M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57. + w y. f X,Y (x,y)dxdy (4.24) w y

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57. + w y. f X,Y (x,y)dxdy (4.24) w y"

Transcrição

1 M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57 Assim, e usando a Eq. (4.17), F W (w) = F W (w) = + w y + x= f X,Y (x,y)dxdy (4.24) w y f Y (y)dy f X (x)dx (4.25) x= Diferenciando a Eq e usando a regra de Leibniz chega-se à função densidade desejada f W (w) = + f Y (y)f X (w y)dy. (4.26) Esta expressão é uma integral de convolução. Consequentemente, mostrou-se que a função densidade da soma de duas variáveis aleatórias estatísticamente independentes é a convolução das suas densidades individuais. Exercício 4.8. Calcule a densidade de W = X + Y em que as densidades de X e Y são, respectivamente, f X (x) = 1 [u(x) u(x a)] a (4.27) f Y (y) = 1 [u(y) u(y b)] b (4.28) com 0 < a < b Soma de diversas variáveis aleatórias Quando deseja-se considerar a soma Y de N variáveis aleatórias X 1, X 2,..., X N, pode-se extender os resultados acima. Continuando o processo encontra-se que a função densidade de Y = X 1 +X X N é a convolução das funções densidade individuais: f Y (y) = f XN (x N ) f XN 1 (x N 1 ) f X1 (x 1 ). (4.29)

2 M. Eisencraft 4.7 Teorema do Limite Central Teorema do Limite Central De forma geral, o teorema do limite central diz que a função distribuição de probabilidades da soma de um grande número de VAs aproxima-se de uma distribuição gaussiana. Seja X i e σ 2 X i as médias e variâncias, respectivamente, de N variáveis aleatórias X i, i = 1,2,...,N que podem ter densidades de probabilidade arbitrárias. O teorema do limite central estabelece que a soma Y N = X 1 +X 2 + +X N, que tem média Y N = X 1 + X X N e variância σ 2 Y = σ2 X 1 +σ 2 X 2 + +σ 2 X N tem uma distribuição de probabilidade que se aproxima de uma gaussiana para N. A importância prática do teorema do limite central não reside tanto na exatidão da distribuição gaussiana quando N porque a variância de Y N torna-se infinita, mas sim no fato de que Y N para N finito ter distribuição muito próxima de uma gaussiana. Exercício 4.9. Use o Matlab R para traçar histogramas da variável aleatória Y = X 1 +X 2 + +X N, sendo que cada uma das VAs X i tem distribuição uniforme no intervalo [0,1]. Veja o que ocorre para diversos valores de N.

3 Capítulo 5 Operações sobre múltiplas variáveis aleatórias Nessa seção, estende-se o conceito de valor esperado para o caso de duas ou mais variáveis aleatórias. 5.1 Valor esperado de uma função de variáveis aleatórias O valor esperado de uma função de uma variável aleatória foi definido na Seção 3.1 por E[g(X)] = g(x)f X (x)dx. (5.1) Quando mais de uma variável aleatória é envolvida, o valor esperado deve ser tomado em relação atodasasvariáveis envolvidas. Por exemplo, seg(x,y) éuma função deduas variáveis aleatórias X e Y, o valor esperado de g(.,.) é dado por g = E[g(X,Y)] = g(x,y)f X,Y (x,y)dxdy. (5.2) Para N variáveis aleatórias X 1, X 2,..., X N e uma função dessas variáveis denotada por 59

4 M. Eisencraft 5.1 Valor esperado de uma função de variáveis aleatórias 60 g(x1,...,x N ), o valor esperado dessa função se torna: g = E[g(X 1,...,X N )] = g(x 1,...,x N )f X1,...,X N (x 1,...,x N )dx 1...dx N. (5.3) Um resultado que segue diretamente da definição acima é que o valor esperado de uma soma ponderada de variáveis aleatórias g(x 1,...,X N ) = N α i X i (5.4) é a soma ponderada de seus valores médios: [ N ] g = E α i X i = N α i E[X i ] (5.5) Momentos conjuntos em torno da origem Uma importante aplicação do valor esperado é na definição de momentos conjuntos em torno da origem. Eles são denotados por m nk e são definidos por m nk = E [ X n Y k] = x n y k f X,Y (x,y)dxdy (5.6) para o caso de duas variáveis aleatórias X e Y. Claramente, m n0 = E[X n ] são os momentos m n de X e m 0k = E [ Y k] são os momentos de Y. A soma n + k é chamada de ordem dos momentos. Assim, m 02, m 20 e m 11 são todos momentos de segunda ordem de X e Y. Os momentos de primeira ordem m 01 = E[Y] = Y e m 10 = E[X] = X são os valores esperados de X e Y respectivamente e são as coordenadas do centro de gravidade da função f X,Y (x,y). O momento de segunda ordem m 11 = E[XY] é chamado de correlação de X e Y. Ele é tão

5 M. Eisencraft 5.1 Valor esperado de uma função de variáveis aleatórias 61 importante que recebe um símbolo especial R XY. Assim, R XY = m 11 = E[XY] = xyf X,Y (x,y)dxdy. (5.7) Se a correlação puder ser escrita na forma R XY = E[X] E[Y], (5.8) então X e Y são ditas não-correlacionadas. A independência estatística de X e Y é suficiente para garantir que elas são não-correlacionadas. Porém, o contrário não é verdade em geral. Ou seja, independência implica não-correlação, mas não-correlação não implica independência. Se R XY = 0 as variáveis X e Y são ditas ortogonais. Resumindo: f X,Y (x,y) = f X (x) f Y (y) X e Y são independentes R XY = E[X] E[Y] X e Y são não-correlacionadas R XY = 0 X e Y são ortogonais X e Y são independentes X e Y são não-correlacionadas Exercício 5.1. Seja X uma variável aleatória com valor médio X = E[X] = 3 e variância σ 2 X = 2 e uma outra variável Y dada por Y = 6X +22. Pede-se: a E[X 2 ] b Y c R XY d as variáveis são correlacionadas? e as variáveis são ortogonais?

6 M. Eisencraft 5.1 Valor esperado de uma função de variáveis aleatórias Momentos conjuntos centrais Uma outra aplicação importante da definição de valores esperado é a definição de momentos centrais conjuntos. Para duas variáveis aleatórias X e Y, estes momentos denotados por µ n,k são dados por: [ (X ) n ( ) k ] µ nk = E X Y Y = ( x X ) n ( y Y ) kfx,y (x,y)dxdy (5.9) Os momentos centrais de segunda ordem [ (X ) 2 ] µ 20 = E X = σx 2 (5.10) [ (Y ) 2 ] µ 02 = E Y = σy 2 (5.11) (5.12) são as variâncias de X e Y. Omomento conjuntodesegundaordemµ 11 émuitoimportante. Échamadodeco-variância de X e Y é simbolizado por C XY. Assim, C XY = µ 11 = E [( X X )( Y Y )] = ( x X )( y Y ) fx,y (x,y)dxdy. (5.13) Expandindo-se o produto ( X X )( Y Y ) esta integral se reduz a C XY = R XY X Y = R XY E[X] E[Y] (5.14) SeX ey foremindependentes ounão-correlacionadas, entãor XY = E[X] E[Y]eC XY = 0. Se X e Y forem ortogonais, então C XY = E[X] E[Y]. Claramente, C XY = 0 se X ou Y também tiverem média nula além de serem ortogonais.

7 M. Eisencraft 5.2 Funções características conjuntas 63 O momento de segunda ordem normalizado ρ = µ 11 µ20 µ 02 = C XY σ X σ Y (5.15) é conhecido como coeficiente de correlação de X e Y. Pode-se mostrar [1] que 1 ρ 1. Uma aplicação direta das definições acima é que se X é uma soma ponderada de variáveis aleatórias X i, X = N α ix i, então E[X] = N α i X i (5.16) N σx 2 = αi 2 σ2 X i. (5.17) Exercício 5.2. [1] Num sistema de controle, sabe-se que uma tensão aleatória X tem média X = m 1 = 2V e momento de segunda ordem X 2 = m 2 = 9V 2. Se a tensão X é amplificada por um amplificador que fornece como saída Y = 1,5X +2, encontre σ 2 X, Y, Y 2, σ 2 Y e R XY. 5.2 Funções características conjuntas A função característica conjunta de duas VAs X e Y é definida por Φ X,Y (ω 1,ω 2 ) = E [ e jω 1X+jω 2 Y ] (5.18) em que ω 1 e ω 2 são números reais. Uma forma equivalente é Φ X,Y (ω 1,ω 2 ) = f X,Y (x,y)e jω 1x+jω 2 y dxdy. (5.19) Esta expressão é a transformada de Fourier bidimensional (com os sinais de ω 1 e ω 2 trocados) [3]. Fazendo ω 2 = 0 ou ω 1 = 0 na Eq. (5.19), a função característica de X ou Y é obtida,

8 M. Eisencraft 5.2 Funções características conjuntas 64 respectivamente. São as chamadas funções características marginais: Φ X (ω 1 ) = Φ X,Y (ω 1,0) (5.20) Φ Y (ω 2 ) = Φ X,Y (0,ω 2 ) (5.21) Os momentos conjuntos m nk podem ser encontrados a partir da função característica conjunta por: m nk = ( j) n+k n+k Φ X,Y (ω 1,ω 2 ) ω n 1 ω k 2 ω1 =0,ω 2 =0 (5.22) Esta expressão é a generalização bidimensional da Eq. (3.16). Exercício 5.3. Duas variáveis aleatórias X e Y tem função característica conjunta Φ X,Y (ω 1,ω 2 ) = exp ( 2ω 2 1 8ω3 2 ) (5.23) Mostre que X e Y têm média nula é que elas são não correlacionadas.

9 Referências Bibliográficas [1] P. Z. P. Jr., Probability, Random Variables And Random Signal Principles, 4th ed. New York: Mcgraw-Hill, [2] B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed. New York, NY, USA: Oxford University Press, Inc., [3] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Sinais e sistemas, 2nd ed. São Paulo: Pearson Prentice Hall,

Processos aleatórios - características

Processos aleatórios - características Capítulo 6 Processos aleatórios - características temporais 6.1 O conceito de processo aleatório Um processo aleatório ou estocástico é um espaço de amostras em que cada elemento é associado a uma função

Leia mais

M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20)

M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20) M. Eisencraft 6.3 Funções de correlação 81 R XY (τ) = E[X(t)Y(t+τ)] e (6.17) R YX (τ) = E[Y(t)X(t+τ)]. (6.18) As propriedades de correlação de dois processos X(t) e Y(t) podem ser mostradas convenientemente

Leia mais

5.7 Amostragem e alguns teoremas sobre limites

5.7 Amostragem e alguns teoremas sobre limites M. Eisencraft 5.7 Amostragem e alguns teoremas sobre limites 7 5.7 Amostragem e alguns teoremas sobre limites Para quantificar os problemas associados às medidas práticas de uma VA, considere o problema

Leia mais

Operações sobre uma variável aleatória

Operações sobre uma variável aleatória Capítulo 3 Operações sobre uma variável aleatória - Esperança matemática Neste capítulo, introduz-se algumas operações importantes que podem ser realizadas sobre uma variável aleatória. 3.1 Esperança Valor

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Duas Variáveis Aleatórias 29 de agosto de 2017 Duas Variáveis Aleatórias Função Distribuição Acumulada Conjunta: F X,Y (x,y) = P[X x, Y y] Propriedades: (a) 0

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável

Leia mais

Probabilidade e Variáveis Aleatórias. Prof. Walter Fetter Lages 4 de outubro de 2004

Probabilidade e Variáveis Aleatórias. Prof. Walter Fetter Lages 4 de outubro de 2004 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE0007-Tópicos Especiais em Automação e Controle II

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

Processos Aleatórios e Ruído

Processos Aleatórios e Ruído Processos Aleatórios e Ruído Luis Henrique Assumpção Lolis 11 de abril de 2014 Luis Henrique Assumpção Lolis Processos Aleatórios e Ruído 1 Conteúdo 1 O Experimento Aleatório / Espaço de Amostras 2 Algebra

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

canal para sinais contínuos

canal para sinais contínuos Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos Motivação Em muitas situações precisamos Prof. Lorí Viali, Dr. viali@pucrs.br lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma determinada peça.

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade

Leia mais

Notas de Probabilidades e Estatística

Notas de Probabilidades e Estatística Notas de Probabilidades e Estatística Giovani Loiola da Silva Dep. Matemática - IST Setembro, 2008 Estas notas visam apoiar as aulas teóricas da disciplina Probabilidades e Estatística. Agradecimentos:

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual

Leia mais

Conteúdo Teórico: 04 Esperança

Conteúdo Teórico: 04 Esperança ACH2053 Introdução à Estatística Conteúdo Teórico: 04 Esperança Marcelo de Souza Lauretto Sistemas de Informação EACH www.each.usp.br/lauretto Referência: Morris DeGroot, Mark Schervish. Probability and

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

Aula 15 Propriedades da TFD

Aula 15 Propriedades da TFD Processamento Digital de Sinais Aula 5 Professor Marcio Eisencraft abril 0 Aula 5 Propriedades da TFD Bibliografia OPPENHEIM, A. V.; SCHAFER. Discrete-time signal processing, 3rd. ed., Prentice-Hall, 00.

Leia mais

Modelagem Estocástica e Quantificação de Incertezas

Modelagem Estocástica e Quantificação de Incertezas Modelagem Estocástica e Quantificação de Incertezas Rubens Sampaio rsampaio@puc-rio.br Roberta de Queiroz Lima robertalima@puc-rio.br Departamento de Engenharia Mecânica DINCON 2015 Organização do curso

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Aula 18 Propriedades da Transformada Z Transformada Z inversa

Aula 18 Propriedades da Transformada Z Transformada Z inversa Processamento Digital de Sinais Aula 8 Professor Marcio Eisencraft abril 0 Aula 8 Propriedades da Transformada Z Transformada Z inversa Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, a

Leia mais

Processos estocásticos

Processos estocásticos 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processamento Digital de Sinais Professor: Marcelino Andrade OPPENHEIM, ALAN V., WILLSKY, ALAN S. Sinais e Sistemas, Pearson, 2010. SIMON HAYKIN; BARRY V. VEEN. Sinais e Sistemas, Bookman, 2002 OPPENHEIM,A.,

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

Prof. Walter Fetter Lages 4 de outubro de 2004

Prof. Walter Fetter Lages 4 de outubro de 2004 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE7-Tópicos Especiais em Automação e Controle II Introdução

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista September 4, Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas e Sinais CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos

Leia mais

RESTAURAÇÃO E RECONSTRUÇÃO DE IMAGENS. Nielsen Castelo Damasceno

RESTAURAÇÃO E RECONSTRUÇÃO DE IMAGENS. Nielsen Castelo Damasceno RESTAURAÇÃO E RECONSTRUÇÃO DE IMAGENS Nielsen Castelo Damasceno Restauração de imagem Procura recuperar uma imagem corrompida com base em um conhecimento a priori do fenômeno de degradação. Restauração

Leia mais

Convolução Correlação. Profs. Theo Pavan e Adilton Carneiro TAPS

Convolução Correlação. Profs. Theo Pavan e Adilton Carneiro TAPS Convolução Correlação Profs. Theo Pavan e Adilton Carneiro TAPS Sistema Sistema processo em que os sinais de entrada são transformados resultando em um outro sinal de saída. x(t) Sistema de tempo contínuo

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista November, 5 Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Introdução ao Processamento Digital de Imagens. Aula 9 Restauração de Imagens. Prof. Dr. Marcelo Andrade da Costa Vieira

Introdução ao Processamento Digital de Imagens. Aula 9 Restauração de Imagens. Prof. Dr. Marcelo Andrade da Costa Vieira Introdução ao Processamento Digital de Imagens Aula 9 Restauração de Imagens Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br Realce x Restauração Realce: Processar a Imagem para obter um resultado

Leia mais

4 Funções de Transferência de Sistemas em Tempo Discreto

4 Funções de Transferência de Sistemas em Tempo Discreto Rio de Janeiro, 8 de setembro de 2016. 1 a Lista de Exercícios de Controle por Computador Tópicos: Sinais e sistemas em tempo discreto, equações a diferenças, transformada z e funções de transferência.

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Frederico Caeiro 2009/10 Observação: Estas folhas servem de apoio às aulas de Probabilidades e Estatística. Para uma melhor compreensão dos assuntos abordados, aconselha-se

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

28 de dezembro de 2007

28 de dezembro de 2007 Curso de UFRPE e UFPE 28 de dezembro de 2007 1 2 3 4 5 6 Seja f (y) uma função densidade conhecida, cujos cumulantes são dados por κ 1, κ 2,.... O interesse reside em usar f (y) para aproximar uma função

Leia mais

Processos de Poisson

Processos de Poisson Processos de Poisson Mauro C. M. Campos 1 SUMÁRIO I Alguns fatos sobre a distribuição exponencial 1 II Alguns fatos sobre a distribuição de Poisson 2 III Processos estocásticos em tempo contínuo 2 IV Processos

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Característica 10/13 1 / 26 Vimos que a função geradora de momentos é uma ferramenta

Leia mais

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios Probabilidade Lista - Variáveis Aleatórias Contínuas e Vetores Aleatórios Exercício. Uma v.a. X tem distribuição triangular no intervalo [0, ] se sua densidade for dada por 0, x < 0 cx, 0 x /2 c( x), /2

Leia mais

Análise de Sinais e Sistemas

Análise de Sinais e Sistemas Universidade Federal da Paraíba Departamento de Engenharia Elétrica Análise de Sinais e Sistemas Luciana Ribeiro Veloso luciana.veloso@dee.ufcg.edu.br ANÁLISE DE SINAIS E SISTEMAS Ementa: Sinais contínuos

Leia mais

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira 15 de Janeiro 013 Época Normal - horas Resolva os seguintes exercícios, justificando cuidadosamente as suas respostas.

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Definições e Notação Estimação Amostra Aleatória

Leia mais

Estatística 1. Resumo Teórico

Estatística 1. Resumo Teórico Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

σ-álgebras, geradores e independência

σ-álgebras, geradores e independência σ-álgebras, geradores e independência Roberto Imbuzeiro M. F. de Oliveira 15 de Março de 2009 Resumo Notas sobre a σ-álgebra gerada por uma variável aleatória X e sobre as condições de independência de

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processamento Digital de Sinais Carlos Alexandre Mello Carlos Alexandre Mello cabm@cin.ufpe.br 1 Sinais Digitais Um sinal pode ser entendido como uma função que carrega uma informação Sinal de voz O sinal

Leia mais

INTRODUÇÃO À TEORIA DAS FILAS

INTRODUÇÃO À TEORIA DAS FILAS INTRODUÇÃO À TEORIA DAS FILAS Uma fila é caracterizada por: Processo de chegada dos fregueses à fila Tempo de serviço dedicado pelo servidor a cada freguês Número de servidores Espaço disponível para espera

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Exercícios de programação

Exercícios de programação Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,

Leia mais

Introdução FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA

Introdução FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA Introdução Um sinal no domínio do espaço (x,y) pode ser aproximado através de uma soma de senos e cossenos com frequências (f, f2, f3,...fn) de amplitudes (a, a2,...

Leia mais

Probabilidade e Variáveis Aleatórias

Probabilidade e Variáveis Aleatórias 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Probabilidade e Variáveis Aleatórias Geovany A.

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I. o Ano/Gestão. o Semestre Época Normal Duração: horas 1. a Parte Teórica N. o de Exame: 1431 5.6.14 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a.a 3.a 4.a 6. 1.b.b

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Teoria Ergódica (9 a aula)

Teoria Ergódica (9 a aula) Outubro 2012 Espaços de Sequências Seja (X, d 0 ) um espaço métrico compacto. B Z (X ) = X Z = { x = (x j ) j Z : x j X, j Z } B N (X ) = X N = { x = (x j ) j N : x j X, j N } B(X ) designa indiferentemente

Leia mais

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia

Leia mais

2 Medida de Incertezas: Fundamentos

2 Medida de Incertezas: Fundamentos 2 Medida de Incertezas: Fundamentos 2. Introdução O resultado de um processo de medição fornece uma determinada informação que usualmente é chamada de conhecimento. A fim de quantificar quão completo é

Leia mais

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY UNIVERSIDDE FEDERL D BHI INSTITUTO DE MTEMÁTIC DEPRTMENTO DE ESTTÍSTIC v. demar de Barros s/n - Campus de Ondina 40170-110 - Salvador B Tel:(071)247-405 Fax 245-764 Mat 224 - Probabilidade II - 2002.2

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br Uma linha de uma imagem formada por uma sequência

Leia mais

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3 Forecasting e Otimização i de Carteiras com Matlab AULA 3 Guia de Estudo para Aula 03 Modelos Discretos Exercícios - Formulação de um modelo - Programação de modelos com for - A simulação de um modelo

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos Cristina Maria Martins Maria da Graça Temido Departamento de Matemática Universidade de Coimbra Hidrologia Urbana Módulo I Conceitos básicos Probabilidade Experiência aleatória Acontecimentos

Leia mais

Distribuições de Probabilidade Conjuntas

Distribuições de Probabilidade Conjuntas Distribuições de Probabilidade Conjuntas 1. Duas variáveis aleatórias discretas Exemplo 1. No desenvolvimento de um novo receptor para transmissão digital de informação, cada bit é classificado como aceitável,

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais