5.7 Amostragem e alguns teoremas sobre limites

Tamanho: px
Começar a partir da página:

Download "5.7 Amostragem e alguns teoremas sobre limites"

Transcrição

1 M. Eisencraft 5.7 Amostragem e alguns teoremas sobre limites Amostragem e alguns teoremas sobre limites Para quantificar os problemas associados às medidas práticas de uma VA, considere o problema de medir a tensão média dc) de uma tensão ruidosa aleatória. Suponha que tome-se uma sequência de amostras em um período de tempo em que se assume que as propriedades estatísticas da fonte permanecem inalteradas. Cada amostra pode ser considerada como o valor de uma de variáveis aleatórias estatísticamente independentes X n, todas tendo mesma distribuição de probabilidades. Assim, elas tem mesma média X e variância σx 2 Se queremos estimar ou medir) a média da tensão ruidosa, a intuição leva a obter a média dos valores medidos: X = estimativadamédiadeamostras = X n. 5.55) i= Esta equação é uma função do conjunto específico deamostras {x n }; ela fornece um número que chamamos de uma estimativa ou medida da média da VA. Uma pergunta importante é: quão bom é esta estimativa? Para responder, podemos calcular o valor esperado e a variância do estimador. E X = E X n = n= EX n = X,. 5.56) i= Qualquer estimador função de mensuração) para o qual a média iguala a quantidade sendo estimada é chamado de não-enviesiado. Para a variância σx 2 = E X X ) 2 2 = E X 2 X X + X 2 = E X 2 X 2 = X 2 +E = X n= m= n= X n X m m= 5.57) 5.58) EX n X m 5.59)

2 M. Eisencraft 5.8 Variáveis aleatórias complexas 72 Mas, pela independência, EX n X m = EX 2 para m = n e EX n X m = X 2 para m n. Assim, σ 2 X = X E X 2 ) + 2 ) X2 5.60) = E X 2 ) X 2 = σ2 X 5.6) Daí vemos que a variância de nosso estimador da média vai para zero quando. Este fato implica que para grande nosso estimador fornecer-a uma estimativa próxima da quantidade sendo estimada com alta probabilidade. Da mesma forma que a Eq. 5.55) é um bom estimador para a média, a expressão a seguir é um bom estimador para a variância de X,5 σ 2 X = n= X n X ) ) Exercício 5.0. Uma tensão aleatória X se comporta aproximadamente como uma VA exponencial com um valor médio 4 e uma variância de 6. Onze amostras são tomadas tendo valores 0.V, 0.4, 0.9,.4, 2.0, 2.8, 3.7, 4.8, 6.4, 9.2 e 2.0V. Estime a média a variância desta VA a partir destas amostras e discuta o resultado. 5.8 Variáveis aleatórias complexas Uma variável aleatória complexa Z pode ser definida em termos de variáveis aleatórias reais X e Y por Z = X +jy 5.63) em que j =. Considerando-se valores esperados envolvendo Z, a densidade conjunta de X e Y deve ser usada. Por exemplo, se g ) for uma função real ou complexa) de Z, o valor

3 M. Eisencraft 5.8 Variáveis aleatórias complexas 73 esperado de gz) é obtido por EgZ) = gz)f X,Y x,y)dxdy. 5.64) Exercícios de Revisão para P Exercício Existem 00 pacientes em um hospital com uma certa doença. Destes, 0 são selecionados para passar por um tratamento por drogas que aumenta a taxa de cura porcentual de 50% para 75%. Qual a probabilidade do paciente ter recebido o tratamento por drogas sabendo-se que ele foi curado? Exercício Seja X uma VA contínua com FDP kx, 0 < x < f X x) = 0, caso contrário 5.65) em que k é uma constante. a Determine o valor de k que esboce f X x) b Encontre e esboce a correspondente função distribuição de probabilidades F X x) c Encontre P 4 < X 2) Exercício 5.3. Seja X uma variável aleatória contínua com FDP uniforme entre a e b. Mostre que EX = a+b 2 σ 2 X = b a) ) 5.67)

4 M. Eisencraft 5.8 Variáveis aleatórias complexas 74 Exercício A FDP conjunta de uma VA bivariada X,Y) é dada por kx+y), 0 < x < 2,0 < y < 2 f XY x,y) = 0, caso contrário 5.68) a Encontre o valor de k b Encontre as FDPs marginais de X e Y c X e Y são independetes? Exercício 5.5. Suponha que a queda de neve anual quantidade de neve acumulada em metros) em dois hotéis de esqui alpinos vizinhos seja representada por variáveis aleatórias gaussianas conjuntas X e Y para as quais ρ = 0,82, σ X =,5m, σ Y =,2m e R XY = 8,476m 2. Se a queda de neve média no primeiro hotel é 0m, qual a taxa de queda média no outro hotel?

5 Referências Bibliográficas P. Z. P. Jr., Probability, Random Variables And Random Signal Principles, 4th ed. ew York: Mcgraw-Hill, B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed. ew York, Y, USA: Oxford University Press, Inc., A. V. Oppenheim, A. S. Willsky, and S. H. awab, Sinais e sistemas, 2nd ed. São Paulo: Pearson Prentice Hall, R. E. Ziemer and W. H. Tranter, Principles of Communications, 6th ed. Wiley Publishing, S. M. Kay, Fundamentals of statistical signal processing: estimation theory. Upper Saddle River, J, USA: Prentice-Hall, Inc., H. P. Hsu, Probability, Random Variables, & Random Processes, ser. Schaum s Outline Series. McGraw-Hill,

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

Operações sobre uma variável aleatória

Operações sobre uma variável aleatória Capítulo 3 Operações sobre uma variável aleatória - Esperança matemática Neste capítulo, introduz-se algumas operações importantes que podem ser realizadas sobre uma variável aleatória. 3.1 Esperança Valor

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Plano de Ensino

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Plano de Ensino DISCIPLINA: Sinais e Sistemas CÓDIGO: MEE003 Validade: A partir do 1º semestre de 2009. Carga Horária: 5 horas-aula Créditos: 03 Área de Concentração / Módulo: Modelagem e Controle de Sistemas / Disciplinas

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

Universidade Presbiteriana Mackenzie. Práticas de Engenharia Elétrica II

Universidade Presbiteriana Mackenzie. Práticas de Engenharia Elétrica II Universidade Presbiteriana Mackenzie Curso de Engenharia Elétrica Práticas de Engenharia Elétrica II Notas de Aula Pro Marcio Eisencrat Primeiro semestre de 006 Práticas de Engenharia Elétrica Aula Proessor

Leia mais

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que:

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que: Vamos admitir que o tempo de atendimento (tempo de serviço) de clientes diferentes são variáveis aleatórias independentes e que o atendimento de cada consumidor é dado por uma variável S tendo função densidade

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Transmissão e comunicação de dados. Renato Machado

Transmissão e comunicação de dados. Renato Machado Renato Machado UFSM - Universidade Federal de Santa Maria DELC - Departamento de Eletrônica e Computação renatomachado@ieee.org renatomachado@ufsm.br 03 de Maio de 2012 Sumário 1 2 Modulação offset QPSK

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Amostragem por Importância em Cálculos da Probabilidade de Acerto em Alvos com Monte Carlo

Amostragem por Importância em Cálculos da Probabilidade de Acerto em Alvos com Monte Carlo Amostragem por Importância em Cálculos da Probabilidade de Acerto em Alvos com Monte Carlo Wilson José Vieira Instituto de Estudos Avançados, Rodovia dos Tamoios, Km 5,5, CEP 12228-001 Resumo O objetivo

Leia mais

Plano Temático. 1. Introdução

Plano Temático. 1. Introdução Curso: Licenciatura en Informática Disciplina: Comunicação de Dados Código: Tipo: Nuclear Créditos: 6 = 130 horas (64 de contacto + 66 de estudo) Ano/ Semestre: 2º Ano / 3º Semestre Plano Temático 1. Introdução

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo MOQ-3 ESTATÍSTICA Proessor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Probabilidade e Estatística: The Science o collecting and analyzing data or the purpose o drawing conclusions and making

Leia mais

Processamento de Sinais Áudio-Visuais

Processamento de Sinais Áudio-Visuais Processamento de Sinais Áudio-Visuais Parte I Noções de Sinais Digitais Prof. Celso Kurashima Introdução à Engenharia da Informação Fevereiro/2011 1 motivação 2 1 processamento de imagem 3 Agenda 1. Introdução

Leia mais

Terminologias Sinais Largura de Banda de Dados Digitais. Sinais e Espectro

Terminologias Sinais Largura de Banda de Dados Digitais. Sinais e Espectro Sinais e Espectro Edmar José do Nascimento (Tópicos Avançados em Engenharia Elétrica I) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia

Leia mais

Curso: Engenharia de Produção. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção

Curso: Engenharia de Produção. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção λ número médio de clientes que entram no sistema por unidade de tempo; µ número médio de clientes atendidos (que saem do sistema) por unidade de tempo; Servidores (mecânicos) no sistema; número de máquinas

Leia mais

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar;

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Plano de Ensino

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Plano de Ensino DISCIPLINA: Teoria Eletromagnética. CÓDIGO: MEE007 Validade: Carga Horária: 45 horas-aula Créditos: 03 Área de Concentração / Módulo: Sistemas Elétricos / Formação Básica Ementa: Análise Vetorial. Equações

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador

Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador Chen Yung Jen 1 e Elisabeti Kira (Orientadora 1 Universidade de São Paulo (IME-USP, Brazil chen.jen@usp.br Universidade de São Paulo

Leia mais

Alterações em Bibliografias de disciplinas do Bacharelado em Matemática

Alterações em Bibliografias de disciplinas do Bacharelado em Matemática Alterações em Bibliografias de disciplinas do Bacharelado em Matemática Complementação da Bibliografia de Cálculo Numérico : RUGGIERO, M.A.G. e LOPES, V.L.R. Cálculo Numérico, Aspectos Teóricos e Computacionais.

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Energia kj/mol kcal/mol

Energia kj/mol kcal/mol Cap. 1 A estrutura dos materiais 27 1.4 Estrutura dos Polímeros Já foi visto anteriormente, conforme ilustrado pela figura 1.15, que não existe uma ligação pura encontrada nos sólidos reais, inclusive

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

Programa da disciplina, i metodologia de ensino, avaliações e bibliografia básica. Objetivos da Disciplina

Programa da disciplina, i metodologia de ensino, avaliações e bibliografia básica. Objetivos da Disciplina Circuitos Digitais Cap. 1 Prof. José Maria P. de Menezes Jr. Circuitos Digitais Tópicos Digitais I- Engenharia Elétrica -UFPI Programa da disciplina, i metodologia de ensino, avaliações e bibliografia

Leia mais

Telefonia Celular. Renato Machado

Telefonia Celular. Renato Machado Renato Machado UFSM - Universidade Federal de Santa Maria DELC - Departamento de Eletrônica e Computação renatomachado@ieee.org renatomachado@ufsm.br 23 de Setembro de 2011 Sumário 1 2 3 Fórmula de Friis

Leia mais

Econometria Financeira

Econometria Financeira Econometria Financeira Área Científica: Economia/Gestão Horas de Contacto: TP: 45 Docentes Respnsáveis: Cristina Alexandra Oliveira Amado/ Benilde Maria Nascimento Oliveira Língua de Funcionamento: Português/

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

Plano de Ensino Sistemas de Comunicação III - UNIPAMPA 1 PLANO DE ENSINO

Plano de Ensino Sistemas de Comunicação III - UNIPAMPA 1 PLANO DE ENSINO Plano de Ensino Sistemas de Comunicação III - UNIPAMPA 1 MINISTÉRIO DA EDUCAÇÃO FUNDAÇÃO UNIVERSIDADE FEDERAL DO PAMPA PRÓ-REITORIA DE GRADUAÇÃO 1 Dados de Identificação PLANO DE ENSINO Campus: Alegrete

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Variáveis Aleatórias Exercício Num lançamento de 3 moedas equilibradas seja X avariável aleatória que representa o número de caras saídas Escreva a função de probabilidade de X Exercício Quantasvezessedevelançarumdadoaoarparaqueaprobabilidade

Leia mais

O PAPEL DOS CONVERSORES SIGMA-DELTA NO FRONT END DOS SISTEMAS DE COMUNICAÇÃO DIGITAL

O PAPEL DOS CONVERSORES SIGMA-DELTA NO FRONT END DOS SISTEMAS DE COMUNICAÇÃO DIGITAL O PAPEL DOS CONVERSORES SIGMA-DELTA NO FRONT END DOS SISTEMAS DE COMUNICAÇÃO DIGITAL EDUARDO AUGUSTO DIAS FONSECA LUIZ ALBERTO PORTILHO DE LIMA Engenharia de Telecomunicações Instituto de Educação Superior

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Vetor Quantização e Aglomeramento (Clustering)

Vetor Quantização e Aglomeramento (Clustering) (Clustering) Introdução Aglomeramento de K-partes Desafios do Aglomeramento Aglomeramento Hierárquico Aglomeramento divisivo (top-down) Aglomeramento inclusivo (bottom-up) Aplicações para o reconhecimento

Leia mais

EDITAL Nº 155 /2012-PROG/UEMA

EDITAL Nº 155 /2012-PROG/UEMA EDITAL Nº 155 /2012-PROG/UEMA A PROG da Universidade Estadual do Maranhão UEMA torna público, para conhecimento dos interessados, que, no período de 20/12/2012 a 08/02/2013, estarão abertas as inscrições

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0

Leia mais

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba Departamento de Física Universidade Federal da Paraíba 23 de Março de 2009 O que são os métodos de Monte-Carlo? Métodos numéricos que utilizam amostragem estatística (em contraposição a métodos determinísticos)

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS. Instituto de Matemática, Estatística e Computação Científica

UNIVERSIDADE ESTADUAL DE CAMPINAS. Instituto de Matemática, Estatística e Computação Científica UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Matemática, Estatística e Computação Científica Relatório Final - MS777 Modelagem matemático/probabilística dos módulos acústicos e de linguagem de sistemas

Leia mais

Notas de Aula - Álgebra de Boole Parte 1

Notas de Aula - Álgebra de Boole Parte 1 Universidade de Brasília Departamento de Engenharia Elétrica Sistemas Digitais 1 Prof. Dr. Alexandre Romariz Revisado em 27/4/06 Notas de Aula - Álgebra de Boole Parte 1 1 Introdução Fundamentos, Teoremas

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

Prof. MSc. Herivelto Tiago Marcondes dos Santos FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ PROF. JOÃO MOD

Prof. MSc. Herivelto Tiago Marcondes dos Santos FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ PROF. JOÃO MOD Prof. MSc. Herivelto Tiago Marcondes dos Santos FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ PROF. JOÃO MOD OBJETIVO Utilizar os métodos estatísticos para tomadas de decisões. Ementa: Fundamentos da estatística.

Leia mais

Sistema de Aquisição de Dados

Sistema de Aquisição de Dados Sistema de Aquisição de Dados Versão 2013 RESUMO Nesta experiência será desenvolvido o projeto de um sistema de aquisição e armazenamento de dados analógicos em formato digital. O sinal de um sensor de

Leia mais

Outras Máquinas de Turing

Outras Máquinas de Turing Capítulo 10 Outras Máquinas de Turing 10.1. Pequenas variações da TM padrão 10.2. MT s com dispositivos de armazenamento mais complexos 10.3. MT s não-determinísticas 10.4. A Máquina de Turing Universal

Leia mais

VALIDAÇÃO DE MODELOS DE REGRESSÃO POR BOOTSTRAP. João Riboldi 1

VALIDAÇÃO DE MODELOS DE REGRESSÃO POR BOOTSTRAP. João Riboldi 1 VALIDAÇÃO DE MODELOS DE REGRESSÃO POR BOOTSTRAP João Riboldi 1 1. Introdução Na construção de um modelo de regressão, de uma maneira geral segue-se três etapas: executa-se o ajuste do modelo, obtendo-se

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Tópico 8. Estatística Inferencial Teste de Hipóteses

Tópico 8. Estatística Inferencial Teste de Hipóteses Tópico 8 Estatística Inferencial Teste de Hipóteses Estatística Inferencial Princípio básico da estatística População (Plano de Amostragem Probabilística) Amostra Generalizar Descrever dados Parâmetro

Leia mais

Programa de Unidade Curricular

Programa de Unidade Curricular Programa de Unidade Curricular Faculdade Engenharia Licenciatura Engenharia Electrónica e Informática Unidade Curricular Controlo Por Computador Semestre: 6 Nº ECTS: 6,0 Regente Rui Gabriel Araújo de Azevedo

Leia mais

Apresentação da Disciplina

Apresentação da Disciplina Apresentação da Disciplina Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia Elétrica

Leia mais

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

Dedicado, Exclusivamente, A Todos Aqueles Que Querem A Aprovação!

Dedicado, Exclusivamente, A Todos Aqueles Que Querem A Aprovação! 1 Questões De Estatística Da Banca ESAF Que Você Precisa Aprender Como Resolver Antes De Fazer A Prova Do Concurso De Auditor-Fiscal Da Receita Federal 2014 Dedicado, Exclusivamente, A Todos Aqueles Que

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Momentos de uma variável aleatória

Momentos de uma variável aleatória Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

Aula 11 Esperança e variância de variáveis aleatórias discretas

Aula 11 Esperança e variância de variáveis aleatórias discretas Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição

Leia mais

LABORATÓRIO DE PROBABILIDADE E ESTATÍSTICA COMO SUPORTE À FORMAÇÃO DO PROFISSIONAL DE ENGENHARIA

LABORATÓRIO DE PROBABILIDADE E ESTATÍSTICA COMO SUPORTE À FORMAÇÃO DO PROFISSIONAL DE ENGENHARIA LABORATÓRIO DE PROBABILIDADE E ESTATÍSTICA COMO SUPORTE À FORMAÇÃO DO PROFISSIONAL DE ENGENHARIA Elionai Gomes de Almeida Sobrinho elionai@prof.iesam-pa.edu.br Clauberto Santos FerreiraVidal clauberto@prof.iesam-pa.edu.br

Leia mais

Definição 1.1. Uma função φ real definida sobre um intervalo aberto ]a, b[ de R, diz-se convexa se x, y ]a, b[, e0 γ 1,

Definição 1.1. Uma função φ real definida sobre um intervalo aberto ]a, b[ de R, diz-se convexa se x, y ]a, b[, e0 γ 1, ESPAÇOSDEFUNÇÕES INTEGRÁVEIS-L p 1. Funções convexas e desigualdades Definição 1.1. Uma função φ real definida sobre um intervalo aberto ]a, b[ de R, diz-se convexa se x, y ]a, b[, e0 γ 1, φ((1 γ)x + γy)

Leia mais

Controle de Motores de Indução

Controle de Motores de Indução Controle de Motores de UERJ PROMINP Prof. José Paulo V. S. da Cunha Referência: Bose, B. K., Modern Power Electronics and AC Drives, Upper Saddle River: Prentice Hall PTR, 2001. Seções 5.3, 7.1, 7.2 e

Leia mais

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160 1 MQI 2003 Estatística para Metrologia semestre 2008.01 LISTA DE EXERCÍCIOS # 1 PROBLEMA 1 Uma empresa de TV a cabo toma uma amostra de 1000 clientes, com o objetivo de verificar a relação entre a renda

Leia mais

MESTRADO EM CONTABILIDADE E FINANÇAS

MESTRADO EM CONTABILIDADE E FINANÇAS MESTRADO EM CONTABILIDADE E FINANÇAS PROGRAMA DA UNIDADE CURRICULAR Unidade Curricular: NOVAS TENDÊNCIAS EM CONTABLIDADE DE GESTÃO Semestre 1º ECT s 6 Área Científica: Docente: CONTABILIDADE HUMBERTO RIBEIRO

Leia mais

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 SUMÁRIO 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC... 2 1.2. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA... 3 1.3. VARIÁVEL ALEATÓRIA CONTÍNUA (CARACTERIZAÇÃO)... 4 1.3.1.

Leia mais

Estratégia Empresarial

Estratégia Empresarial Estratégia Empresarial Adquirir uma visão atualizada e integrada do sistema e contexto de direção estratégica da organização. Compreender o conteúdo da estratégia empresarial. Desenvolver competências

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Resumo Marcos Henrique de Carvalho 1 Gabriel Alves da Costa Lima 2 Antonio Elias Junior 3 Sergio Rodrigues

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelação, Identificação e Controlo Digital 2-Modelos em Controlo por Computador 1 2 - Modelos em Controlo por Computador Objectivo: Introduzir a classe de modelos digitais que são empregues nesta disciplina

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos de Sobrevivência

Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos de Sobrevivência TEMA Tend. Mat. Apl. Comput., 7, No. 1 (2006), 91-100. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos

Leia mais

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência. MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição

Leia mais

Engenheiro de Telecomunicações pelo Instituto de Estudos Superiores da Amazônia IESAM (Belém, Pará).

Engenheiro de Telecomunicações pelo Instituto de Estudos Superiores da Amazônia IESAM (Belém, Pará). Transmissão Digital em Banda Base: Modelagem do Canal Este tutorial apresenta a implementação da formatação de um pulso para transmissão digital em banda base que simule a resposta ao impulso de um canal

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática EMENTAS DAS DISCIPLINAS 1ª. ETAPA

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática EMENTAS DAS DISCIPLINAS 1ª. ETAPA UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática EMENTAS DAS DISCIPLINAS 1ª. ETAPA Curso: ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Disciplina: FUNDAMENTOS DE COMPUTAÇÃO E SISTEMAS

Leia mais

Instituto Politécnico de Viseu Escola Superior de Tecnologia

Instituto Politécnico de Viseu Escola Superior de Tecnologia Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005

Leia mais

O trabalho pioneiro nesta área remonta a Ulam, que o teria inventado em 1946 ao estudar as possibilidades de ganhar no jogo de cartas Solitário.

O trabalho pioneiro nesta área remonta a Ulam, que o teria inventado em 1946 ao estudar as possibilidades de ganhar no jogo de cartas Solitário. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Números aleatórios (NA) são elementos básicos necessários na simulação de quase todos os sistemas discretos. Eles podem ser utilizados

Leia mais

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR

GUIA DE FUNCIONAMENTO DA UNIDADE CURRICULAR Curso Engenharia Informática Ano letivo 2012/13 Unidade Curricular Probabilidade e Estatística ECTS 5,5 Regime Obrigatório ou opcional Ano 2º Semestre 1º sem Horas de trabalho globais Docente (s) Paulo

Leia mais

Programa e Bibliografia Edital 71/12

Programa e Bibliografia Edital 71/12 Programa e Bibliografia Edital 71/12 Campus Área Pontos Bibliografia Alegrete Elementos de máquinas 1. Fadiga e prevenção de falha 2.Eixos e árvores: dimensionamento quanto à tensão e quanto a deflexão

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

Mestrado em Gestão Econômica do Meio Ambiente

Mestrado em Gestão Econômica do Meio Ambiente Mestrado em Gestão Econômica do Meio Ambiente Programa de Pós-graduação em Economia Sub-Programa Mestrado Profissional CEEMA/ECO/UnB Disciplina: ECO 333051 Métodos Estatísticos e Econométricos Instrutores:

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática EMENTAS DAS DISCIPLINAS 3ª. ETAPA

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática EMENTAS DAS DISCIPLINAS 3ª. ETAPA EMENTAS DAS DISCIPLINAS 3ª. ETAPA 1 TECNOLÓGICA BANCO DE DADOS I ( 34 ) Teóricas Etapa: 3ª 68h/a ( 34 ) Práticas Apresentação dos conceitos fundamentais de bancos de dados. Exploração do modelo entidaderelacionamento

Leia mais

Resumo. Sinais e Sistemas Apresentação da disciplina. Páginas WWW. Pré-Requisitos

Resumo. Sinais e Sistemas Apresentação da disciplina. Páginas WWW. Pré-Requisitos Resumo Sinais e Sistemas Apresentação da disciplina lco@ist.utl.pt Página WWW Pré-Requisitos e Resumo do Programa Bibliografia Aulas e Avaliação Sinais e Sistemas Instituto Superior Técnico Sinais e Sistemas

Leia mais

Os limites da computação algorítmica

Os limites da computação algorítmica Capítulo 12 Os limites da computação algorítmica 12.1. Problemas que não podem ser resolvidos pelas MT. 12.2. Problemas indecidíveis para LRE 12.3. Problema da correspondência de Post 12.4. Problemas indecidíveis

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Uma introdução à Teoria das Filas

Uma introdução à Teoria das Filas Uma introdução à Teoria das Filas Introdução aos Processos Estocásticos 13/06/2012 Quem nunca pegou fila na vida? Figura: Experiência no bandejão Motivação As filas estão presentes em nosso cotidiano,

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Aplicação do Controle Estatístico Multivariado no Processo de Extrusão de Tubos de PVC.

Aplicação do Controle Estatístico Multivariado no Processo de Extrusão de Tubos de PVC. Aplicação do Controle Estatístico Multivariado no Processo de Extrusão de Tubos de PVC. Ítalo L. Fernandes, Lidiane J. Michelini, Danilo M. Santos & Emerson Wruck Universidade Estadual de Goiás UEG, CEP

Leia mais

Universidade Presbiteriana Mackenzie. Controle II

Universidade Presbiteriana Mackenzie. Controle II Universidade Presbiteriana Mackenzie Curso de Engenharia Elétrica Controle II Notas de Aula Prof. Marcio Eisencraft Segundo semestre de 004 Universidade Presbiteriana Mackenzie Curso de Engenharia Elétrica

Leia mais

GERENCIAMENTO DE RISCOS EM PROJETO

GERENCIAMENTO DE RISCOS EM PROJETO GERENCIAMENTO DE RISCOS EM PROJETO PLANO DE AULAS TURMA GRPA04 EMENTA DA DISCIPLINA - Riscos definição e histórico. - Planejamento do gerenciamento de riscos. - Fontes, Identificação e Categorização de

Leia mais

daniel.desouza@hotmail.com

daniel.desouza@hotmail.com VIII Congreso Regional de ENDE Campana Agosto 2011 Aplicação do estimador maximum likelihood a um teste de vida sequencial truncado utilizando-se uma distribuição eibull Invertida de três parâmetros como

Leia mais

Introdução à análise de dados discretos

Introdução à análise de dados discretos Exemplo 1: comparação de métodos de detecção de cárie Suponha que um pesquisador lhe apresente a seguinte tabela de contingência, resumindo os dados coletados por ele, oriundos de um determinado experimento:

Leia mais

Projeto e implementação de um sistema de controle em malha fechada para transmissão hidrostática usando o sistema Field Point da NI

Projeto e implementação de um sistema de controle em malha fechada para transmissão hidrostática usando o sistema Field Point da NI Projeto e implementação de um sistema de controle em malha fechada para transmissão hidrostática usando o sistema Field Point da NI "A implementação do sistema SCADA usando Field Point e interface LabVIEW,

Leia mais

IN0997 - Redes Neurais

IN0997 - Redes Neurais IN0997 - Redes Neurais Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática - CIn Departamento de Sistemas da Computação aluizioa@cin.ufpe.br Conteúdo Objetivos Ementa

Leia mais

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCQ - 10 16 a 21 Outubro de 2005 Curitiba - Paraná GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA

Leia mais

Estudo da Constelação 16-QAM

Estudo da Constelação 16-QAM Estudo da Constelação 6-QAM Luciano Leonel Mendes Aluno do INATEL Santa Rita do Sapucaí - MG Prof. Geraldo Gil Ramundo Gomes Professor do INATEL Santa Rita do Sapucaí - MG Resumo O tutorial aqui apresentado

Leia mais

Apresentação da Disciplina

Apresentação da Disciplina Apresentação da Disciplina Edmar José do Nascimento (Análise de Sinais e Sistemas - Semestre 2012.1) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

PROJEÇÃO DE CUSTOS E O MÉTODO DE SIMULAÇÃO DE MONTE CARLO: O CASO DA FUNDAÇÃO SALUTE

PROJEÇÃO DE CUSTOS E O MÉTODO DE SIMULAÇÃO DE MONTE CARLO: O CASO DA FUNDAÇÃO SALUTE PROJEÇÃO DE CUSTOS E O MÉTODO DE SIMULAÇÃO DE MONTE CARLO: O CASO DA FUNDAÇÃO SALUTE Luiz João Corrar Resumo: Este artigo tem por objetivo mostrar como o Método de Simulação de Monte Carlo pode ser útil

Leia mais