. Fernando Chague

Econometria IV Modelos Lineares de Séries Temporais. Fernando Chague Econometria IV Modelos Lineares de Séries Temporais Fernando Chague 2016 Estacionariedade Estacionariedade Inferência estatística em séries temporais requer alguma forma de estacionariedade dos dados Intuição:

Leia mais

TP501 Processos Estocásticos

TP501 Processos Estocásticos P501 Processos Estocásticos Prof. Dr. Dayan Adionel Guimarães Motivação A natureza aleatória de muitos fenômenos observados em Engenharia se manifesta temporal ou espacialmente. Uma família de variáveis

Leia mais