Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Tamanho: px
Começar a partir da página:

Download "Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I"

Transcrição

1 Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre que 1. X F. 2. se A i F, i = 1, 2,... então n i=1 A i F. 3. se A i F, i = 1, 2,... então i=1 A i F. 4. se A i F, i = 1, 2,... então n i=1 A i F 5. se A, B F então A \ B F. Exercício 2. Mostre que a intersecção numerável de σ-álgebras é uma σ- álgebra. Será a união numerável de σ-álgebras também uma σ-álgebra? Exercício 3. Seja A X. Determine σ(a}). Exercício 4 (*). Mostre que B(R) = σ(fechados de R). Exercício 5. Mostre que se A c é numerável então A é Boreliano. Exercício 6. Seja (X, F, µ) um espaço de medida. Mostre que para qualquer A, B F tal que A B tem-se µ(b \ A) = µ(b) µ(a). Exercício 7. (σ-subaditividade) Sejam (X, F, µ) um espaço de medida e (A n ) n N uma sucessão de elementos de F. Mostre que µ( A n ) n=1 1 µ(a n ). n=1

2 Exercício 8. Sejam µ 1 e µ 2 duas medidas do espaço mensurável (X, F). Mostre que µ 1 + µ 2 definida por (µ 1 + µ 2 )(A) = µ 1 (A) + µ 2 (A) para todo o A F é uma medida de (X, F). Exercício 9. Considere um espaço de medida (X, F, µ) e sejam A i F, i = 1, 2,... tal que µ(a 1 ) < e A 1 A 2 A 3. Mostre que µ( A i ) = lim µ(a n ). n i=1 Exercício 10. Mostre que a condição µ(a 1 ) < não pode ser retirada do enunciado do exercício anterior. (Dica: construa um contra-exemplo considerando um conjunto infinito X e a medida de contagem µ.) Exercício 11. Seja (X, F, µ) um espaço de medida e A, B X dois conjuntos. Mostre que são equivalentes 1. A é µ-equivalente a B. 2. existe um conjunto N X de medida nula tal que A N c = B N c. 3. existe C F, µ(c) = 0 tal que B \ C A B C. Exercício 12. Mostre que se A R é um conjunto finito ou numerável então A tem medida de Lebesgue nula. Exercício 13. Considere a seguinte colecção de subconjuntos de R, Mostre que: F = E R : E é numerável ou E c é numerável}. 1. F é uma σ-álgebra e F B(R). 2. F é a σ-álgebra gerada pela colecção x} : x R}. 3. Encontre uma medida µ : F [0, ] tal que o conjunto vazio é o único conjunto de medida nula, ou seja, se µ(e) = 0 então E =. Exercício 14 (Conjunto de Cantor). Considere o intervalo A 0 = [0, 1]. Divida-o em três partes iguais e retire o intervalo aberto do meio. Obtém-se assim o intervalo A 1 = [0, 1] [ 2, 1]. Repita o mesmo processo, agora para 3 3 cada intervalo [0, 1] e [ 2, 1], obtendo A = [0, 1] [ 2, 1] [ 2, 7] [ 8, 1]. Continuando com a subdivisão, obtém-se uma sucessão de conjuntos (A n ) n=0,1,2, A intersecção C = A n, n=0 é designada por conjunto de Cantor. Mostre que: 2

3 1. A n é uma união disjunta de 2 n intervalos fechados. 2. C é não vazio e Boreliano. 3. C tem medida de Borel nula. Exercício 15 (*). [Borel-Cantelli] Considere um espaço do medida (X, F, µ) e A n F, n = 1, 2,... uma sucessão de conjuntos mensuráveis tais que n=1 µ(a n) <. Mostre que o conjunto dos pontos de X que pertencem a um número infinito de A n s tem medida nula, ou seja, µ( n=1 k=n A k ) = 0. Exercício 16 (*). Seja F : R R uma função de distribuição. Mostre que: 1. O conjunto dos pontos de descontinuidade de F é numerável. 2. Se F é contínua então m F (x}) = 0. Exercício 17. Seja F uma função de distribuição continua. Mostre que se A R é um conjunto finito ou numerável então m F (A) = 0. Exercício 18. Dê um exemplo de uma função de distribuição F tal que m F (1}) = 1. Exercício 19. Considere a função, 0 se x < 0, F (x) = x 2 se x Prove que F é uma função de distribuição. 2. Seja µ a medida de Borel-Stieltjes associada a F. Calcule µ(]3, 9]). Exercício 20. Considere a medida µ = 3δ 2 + 2δ 3 em R. Determine a função de distribuição F tal que µ = m F. Exercício 21. Sejam Y e Z espaços métricos e X um espaço mensurável. Se f : X Y é uma função mensurável e g : Y Z é uma função contínua então g f : X Z é uma função mensurável. Exercício 22. Mostre que se f, g : X R são duas funções mensuráveis então 1. f + g é mensurável. 3

4 2. f g é mensurável. Exercício 23. Seja X um espaço métrico e (X, B) o espaço mensurável onde B é a σ-álgebra de Borel. Mostre que se f : X R é uma função contínua então f é mensurável. Exercício 24. Dado c R, mostre que a função constante f(x) = c para todo x R é uma função mensurável. Exercício 25. Seja f : X R uma função e defina-se f + f(x) se f(x) > 0 (x) = e f 0 se f(x) > 0 (x) = 0 se f(x) 0 f(x) se f(x) 0 a parte positiva e negativa de f, respectivamente. Mostre que f é mensurável sse f + e f são mensuráveis. (Dica: f + = f χ E onde E = x X : f(x) > 0}) Exercício 26. Mostre que se f : X R uma função mensurável então f também é mensurável. Exercício 27. Seja f : X R uma função mensurável. Dado a R, mostre que o conjunto de nível x X : f(x) = a} é mensurável. Exercício 28. Considere um espaço mensurável (X, F) e um espaço topológico Y. Seja f : X Y uma função mensurável. Prove que a colecção de conjuntos C = A Y : f 1 (A) F} é uma σ-álgebra. Exercício 29. Mostre toda a função simples é mensurável. Exercício 30. Sejam ϕ, ψ funções simples e a > 0. Mostre que ϕ + ψ e aϕ são funções simples. Exercício 31. Calcule o integral de Lebesgue em A [0, ) relativo a m das seguintes funções simples: 1. φ(x) = [x] e A = [0, 10]. 2. φ(x) = [x 2 ] e A = [0, 2]. Nota: o símbolo [x] denota a parte inteira do número x. Exercício 32. Sejam ϕ, ψ duas funções simples em X. Mostre que se ϕ ψ então ϕ dµ ψ dµ para todo conjunto mensurável E. E E 4

5 Exercício 33. Sejam f, g : X [0, ] duas funções mensuráveis. Mostre que f + g e f g são funções mensuráveis de X [0, ]. (Dica: Use o facto de o limite de funções mensuráveis ser mensurável e qualquer função mensurável é o limite de funções simples). Exercício 34 (*). Considere um espaço de medida (X, F, µ), uma função mensurável f : X [0, ] e E F. Mostre que f dµ = χ E f dµ. E X Exercício 35 (Desigualdade de Markov). Considere um espaço de medida (X, F, µ) e uma função mensurável f : X [0, ]. Mostre que para λ ]0, [, µ(x X : f(x) λ}) 1 f dµ. λ Exercício 36 (*). Sejam f n : X [0, ], n = 1, 2,... funções mensuráveis e f(x) = f n (x), x X. Mostr que, X n=1 f dµ = n=1 X X f n dµ. (Dica: Considere em primeiro lugar uma soma finita e use o Teorema da convergência monótona.) Exercício 37. Mostre que a função ν : F [0, ] definida por ν(e) = f dµ, E F E é uma medida. (Dica: Use as propriedades do integral de Lebesgue e o exercício anterior) Exercício 38. Considere o espaço de medida (X, F, µ) onde µ é a medida de contagem. Seja A = x 1, x 2, x 3 } um subconjunto de X e h : X [0, ] uma função mensurável. Mostre que 1. χ A h é uma função simples, onde χ A é a função característica de A. 2. Calcule A h dµ. 5

6 Exercício 39. Considere-se o espaço mensurável (X, P(X)). Seja A = x 1, x 2, x 3,...} um subconjunto numerável de X e µ : P(X) [0, ] a seguinte função µ(e) = x i E α i, onde α i, i = 1, 2,... são números reais não negativos. Mostre que 1. µ é uma medida, designada por medida discreta. 2. µ = i=1 α iδ xi onde δ xi é a medida de Dirac. 3. Dada uma função mensurável f : X [0, ], f dµ = f(x i )α i. x i E E Exercício 40 (*). Considere um espaço de medida (X, F, µ) e uma função mensurável f : X [0, ]. Mostre que se f dµ < então f(x) < X quase certamente. Exercício 41. Calcule Exercício 42. Calcule x lim n nx dx. 3 R n=1 2 n n! χ [0,n] dm. Exercício 43. Considere-se as seguinte medidas em ([0, 1], B): µ 1 = δ 0, µ 2 = m e µ 3 = µ 1 + µ 2. Para que i j se tem µ 2 2 i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso. Exercício 44. Considere as seguintes medidas em ([0, 1], B): λ = δ 0 + m e µ = δ 1 + m. Determine: 1. A decomposição de Lebesgue de λ relativamente a µ, ou seja, o par (λ a, λ s ) tal que λ = λ a + λ s, onde λ a µ e λ s µ. 2. a derivada de Radon-Nikodym de λ a relativamente a µ. Exercício 45 (*). Considere dois espaços mensuráveis (X i, F i ), i = 1, 2. Mostre que se F é um conjunto mensurável de F = F 1 F 2 então a secção F x1 = x 2 X 2 : (x 1, x 2 ) X 1 X 2 } é um conjunto F 2 -mensurável. (Dica: Mostre que a colecção G = F F : F x1 F 2, x 1 X 1 } é uma σ-álgebra que contém todos os rectângulos mensuráveis). 6

7 Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda imperfeita é lançada três vezes ao ar. 2. Duas bolas são retiradas de uma urna contendo duas bolas azuis e duas vermelhas. 3. Uma moeda imperfeita é lançada repetidamente ao ar até ocorrer a primeira cara. Exercício 2. Seja (Ω, F, P ) um espaço de probabilidade e A 1, A 2, A 3,... acontecimentos de F tais que P (A n ) = 1 para todo n = 1, 2, 3,.... Mostre que P ( n=1 A n) = 1. Exercício 3. Uma moeda perfeita é lançada repetidamente ao ar. Calcule a probabilidade de no n-ésimo lançamento ocorrer: 1. Uma cara pela primeira vez. 2. O número de caras e coroas observadas até ao momento ser igual. 3. Exactamente duas coroas terem sido observadas consecutivamente. 4. Pelo menos duas caras terem sido observadas até ao momento. Exercício 4. Mostre que a probabilidade de um e um só dos acontecimentos A e B ocorrer é P (A) + P (B) 2P (A B) 1

8 Exercício 5 (*). Uma moeda imperfeita é lançada repetidamente ao ar. A probabilidade de ocorrer cara em cada lançamento é p. Seja p n a probabilidade de até ao n-ésimo lançamento terem ocorrido um número par de caras. Mostre que p 0 = 1 e p n = p(1 p n 1 ) + (1 p)p n 1 se n 1. Determine p n. Exercício 6 (*). No século XVIII o conde de Buffon colocou o seguinte problema: uma agulha de comprimento l cm é lançada aleatoriamente numa folha de papel de linhas espaçadas entre si d cm. Qual é a probabilidade de a agulha intersectar uma linha. Exercício 7. Considere o espaço de probabilidade ([0, 1], B, m) e a variável aleatória X(ω) = min(ω, 1 ω). Determine F X. Exercício 8. Suponha que um comboio parte aleatoriamente do Porto entre as 8h e as 10h da manhã com destino a Lisboa, que fica a 300km de distância. Suponha também que o comboio viaja a uma velocidade constante de 100km/h. 1. Determine a variável aleatória que descreve a distância entre o comboio e Lisboa às 12h. 2. Calcule a distribuição de probabilidade dessa variável aleatória e a respectiva função de distribuição. a sua função de dis- Exercício 9. Seja X uma variável aleatória e F X tribuição. Mostre que: 1. P (a < X b) = F X (b) F X (a). 2. P (a X b) = F X (b) F X (a ). 3. P (a < X < b) = F X (b ) F X (a). 4. P (a X < b) = F X (b ) F X (a ). Exercício 10. Seja X uma variável aleatória com função de distribuição 0 x < 0 x F (x) = 0 x x > 2 e seja Y = X 2. Calcule: 1. P ( 1 X 3)

9 2. P (X 2Y ). 3. a função de distribuição de Z = X. Exercício 11. Uma variável aleatória X tem função de distribuição de probabilidade F X. Determine a função de distribuição de Y = ax + b onde a, b R. Exercício 12. Quais das seguintes funções são funções de distribuição de probabilidade? Para cada caso, determine a respectiva função de densidade de probabilidade. 1 e x2 x 0, 1. F (x) = 0 caso contrário. e 1/x x > 0, 2. F (x) = 0 caso contrário. 3. F (x) = e x /(e x + e x ), x R. Exercício 13. Quais das seguintes funções são funções de densidade de probabilidade? Encontre c e respectiva função de distribuição de probabilidade. c x > 1, x 1. f(x) = d 0 caso contrário. 2. f(x) = ce x (1 + e x ) 2, x R. Exercício 14. Sejam X e Y variáveis aleatórias e α, β R. Mostre que E(αX + βy ) = αe(x) + βe(y ). Exercício 15. Seja X uma variável aleatória. Mostre que V (X) = E(X 2 ) (E(X)) 2. Exercício 16. Uma variável aleatória X : Ω R segue uma distribuição de Poisson se X(Ω) = 0, 1, 2,...} e onde λ > 0. Calcule E(X). P (X = k) = λk k! e λ, k = 0, 1, 2,... Exercício 17 (*). Seja X uma variável aleatória que segue uma distribuição Gaussiana com valor esperado µ e desvio padrão σ. Mostre que, 3

10 1. Para todo n N, E((X µ) n ) = σ n (n 1)(n 3) 1 se n é par 0 caso contrário. 2. E(e tx ) = e µt+ 1 2 σ2 t 2, t R. Exercício 18. Seja (Ω, F, P ) um espaço de probabilidade e B um acontecimento. Mostre que (B, F B, P ( B)) é um espaço de probabilidade, onde F B = A B : A F} e P (A B) = P (A B) P (B). Exercício 19. Mostre que, P (A B C) = 1 P (A c B c C c )P (B c C c )P (C c ) Exercício 20. Mostre que dois acontecimentos são independentes sse as σ- álgebras geradas por esses acontecimentos são independentes. Exercício 21. Seja (X 1, X 2 ) um vector aleatório bidimensional com a seguinte função de distribuição Determine: F (x 1, x 2 ) = (1 e x 1 )(1 e x 2 ), x 1, x 2 > P (1 < X 1 < 2, 1 < X 2 < 3) 2. A função de densidade de probabilidade conjunta f(x 1, x 2 ). 3. Cov(X 1, X 2 ) Exercício 22 (*). Sejam X e Y duas variáveis aleatórias independentes e absolutamente contínuas. Mostre que f X+Y (z) = f X (x)f Y (z x) dm(x). R Exercício 23. Sejam X, Y e Z variáveis aleatórias independentes com distribuição de probabilidade uniforme no intervalo [0, 1]. Determine a função de densidade conjunta de XY e Z 2. Mostre que P (XY < Z 2 ) = 5 9. Exercício 24. Sejam X e Y duas variáveis aleatórias independentes com distribuição de probabilidade uniforme no intervalo [0, 1]. Sejam U = minx, Y } e V = maxx, Y }. Calcule E(U) e Cov(U, V ). 4

11 Exercício 25 (*). Sejam X e Y duas variáveis aleatórias independentes com segundo momento finito. Quando é que as variáveis aleatórias X + Y e XY são não correlacionadas, ou seja, covariância nula. Exercício 26. Mostre que Cov(X 1, X 2 ) = E(X 1 X 2 ) E(X 1 )E(X 2 ). Exercício 27. Mostre que σ(x) é uma σ-álgebra e que a função X é mensurável no espaço mensurável (Ω, σ(x)). Exercício 28. Considere uma variável aleatória X que toma dois valores distintos a, b R. Calcule σ(x). Exercício 29. Mostre que a σ-álgebra σ(x) é a menor das σ-álgebras de partes de Ω que tornam X uma função mensurável. Exercício 30. Mostre que E(X Ω) = E(X). Exercício 31. Sejam X e Y variáveis aleatórias e suponha que Y é discreta. Mostre que E(X Y ) = E(X) se Y (ω) = c para todo ω Ω. Exercício 32. Mostre que se G =, Ω} então E(X G) = E(X) P-q.c. Exercício 33 (*). Sejam X e Y duas variáveis aleatórias discretas, isto é, X(Ω) = x 1, x 2,...} e Y (Ω) = y 1, y 2,...} onde P (Y = y j ) > 0, j = 1, 2,.... Mostre que E(X Y = y j ) = x i f X Y (x i, y j ), onde f X Y (x i, y j ) é a massa de probabilidade condicionada, i=1 f X Y (x i, y j ) = P (X = x i, Y = y j ) P (Y = y j ) Exercício 34. Uma empresa produz diariamente N componentes electrónicas, onde N é uma variável aleatória que segue uma distribuição de Poisson com parâmetro λ > 0. Cada componente pode ter um defeito, independentemente das restantes, com probabilidade p. Seja D o número diário de componentes electrónicas com defeito. Calcule E(D N), E(D) e E(N D). Exercício 35. Seja ([0, 1[, B([0, 1[), P ) o espaço de probabilidade onde P é a medida de Lebesgue restrita ao intervalo [0, 1[ e X, Y : [0, 1[ R as variáveis aleatórias, X(ω) = 2ω 2 2ω 0 ω < 1 2 e Y (ω) = 2 2ω 1 ω < 1. 2 Determine E(X Y ). 5.

12 Exercício 36 (*). Um ponto X é escolhido uniformemente ao acaso da superfície de uma esfera de raio 1. Sejam Θ e Φ a longitude e latitude do ponto X. Determine a função de densidade condicional de Θ dado Φ. Exercício 37. Sejam X e Y variáveis aleatórias com função de densidade conjunta f X,Y (x, y) = cx(y x)e y, 0 x y <. 1. Encontre o valor da constante c. 2. Mostre que f X Y (x, y) = 6x(y x)y 3, 0 x y, f Y X (x, y) = (y x)e x y, 0 x y <. 3. Determine E(X Y ) e E(Y X). Exercício 38. Seja X n, n = 1, 2,... uma martingala relativamente a uma filtração F n. Mostre que X n é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). Exercício 39. Numa folha de papel quadriculado com quadrículas de l cm de lado, um jogador lança aleatoriamente uma moeda perfeita de diâmetro d cm onde d < l. O jogador ganha 1 euro se a moeda não intersectar as linhas da folha. Caso contrário, perde β euros. Após n jogadas independentes entre si, denote-se por S n o ganho acumulado. Determine β tal que o jogo é justo. Exercício 40. Seja S n o passeio aleatório simétrico, S n = X X n onde X 1, X 2,... é uma sucessão de variáveis aleatórias IID tal que P (X n = 1) = P (X n = 1) = 1/2. Mostre que Z n = S 2 n n é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). Exercício 41. Seja S n = X X n o passeio aleatório simétrico definido no exercício anterior. Mostre que Z n = ( 1) n cos(πs n ) é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). 6

13 Exercício 42. Mostre que τ = n} F n sse τ n} F n. Exercício 43. Seja (X n ) n 1 uma sucessão de variáveis aleatórias adaptada a uma filtração F n e seja B R um Boreliano. Mostre que o tempo de primeira entrada de X n em B, τ(ω) = min n N: X n (ω) B}, é um tempo de paragem relativamente a F n. Exercício 44. Sejam X 1, X 2,... variáveis aleatórias IID tais que X n 1, 1} com probabilidade P (X i = 1) = p e P (X i = 1) = q onde p q. Considere o passeio aleatório, e o tempo de paragem onde a, b > 0. Mostre que: S n = X 1 + X X n, τ = min n 1 : S n a, b}}, 1. A sucessão Z n = (q/p) Sn, n = 1, 2,... é uma martingala relativamente à filtração σ(x 1,..., X n ). 2. P (S τ = b) = 1 (q/p) a (q/p) b (q/p) a Exercício 45. Seja (Ω, F, P ) um espaço de probabilidade. Uma variável aleatória ξ : Ω 0, 1, 2,...} tem uma distribuição de Poisson com valor esperado µ > 0 se Seja X 0 = 0 e P (ξ = k) = µk k! e µ, k = 0, 1, 2,... X n = X n 1 + ξ n 1, n = 1, 2,... onde (ξ n ) n 1 é uma sucessão de variáveis aleatórias IID que seguem uma distribuição de Poisson com valor esperado µ > Determine os valores de µ para os quais a sucessão (X n ) n 1 é uma martingala, submartingala ou supermartingala relativamente à filtração canónica F n = σ(ξ 1,..., ξ n ). 7

14 2. Suponha que µ > 1. Mostre que: (a) Existe um único ρ ]0, 1[ tal que E(ρ ξ ) = ρ. (b) A sucessão ρ Xn é uma martingala relativamente a F n e converge P -q.c. Exercício 46. Seja S n = X 1 + X X n o passeio aleatório onde X n 1, 1} é uma sucessão de variáveis aleatórias IID tais que P (X n = 1) = P (X n = 1) = 1, n = 1, 2,.... Supondo que k N: 2 1. Mostre que Z n = ( 1) n cos(π(s n + k)) é uma martingala relativamente à filtração σ(x 1,..., X n ). 2. Calcule E(( 1) τ ) onde τ é o tempo de paragem τ = min n 1 : S n = k}. Exercício 47. Sejam X 1, X 2,... variáveis aleatórias IID tais que X n 1, 1} para todo n = 1, 2,.... Considere o tempo de paragem τ = minn 1: X X n = 1}. Determine E(τ). Exercício 48 (*). Sejam (Ω, F, P ) um espaço de probabilidade, (F n ) n 1 uma filtração e τ um tempo de paragem relativamente a F n tal que para algum k N e algum ɛ > 0, Mostre que τ < P -q.c. P (τ n + k F n ) > ɛ, n = 1, 2, 3,... Exercício 49. Mostre que um processo estocástico X t : t T } tal que X 0 = 0 tem incrementos estacionários sse para todo t s tal que t s T as variáveis aleatórias X t X s e X t s são identicamente distribuídas. Exercício 50. Seja X = X t : t T } um processo estocástico com incrementos independentes e estacionários tal que X 0 = 0 e E(X 2 t ) < para todo t T. Mostre que existe uma constante positiva σ tal que Var(X t X s ) = σ 2 t s. Exercício 51. Seja W = W t : t 0} um processo de Wiener. Mostre que 1. E(e Wt ) = e t/2 para todo t 0. 8

15 2. se c > 0 então } Wc 2 t : t 0 c é também um processo de Wiener. Exercício 52. Mostre que um processo de Wiener é estacionário em média, mas não tem covariâncias estacionárias. Exercício 53 (*). Seja W = W t : t 0} um processo de Wiener. Mostre que dados 0 s < t e A Boreliano de R então, P (W t A W s = w) = p t s (x w)dx, onde p t (x) = 1 2πt e x2 2t. A 9

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2013/2014 Exercício 1. Seja (, F) um espaço mensurável. Mostre que 1. F. 2. se A i F, i = 1, 2,... então n i=1 A i F. 3. se A i F,

Leia mais

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira 15 de Janeiro 013 Época Normal - horas Resolva os seguintes exercícios, justificando cuidadosamente as suas respostas.

Leia mais

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso.

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso. Proposição 2.39 (Propriedades de e.). Sejam µ, λ, λ 1, λ 2 medidas no espaço mensurável (X, F). Então 1. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 2. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 3. se λ 1 µ e λ

Leia mais

Notas de Teoria da Probabilidade e Processos Estocásticos

Notas de Teoria da Probabilidade e Processos Estocásticos Notas de Teoria da Probabilidade e Processos Estocásticos José Pedro Gaivão Resumo Estas notas destinam-se à disciplina de Teoria da Probabilidade e Processos Estocásticos do Mestrado de Matemática Financeira

Leia mais

Notas de Teoria da Probabilidade e Processos Estocásticos

Notas de Teoria da Probabilidade e Processos Estocásticos Notas de Teoria da Probabilidade e Processos Estocásticos José Pedro Gaivão Resumo Estas notas destinam-se à disciplina de Teoria da Probabilidade e Processos Estocásticos do Mestrado de Matemática Financeira

Leia mais

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira 5 de Janeiro 03 Época Normal - horas Resolva os seguintes exercícios, justificando cuidadosamente as suas respostas..

Leia mais

1.3 Conjuntos de medida nula

1.3 Conjuntos de medida nula 1.3 Conjuntos de medida nula Seja (X, F, µ) um espaço de medida. Um subconjunto A X é um conjunto de medida nula se existir B F tal que A B e µ(b) = 0. Do ponto de vista da teoria da medida, os conjuntos

Leia mais

Logo, este cálculo para funções simples motiva a seguinte definição de

Logo, este cálculo para funções simples motiva a seguinte definição de nalogamente, se conclui que a função x 2 µ 1 ( x2 ) é simples. Portanto, µ 2 ( x1 )dµ 1 = µ 1 ( 1 ) µ 2 ( 2 ) = µ 1 ( x2 )dµ 2. X 1 X 2 Logo, este cálculo para funções simples motiva a seguinte definição

Leia mais

Teoria Ergódica (9 a aula)

Teoria Ergódica (9 a aula) Outubro 2012 Espaços de Sequências Seja (X, d 0 ) um espaço métrico compacto. B Z (X ) = X Z = { x = (x j ) j Z : x j X, j Z } B N (X ) = X N = { x = (x j ) j N : x j X, j N } B(X ) designa indiferentemente

Leia mais

Exercício 18. Demonstre a proposição anterior. (Dica: use as definições de continuidade e mensurabilidade)

Exercício 18. Demonstre a proposição anterior. (Dica: use as definições de continuidade e mensurabilidade) Proposição 2.7. Sejam Y e Z espaços métricos e X um espaço mensurável. Se f : X Y é uma função mensurável e g : Y Z é uma função contínua então g f : X Z é uma função mensurável. Exercício 18. Demonstre

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Roberto Imbuzeiro Oliveira 9 de Março de 2009 Resumo Esta lista cobre o básico do básico sobre espaços e distribuições de probabilidade. Pouco

Leia mais

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B. Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra

Leia mais

Processos Estocásticos

Processos Estocásticos Licenciatura em Matemática Aplicada e Computação PROCESSOS ESTOCÁSTICOS 2002/03 Colectânea de Exercícios Capítulo 1 Introdução aos Processos Estocásticos Exercício 1.1 O número de sinais emitidos por uma

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

(a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p), então (X + Y ) Binomial(n + m, p).

(a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p), então (X + Y ) Binomial(n + m, p). Capítulo 0 Revisões Exercício 0.1 Sejam X e Y variáveis aleatórias independentes. Mostre que: (a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p),

Leia mais

PROBABILIDADE PGE950

PROBABILIDADE PGE950 PROBABILIDADE PGE950 José J. C. Hernández DE - UFPE October 12, 2017 José J. C. Hernández (DE - UFPE) Estatística I October 12, 2017 1 / 88 1 Introdução à Probabilidade 2 Variavel Aleatória 3 Vetores Aleatórios

Leia mais

Distribuições conjuntas de probabilidades e complementos

Distribuições conjuntas de probabilidades e complementos Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 5 Distribuições conjuntas de probabilidades e complementos 02 x = 0 065 x = 1 Exercício 51 (a) P(X = x) = 015 x =

Leia mais

Processos de Lévy: Preliminares

Processos de Lévy: Preliminares Processos de Lévy: Preliminares Pedro A. Morettin Instituto de Matemática e Estatística Universidade de São Paulo pam@ime.usp.br http://www.ime.usp.br/ pam Sumário 1. Introdução 2. Alguns processos em

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Teoria da Probabilidade e Modelos Discretos de Mercados Financeiros Edição de 7 de Fevereiro de 2017

Teoria da Probabilidade e Modelos Discretos de Mercados Financeiros Edição de 7 de Fevereiro de 2017 QUESTÕES PARA AS AVALIAÇÕES Teoria da Probabilidade e Modelos Discretos de Mercados Financeiros 2016-2017 Edição de 7 de Fevereiro de 2017 Nota Prévia Todos os exercícios enunciados nas aulas são considerados

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Transporte de medidas Teoria da Medida e Integração (MAT505) Transporte de medidas e medidas invariantes. Teorema de Recorrência de Poincaré V. Araújo Instituto de Matemática, Universidade Federal da Bahia

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Riemann Derivadas Variação Limitada Cont. Abs. Teoria da Medida e Integração (MAT505) Teoria de Derivação de Lebesgue. Teorema Fundamental do Cálculo. V. Araújo Instituto de Matemática, Universidade Federal

Leia mais

O movimento Browniano

O movimento Browniano O movimento Browniano R. Vilela Mendes http://label2.ist.utl.pt/vilela/ March 2010 () March 2010 1 / 35 Sumário O movimento Browniano Propriedade Markoviana Probabilidade de transição. Medida de Wiener

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

MEDIDAS COM SINAL.. Uma medida com sinal σ-aditiva (ou, simplesmente, uma medida com sinal) µ(a n ) def = lim

MEDIDAS COM SINAL.. Uma medida com sinal σ-aditiva (ou, simplesmente, uma medida com sinal) µ(a n ) def = lim MEDIDAS COM SINAL DANIEL V. TAUSK 1. Definição. Seja C uma coleção de conjuntos tal que C. Uma medida com sinal finitamente aditiva em C é uma função µ : C R tal que: µ( ) = 0; se (A n ) t é uma seqüência

Leia mais

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

Probabilidade II Lista 1 - Vetores Aleatórios

Probabilidade II Lista 1 - Vetores Aleatórios Probabilidade II Lista - Vetores Aleatórios Exercício. Duas moedas equilibradas são lançadas de forma independente. Dena as v.a's X : número de caras nos dois lançamentos e Y : função indicadora de faces

Leia mais

Laboratório Nacional de Computação Científica LNCC, Brasil URL: alm URL: alm/cursos/medida07.

Laboratório Nacional de Computação Científica LNCC, Brasil URL:  alm URL:  alm/cursos/medida07. Introdução à Medida e Integração Pós-graduação da EPGE FGV 1 Alexandre L. Madureira Laboratório Nacional de Computação Científica LNCC, Brasil URL: http://www.lncc.br/ alm URL: http://www.lncc.br/ alm/cursos/medida07.html

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

PROCESSOS ESTOCÁSTICOS E APLICAÇÕES

PROCESSOS ESTOCÁSTICOS E APLICAÇÕES PROCESSOS ESTOCÁSTICOS E APLICAÇÕES JOSÉ PEDRO GAIVÃO Conteúdo 1. Noções Gerais 2 1.1. Relembrar de teoria de probabilidades 2 1.2. Processos estocásticos 3 2. Esperança Condicional 5 2.1. Esperança condicional

Leia mais

t X s db s, I t (X) :=

t X s db s, I t (X) := Chapter 3 Integrais estocásticos Neste capítulo vamos definir integrais estocásticos relativamente ao movimento Browniano e estudar algumas das suas propriedades. Estes integrais também são chamados integrais

Leia mais

Métodos Matemáticos na Ciência de Dados: Introdução Relâmpago. II

Métodos Matemáticos na Ciência de Dados: Introdução Relâmpago. II Métodos Matemáticos na Ciência de Dados: Introdução Relâmpago. II Vladimir Pestov 1 University of Ottawa / Université d Ottawa Ottawa, Ontario, Canadá 2 Universidade Federal de Santa Catarina Florianópolis,

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias. TE802 Somas de Variáveis Aleatórias

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias. TE802 Somas de Variáveis Aleatórias TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 27 de setembro de 2017 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] +

Leia mais

2.4 Esperança e distribuição condicionais

2.4 Esperança e distribuição condicionais 2.4. ESPERANÇA E DISTRIBUIÇÃO CONDICIONAIS 35 2.4 Esperança e distribuição condicionais Estendemos aqui o conceito de probabilidade condicional em (2.8) para obter a distribuição condicional e, posteriormente,

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias BIOESTATÍSTICA Parte 3 Variáveis Aleatórias Aulas Teóricas de 29/03/2011 a 26/04/2011 3.1. Conceito de Variável Aleatória. Função de Distribuição Variáveis aleatórias Uma variável aleatória pode ser entendida

Leia mais

4.1. ESPERANÇA x =, x=1

4.1. ESPERANÇA x =, x=1 4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Teoria da Medida e Integração (MAT505) Teoria de Derivação de Lebesgue. Teorema Fundamental do Cálculo. V. Araújo Mestrado em Matemática, UFBA, 204 Conteúdo Riemann. vs Lebesgue..............................2

Leia mais

Continuidade de processos gaussianos

Continuidade de processos gaussianos Continuidade de processos gaussianos Roberto Imbuzeiro Oliveira April, 008 Abstract 1 Intrudução Suponha que T é um certo conjunto de índices e c : T T R é uma função dada. Pergunta 1. Existe uma coleção

Leia mais

Mais sobre Modelos Continuos

Mais sobre Modelos Continuos Mais sobre Modelos Continuos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Transformação Linear da Uniforme Seja X uma variável aleatória

Leia mais

Capítulo 2. Variáveis Aleatórias e Distribuições

Capítulo 2. Variáveis Aleatórias e Distribuições Capítulo 2 Variáveis Aleatórias e Distribuições Experimento Aleatório Não existe uma definição satisfatória de Experimento Aleatório. Os exemplos dados são de fenômenos para os quais modelos probabilísticos

Leia mais

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Probabilidade de Ruína e Processos de Lévy α-estáveis

Probabilidade de Ruína e Processos de Lévy α-estáveis Apresentação Probabilidade de Ruína e Processos de Lévy α-estáveis Universidade de São Paulo IME - USP 08 de abril, 2010 Apresentação Distribuições Estáveis e Processos de Lévy α-estáveis Convergência

Leia mais

ME-310 Probabilidade II Lista 0

ME-310 Probabilidade II Lista 0 ME-310 Probabilidade II Lista 0 1. Sejam A e B eventos disjuntos tais que P(A) = 0.1 e P(B) = 0.. Qual é a probabilidade que (a) A ou B ocorra; (b) A ocorra, mas B não ocorra; (c) repita (a) e (b) se os

Leia mais

As leis dos grandes números

As leis dos grandes números As leis dos grandes números PE0708 25 de Fevereiro de 2008 Introdução este capítulo estudamos algumas formulações da lei dos grandes números. Uma lei dos grandes números dá o comportamento limite, ou assimptótico,

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n 1. Exercícios do livro Análise Real, volume 2, Elon Lages Lima, páginas

Leia mais

MAT 5798 Medida e Integração IME 2017

MAT 5798 Medida e Integração IME 2017 MAT 5798 Medida e Integração IME 2017 http://www.ime.usp.br/ glaucio/mat5798 Lista 11 - Integral de Bochner Fixemos um espaço de medida completo (X, M, µ) até o final desta lista. As duas primeiras questões

Leia mais

MAB-515 Avaliação e Desempenho (DCC/UFRJ)

MAB-515 Avaliação e Desempenho (DCC/UFRJ) MAB-515 Avaliação e Desempenho (DCC/UFRJ) Aula 6: Desigualdades, Limites e 1 Normalização Desigualdade de Chebyshev Lei dos Grandes Números 2 3 Normalização Sumário Normalização Desigualdade de Chebyshev

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB

Motivação. VA n-dimensional. Distribuições Multivariadas VADB Motivação Em muitas situações precisamos lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma Prof. Lorí Viali, Dr. viali@mat.ufgrs.br http://www.mat.ufrgsbr/~viali/

Leia mais

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.

EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G. EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes

Leia mais

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de O TEOREMA DE REPRESENTAÇÃO DE RIESZ PARA MEDIDAS DANIEL V. TAUSK Ao longo do texto, denotará sempre um espaço topológico fixado. Além do mais, as seguintes notações serão utilizadas: supp f denota o suporte

Leia mais

Processos estocásticos

Processos estocásticos 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Introdução à Análise Funcional

Introdução à Análise Funcional Introdução à Análise Funcional José Carlos de Sousa Oliveira Santos Departamento de Matemática Pura Faculdade de Ciências Universidade do Porto Porto Julho de 2010 Índice Índice Introdução i iii 1 Teoria

Leia mais

Aula 4. Aula de hoje. Aula passada

Aula 4. Aula de hoje. Aula passada Aula 4 Aula passada Função de distribuição Bernoulli Sequência de v.a. Binomial, Geométrica, Zeta Valor esperado Variância Distribuição conjunta Independência de v.a. Aula de hoje Valor esperado condicional

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é

Leia mais

Teoria da Probabilidade (curso de doutorado)

Teoria da Probabilidade (curso de doutorado) Teoria da Probabilidade (curso de doutorado) Glauco Valle Contents 1 Introdução 2 2 Teoria da Medida 2 2.1 Teoria dos conjuntos e medidas.............................. 2 2.2 Funções mensuráveis....................................

Leia mais

Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril

Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu. Engenharia e Gestão Industrial

Departamento de Matemática Escola Superior de Tecnologia de Viseu. Engenharia e Gestão Industrial Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Engenharia e Gestão Industrial 1 Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC,

Leia mais

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada

Leia mais

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Aula 1 Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Os modelos utilizados para descrever séries temporais

Leia mais

Aula 1 - Revisão de Probabilidade e Estatística

Aula 1 - Revisão de Probabilidade e Estatística Aula 1 - Revisão de Probabilidade e Estatística Matheus Rosso e Camila Steffens 1 de Março de 2018 Conteúdos 1. Introdução à probabilidade 2. Probabilidade condicional e independência 3. Variáveis aleatórias

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)

Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F) ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 09.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

O Teorema de Radon-Nikodým

O Teorema de Radon-Nikodým Universidade stadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema de Radon-Nikodým

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Análise Matemática III - Turma especial

Análise Matemática III - Turma especial Análise Matemática III - Turma especial Fichas 1 a 5 - Solução parcial 1.3 Seja D E k um conjunto fechado. Uma transformação T : D D diz-se uma contracção se existe c < 1 tal que para todos os x, y D se

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos Motivação Em muitas situações precisamos Prof. Lorí Viali, Dr. viali@pucrs.br lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma determinada peça.

Leia mais

MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos

MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos Prof. Edson de Faria 30 de Março de 2014 Observação: O objetivo desta lista é motivar uma revisão dos conceitos e fatos básicos sobre

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

As leis dos grandes números

As leis dos grandes números 6. Introdução este capítulo estudamos algumas formulações da lei dos grandes números. Uma lei dos grandes números dá o comportamento limite, ou assimptótico, de uma média de observações aleatórias., de

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Revisão de Probabilidade

Revisão de Probabilidade 05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

3 a Lista de PE. Universidade de Brasília Departamento de Estatística

3 a Lista de PE. Universidade de Brasília Departamento de Estatística Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador

Leia mais

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012 PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.

Leia mais

Os Teoremas Fundamentais do Cálculo

Os Teoremas Fundamentais do Cálculo Os Teoremas Fundamentais do Cálculo Manuel Ricou IST, 1 de Fevereiro de 2010 O que são os TFC s? Para já, um pretexto para discutirmos algumas das questões mais básicas e mais antigas da Matemática, Alguns

Leia mais

{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;

{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3; Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função

Leia mais

Par de Variáveis Aleatórias

Par de Variáveis Aleatórias Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufgrs.br http://www.mat.ufrgsbr/~viali/ Motivação Em muitas situações precisamos lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017 TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda

Leia mais

o mesmo jeito, podemos Observação 1.1. (1) As denições acima incluem a possibilidade de I ser

o mesmo jeito, podemos Observação 1.1. (1) As denições acima incluem a possibilidade de I ser 1. Martingais Considere um espaço de probabilidade (Ω, F, P ). Um processo estocástico X é uma família de variáveis aleatórias = (X t ) t I, I R, denidas em (Ω, F). X é L p -limitado se sup t I E[ X t

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais