Curso: Engenharia de Produção. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Curso: Engenharia de Produção. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção"

Transcrição

1 λ número médio de clientes que entram no sistema por unidade de tempo; µ número médio de clientes atendidos (que saem do sistema) por unidade de tempo; Servidores (mecânicos) no sistema; número de máquinas ou aparelhos no sistema; L número médio de clientes no sistema; L q número médio de clientes na fila; L s número médio de clientes sendo atendidos; W tempo médio que o cliente fica no sistema; W q tempo médio que o cliente fica na fila; W s tempo médio que um cliente leva para ser atendido. Para um sistema de filas está em estado estacionário, tem-se: L λw L q λw q L s λw s L é expresso em número de clientes, λ é expresso em termos de clientes por hora e W é expresso em horas. Assim λw tem a mesma unidade (clientes) de L. As três equações acima são válidas para qualquer sistema de filas. Com exceção do Modelo M/M//GD/c/ todos os modelos que foram vistos apresentaram taxas que são independentes do estado do sistema. No entanto existem situações em que essa hipótese pode não se válida.

2 Se os clientes não querem enfrentar longas filas a taxa de chegada pode ser uma função decrescente do número de pessoas presentes na fila. Se as chegadas ao sistema são provenientes de uma população pequena, então a taxa pode depender do estado do sistema. Por exemplo, se um banco possui somente depositantes então no instante em que todos estiverem no banco a taxa de chegadas será zero. Modelos em que as chegadas são retiradas de populações pequenas são denominados de modelos de fonte finita. No modelo da oficina de manutenção o sistema consiste de máquinas e pessoas encarregadas do serviço. A qualquer instante de tempo uma máquina está em boas ou más condições. O tempo em que uma máquina está em boas condições é exponencial com taxa λ. Sempre que uma máquina quebrar ela será enviada para o centro de reparos com pessoas em serviço. No centro de serviços é como se as máquinas estivessem chegando a um sistema M/M//GD//. Assim se máquinas estiverem quebradas a máquina que quebrar será imediatamente enviada para conserto. Se > então máquinas estarão na fila para serem consertadas. O tempo necessário para consertar uma máquina é exponencial com taxa µ (ou tempo médio de conserto de /µ). Sempre que uma máquina for consertada ela volta ao serviço e pode quebrar novamente. Utilizando a notação de endall o modelo pode ser expresso como M/M//GD//. O primeiro indica que a qualquer tempo não mais do consumidores (ou máquinas) estão presentes e o segundo que as chegadas são de uma fonte finita de tamanho. 2

3 Para determinar o estado do sistema em deve-se observar que existem k máquinas em boas condições. Uma vez que as máquinas quebram a uma taxa λ, a taxa total de quebra quando o estado do sistema é é: λ λ + λ + λ λ ( )λ Para determinar a taxa de saídas do modelo lembrar que no estado, min(, r) atendentes estarão ocupados. Como cada um trabalha a uma taxa de µ, a taxa de saída é dada por: µ µ se (,, 2,..., ) µ µ se ( +, + 2,..., ) Define-se ρ λ/µ e uma aplicação do Teorema um fornece as seguintes probabilidades para o estado estacionário: Nesse caso, tem-se: ρ! + + ρ p p p p + +! p p ρ!p ρ p! se,, 2,..., se +, + 2,..., p Como: Vem: ρ! + ρ p +! Com essas probabilidades é possível então determinar L número médio de máquinas no sistema, L q número médio de máquinas esperando para serem consertadas, W tempo médio que uma máquina fica quebrada e W q tempo médio que uma máquina espera para ser consertada. Aqui não existem expressões simples para esses valores: L p p ρ + ( )p! ρ! +

4 Como a taxa de chegadas depende do sistema o número de chegadas por unidade de tempo é dado por λ, onde: λ p λ λ( - )p λ( L L Assim: W λ λ(k e Wq λ λ( A polícia de Pokofurto tem carros patrulha. Cada carro quebra em média a cada dias. A oficina tem dois mecânicos com cada um levando uma média de dias para consertar um carro. Os tempos envolvidos podem ser considerados exponenciais.. Determine o número médio de carros em serviço. 2. Qual o tempo médio que um carro fica for a de serviço?. Encontre a fração de tempo que um mecânico fica ocioso? Esse é um modelo de reparo com, 2, λ / carros por dia e µ / carros por dia. Então: ρ (/)/(/) / p p,p 2 p 2 p,p 2!p p, p! 2!p p, p! 2 Então: p (+, +, +, +, +,),666 Assim p,686.!p p, p! 2

5 Portanto: p,9, p 2,69, p,9, p,9 e p,.. O número esperado de carros em boas condições é L que é dado por: p [.,686 +.,9 + 2., ,9 +.,9 +.,],96,96 carros em bos condições. λ Procuramos W L/ λ onde: λ ( )p (p + p + p2 + 2 p + p + p ),2 carros por dia. Ou λ( L),8/,2 carros por dia. Como L,68 carros, encontramos que W,68/,2,7 dias.. A fração de tempo que um mecânico, em particular, fica ocioso é dado por p +,p,686 +,.,9,77. Se existissem três pessoas a fração de tempo que cada um fica ocioso seria dado por: p + (2/)p + (/)p 2. De modo geral, tem-se: p 2 + p + p p GIMMETT, G.., SITZAE, D.. Probability and andom Processes. Oxford (London): Oxford University Press, 99. LEINOC, Leonard. Queueing Systems: v. : Theory. New York: John Wiley, 97. WISTON, Wayne L. Operations esearch: Applications and Algorithms. ed. Belmont (CA): Duxbury Press, 99.

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que:

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que: Vamos admitir que o tempo de atendimento (tempo de serviço) de clientes diferentes são variáveis aleatórias independentes e que o atendimento de cada consumidor é dado por uma variável S tendo função densidade

Leia mais

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar;

Leia mais

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns:

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns: A notação utilizada na teoria da fila é variada ma, em geral, a eguinte ão comun: λ número médio de cliente que entram no itema or unidade de temo; µ número médio de cliente atendido (que aem do itema)

Leia mais

Uma introdução à Teoria das Filas

Uma introdução à Teoria das Filas Uma introdução à Teoria das Filas Introdução aos Processos Estocásticos 13/06/2012 Quem nunca pegou fila na vida? Figura: Experiência no bandejão Motivação As filas estão presentes em nosso cotidiano,

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

Introdução a Avaliação de Desempenho

Introdução a Avaliação de Desempenho Introdução a Avaliação de Desempenho Avaliar é pronunciar-se sobre as características de um certo sistema. Dado um sistema real qualquer, uma avaliação deste sistema pode ser caracterizada por toda e qualquer

Leia mais

UNIVERSIDADE SÃO JUDAS TADEU

UNIVERSIDADE SÃO JUDAS TADEU UNIVERSIDADE SÃO JUDAS TADEU TEORIA DAS FILAS FERNANDO MORI prof.fmori@gmail.com A teoria das filas iniciou com o trabalho de Erlang (1909) na indústria telefônica no inicio do século vinte. Ele fez estudos

Leia mais

ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento

ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento 33 Capítulo 4 Teoria de Filas ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento de sistemas de comunicação de dados. Muita atenção deve ser dada aos processos

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

Objetivos. Teoria de Filas. Teoria de Filas

Objetivos. Teoria de Filas. Teoria de Filas Objetivos Teoria de Filas Michel J. Anzanello, PhD anzanello@producao.ufrgs.br 2 Teoria de Filas Filas estão presentes em toda a parte; Exemplos evidentes de fila podem ser verificados em bancos, lanchonetes,

Leia mais

Simulação de Evento Discreto

Simulação de Evento Discreto Simulação de Evento Discreto Simulação de evento discreto As variáveis de estado modificam-se apenas pela ocorrência de eventos Os eventos ocorrem instantaneamente em pontos separados no tempo São simulados

Leia mais

Introdução à Teoria das Filas

Introdução à Teoria das Filas Introdução à Teoria das Filas If the facts don't fit the theory, change the facts. --Albert Einstein Notação Processo de Chegada: Se os usuários chegam nos instantes t 1, t 2,..., t j, então as variáveis

Leia mais

PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas

PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas CARACTERÍSTICA PRINCIPAL: presença de clientes solicitando serviços em um posto de serviço e que, eventualmente, devem esperar até que o posto esteja disponível

Leia mais

UDESC DCC TADS DISCIPLINA : PESQUISA OPERACIONAL QUINTA LISTA DE EXERCÍCIOS

UDESC DCC TADS DISCIPLINA : PESQUISA OPERACIONAL QUINTA LISTA DE EXERCÍCIOS UDESC DCC TADS DISCIPLINA : PESQUISA OPERACIONAL QUINTA LISTA DE EXERCÍCIOS 1.) Clientes chegam a uma barbearia, de um único barbeiro, com uma duração média entre chegadas de 20 minutos. O barbeiro gasta

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) Susana Nascimento

Leia mais

Avaliação de Desempenho em Sistemas de Computação e Comunicação

Avaliação de Desempenho em Sistemas de Computação e Comunicação Avaliação de Desempenho em Sistemas de Computação e Comunicação Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM UFES Objetivos

Leia mais

Teoria das filas. Clientes. Fila

Teoria das filas. Clientes. Fila Teoria das filas 1 - Elementos de uma fila: População Clientes Fila Servidores 1 3 Atendimento Características de uma fila:.1 Clientes e tamanho da população População infinita > Chegadas independentes

Leia mais

1.1 Sistema de 1 Canal e 1 Fila com População Infinita. fila atendentimento saída. sistema

1.1 Sistema de 1 Canal e 1 Fila com População Infinita. fila atendentimento saída. sistema Capítulo 1 Teoria das Filas 1.1 Sistema de 1 Canal e 1 Fila com População Infinita chegada fila atendentimento saída sistema 1.1.1 Características Gerais As equações do modelo se baseiam nas seguintes

Leia mais

Sistemas de Filas: Aula 1. Amedeo R. Odoni 10 de outubro de 2001

Sistemas de Filas: Aula 1. Amedeo R. Odoni 10 de outubro de 2001 Sistemas de Filas: Aula 1 Amedeo R. Odoni 10 de outubro de 2001 Tópicos em Teoria das Filas 9. Introdução a sistemas de filas; lei de Little, M/M/1 10. Filas Markovianas (processo de renovação) 11. Fila

Leia mais

EE-981 Telefonia Prof. Motoyama 1º Semestre 2004. Capítulo 5. Tráfego Telefônico

EE-981 Telefonia Prof. Motoyama 1º Semestre 2004. Capítulo 5. Tráfego Telefônico -98 Telefonia rof. Motoyama º Semestre 4 Capítulo 5 Tráfego Telefônico 5. Introdução O objetivo do tráfego telefônico é dimensionar de maneira eficiente os recursos da rede telefônica. Os dimensionamentos

Leia mais

Classificação: Determinístico

Classificação: Determinístico Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Da mesma forma que sistemas os modelos de simulação podem ser classificados de várias formas. O mais usual é classificar os modelos

Leia mais

5.7 Amostragem e alguns teoremas sobre limites

5.7 Amostragem e alguns teoremas sobre limites M. Eisencraft 5.7 Amostragem e alguns teoremas sobre limites 7 5.7 Amostragem e alguns teoremas sobre limites Para quantificar os problemas associados às medidas práticas de uma VA, considere o problema

Leia mais

Introdução à Manutenção O QUE VOCÊ ENTENDE POR MANUTENÇÃO?

Introdução à Manutenção O QUE VOCÊ ENTENDE POR MANUTENÇÃO? MANUTENÇÃO Introdução à Manutenção O QUE VOCÊ ENTENDE POR MANUTENÇÃO? Conceito de Manutenção segundo o dicionário Michaelis UOL 1. Ato ou efeito de manter (-se). 2. Sustento. 3. Dispêndio com a conservação

Leia mais

Gestão de Operações II Teoria das Filas

Gestão de Operações II Teoria das Filas Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

Gerenciamento de filas

Gerenciamento de filas Gerenciamento de filas Universidade Federal do Vale do São Francisco Campus de Juazeiro BA Colegiado de Engenharia de Produção Professor MSc. Marcel de Gois Pinto Aspectos essenciais do sistema de filas

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO Em quase todas as nossas atividades diárias precisamos enfrentar filas para atender as nossas necessidades. Aguardamos em fila na padaria, nos bancos, quando trafegamos

Leia mais

COS767 - Modelagem e Análise Aula 2 - Simulação. Algoritmo para simular uma fila Medidas de interesse

COS767 - Modelagem e Análise Aula 2 - Simulação. Algoritmo para simular uma fila Medidas de interesse COS767 - Modelagem e Análise Aula 2 - Simulação Algoritmo para simular uma fila Medidas de interesse Simulação O que é uma simulação? realização da evolução de um sistema estocástico no tempo Como caracterizar

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode

Leia mais

observado, ainda que o tempo médio de serviço é igual a meio minuto. Determine:

observado, ainda que o tempo médio de serviço é igual a meio minuto. Determine: 0. Um único servidor em um centro de serviço está ocupado quatro de cada cinco minutos, em média. Foi observado, ainda que o tempo médio de serviço é igual a meio minuto. Determine: (i) O tempo médio de

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

Estudo Comprobatório da Teoria das Filas pela Simulação de Eventos Discretos

Estudo Comprobatório da Teoria das Filas pela Simulação de Eventos Discretos 1 Estudo Comprobatório da Teoria das Filas pela Simulação de Eventos Discretos RESUMO O presente artigo tem como proposta comprovar a Teoria das Filas pela Simulação de Eventos Discretos (SED), através

Leia mais

Fig.1. Exemplo de fila com seus componentes. Sistema

Fig.1. Exemplo de fila com seus componentes. Sistema MÓDULO 5 - TEORIA DAS FILAS (Queueing Theory) Baseado em Andrade, Eduardo Leopoldino de, Introdução à pesquisa operacional, LTC - Livros Técnicos e Científicos, Rio de Janeiro, 2000.; Albernaz, Marco Aurélio,

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

TEORIA DAS FILAS (Queueing Theory)

TEORIA DAS FILAS (Queueing Theory) TEORIA DAS FILAS (Queueing Theory) 1. INTRODUÇÃO A abordagem matemática das filas se iniciou em 1908, na cidade de Copenhague, Dinamarca. O pioneiro da investigação foi o matemático Agner Krarup Erlang

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

UM MODELO MARKOVIANO DE DECISÃO PARA A OTIMIZAÇÃO DE UM SISTEMA DE MANUTENÇÃO COM TEMPOS DE REPARO COXIANOS E FASES NÃO OBSERVÁVEIS

UM MODELO MARKOVIANO DE DECISÃO PARA A OTIMIZAÇÃO DE UM SISTEMA DE MANUTENÇÃO COM TEMPOS DE REPARO COXIANOS E FASES NÃO OBSERVÁVEIS ISSN 0101-7438 UM MODELO MARKOVIANO DE DECISÃO PARA A OTIMIZAÇÃO DE UM SISTEMA DE MANUTENÇÃO COM TEMPOS DE REPARO COXIANOS E FASES NÃO OBSERVÁVEIS Rita de Cássia Meneses Rodrigues Solon Venâncio de Carvalho

Leia mais

Sumário. 1 Introdução. 2 O Conceito de Provisão. Demonstrações Contábeis Decifradas. Aprendendo Teoria

Sumário. 1 Introdução. 2 O Conceito de Provisão. Demonstrações Contábeis Decifradas. Aprendendo Teoria Sumário 1 Introdução... 1 2 O Conceito de Provisão... 1 3 Exemplos de Provisão... 2 3.1 Provisão para garantias... 2 3.2 Provisão para riscos fiscais, trabalhistas e cíveis... 3 3.3 Provisão para reestruturação...

Leia mais

Teoria de Filas Aula 15

Teoria de Filas Aula 15 Teoria de Filas Aula 15 Aula de hoje Correção Prova Aula Passada Prova Little, medidas de interesse em filas Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo

Leia mais

ANÁLISE DO PROCESSO DE ATENDIMENTO A CLIENTES POR MEIO DE SIMULAÇÃO NO SOFTWARE SIMPY EM UMA LOJA DE DEPARTAMENTO EM MOSSORÓ/RN

ANÁLISE DO PROCESSO DE ATENDIMENTO A CLIENTES POR MEIO DE SIMULAÇÃO NO SOFTWARE SIMPY EM UMA LOJA DE DEPARTAMENTO EM MOSSORÓ/RN ANÁLISE DO PROCESSO DE ATENDIMENTO A CLIENTES POR MEIO DE SIMULAÇÃO NO SOFTWARE SIMPY EM UMA LOJA DE DEPARTAMENTO EM MOSSORÓ/RN Anna Karollyna Albino Brito (UFERSA ) anninhabrito_@hotmail.com CHARLES MILLER

Leia mais

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua FÍSICA 3 Circuitos Elétricos em Corrente Contínua Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência

Leia mais

PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS

PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS Curso: Tecnologia em Redes de Computadores Prof.:Eduardo Araujo Site- http://professoreduardoaraujo.com INICIANDO O ESTUDO História: 1908 matemático

Leia mais

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Resumo Marcos Henrique de Carvalho 1 Gabriel Alves da Costa Lima 2 Antonio Elias Junior 3 Sergio Rodrigues

Leia mais

Cadeias de Markov. Geovany A. Borges gaborges@ene.unb.br

Cadeias de Markov. Geovany A. Borges gaborges@ene.unb.br 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Cadeias de Markov Geovany A. Borges gaborges@ene.unb.br

Leia mais

Usando o Arena em Simulação

Usando o Arena em Simulação Usando o Arena em Simulação o ARENA foi lançado pela empresa americana Systems Modeling em 1993 e é o sucessor de dois outros produtos de sucesso da mesma empresa: SIMAN (primeiro software de simulação

Leia mais

APLICAÇÃO DO MODELO HIPERCUBO PARA ANÁLISE DE UM SISTEMA MÉDICO- EMERGENCIAL EM RODOVIA.

APLICAÇÃO DO MODELO HIPERCUBO PARA ANÁLISE DE UM SISTEMA MÉDICO- EMERGENCIAL EM RODOVIA. APLICAÇÃO DO MODELO HIPERCUBO PARA ANÁLISE DE UM SISTEMA MÉDICO- EMERGENCIAL EM RODOVIA. FERNANDO CESAR MENDONÇA REINALDO MORABITO DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO Universidade Federal de São Carlos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

MEU VEÍCULO. Veículo segurado. ... Seguradoras. ... Contatos da Seguradora(s) Contratadas. ... Dados da Corretora Durango Corretora de Seguros

MEU VEÍCULO. Veículo segurado. ... Seguradoras. ... Contatos da Seguradora(s) Contratadas. ... Dados da Corretora Durango Corretora de Seguros PARABÉNS, Você acaba de adquirir um seguro personalizado com a garantia da Durango. Obrigado por contratar nossos serviços. Aqui você irá encontrar uma equipe preparada para te atender com a credibilidade,

Leia mais

Crescimento em longo prazo

Crescimento em longo prazo Crescimento em longo prazo Modelo de Harrod-Domar Dinâmica da relação entre produto e capital Taxa de poupança e produto http://fernandonogueiracosta.wordpress.com/ Modelo keynesiano Crescimento = expansão

Leia mais

ADS - Medidas de Desempenho Típicas Desejadas

ADS - Medidas de Desempenho Típicas Desejadas ADS - Medidas de Desempenho Típicas Desejadas Vazão (Throughput) - é definida como a taxa de clientes total servida pelo sistema por unidade de tempo; Utilização (Utilization) - é medido como a fração

Leia mais

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI Modelos Estocásticos Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 LEGI Capítulo 7 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA Nota: neste capítulo ilustram-se alguns dos conceitos de

Leia mais

PESQUISA OPERACIONAL: UMA APLICAÇÃO DA TEORIA DAS FILAS A UM SISTEMA DE ATENDIMENTO

PESQUISA OPERACIONAL: UMA APLICAÇÃO DA TEORIA DAS FILAS A UM SISTEMA DE ATENDIMENTO PESQUISA OPERACIONAL: UMA APLICAÇÃO DA TEORIA DAS FILAS A UM SISTEMA DE ATENDIMENTO Rafael de Bruns Sérgio Pacífico Soncim Maria Cristina Fogliatti de Sinay - Phd Instituto Militar de Engenharia IME, Mestrado

Leia mais

A TEORIA DAS FILAS COMO FERRAMENTA DE APOIO PARA ANALISE DE UMA EMPRESA DE LAVA-RÁPIDO EM VOLTA REDONDA

A TEORIA DAS FILAS COMO FERRAMENTA DE APOIO PARA ANALISE DE UMA EMPRESA DE LAVA-RÁPIDO EM VOLTA REDONDA A TEORIA DAS FILAS COMO FERRAMENTA DE APOIO PARA ANALISE DE UMA EMPRESA DE LAVA-RÁPIDO EM VOLTA REDONDA Byanca Porto de Lima byanca_porto@yahoo.com.br UniFOA Bruna Marta de Brito do Rego Medeiros brunamartamedeiros@hotmail.com

Leia mais

Teoria das Filas Luciano Cajado Costa 1

Teoria das Filas Luciano Cajado Costa 1 1 UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA CENTRO TECNOLÓGIO - CT CURSO: CIÊNICIA DA COMPUTAÇÃO DISCIPLINA : TEORIA DAS FILAS E SIMULAÇÃO Teoria das Filas Luciano Cajado Costa 1 1 Professor Substituto da

Leia mais

Outras Máquinas de Turing

Outras Máquinas de Turing Capítulo 10 Outras Máquinas de Turing 10.1. Pequenas variações da TM padrão 10.2. MT s com dispositivos de armazenamento mais complexos 10.3. MT s não-determinísticas 10.4. A Máquina de Turing Universal

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

MODELO DE FILAS PARA ESTIMAÇÃO DE PARÂMETROS DE DESEMPENHO PARA SISTEMAS LOGÍSTICOS

MODELO DE FILAS PARA ESTIMAÇÃO DE PARÂMETROS DE DESEMPENHO PARA SISTEMAS LOGÍSTICOS MODELO DE FILAS PARA ESTIMAÇÃO DE PARÂMETROS DE DESEMPENHO PARA SISTEMAS LOGÍSTICOS Frederico Samartini Queiroz Alves Universidade Federal de Minas Gerais Av. Antônio Carlos 6627Belo Horizonte-MG CEP 31270-010

Leia mais

1.PLANO AUTO STANDARD

1.PLANO AUTO STANDARD 1.PLANO AUTO STANDARD 1.1.Definições ACIDENTE/SINISTRO Colisão, abalroamento ou capotagem envolvendo direta ou indiretamente o veículo e que impeça o mesmo de se locomover por seus próprios meios. COBERTURA

Leia mais

Para mais informações sobre como utilizar o aplicativo, acesse o endereço: http://www.filhosemfila.com.br/mp/

Para mais informações sobre como utilizar o aplicativo, acesse o endereço: http://www.filhosemfila.com.br/mp/ Para instalar o Filho sem Fila, basta acessar a Apple App Store, se for usuário Apple, ou a Play Store, caso use um aparelho com sistema Android, e buscar por Colégio São José de Bauru. Feitos o download

Leia mais

Diagrama de transição de Estados (DTE)

Diagrama de transição de Estados (DTE) Diagrama de transição de Estados (DTE) O DTE é uma ferramenta de modelação poderosa para descrever o comportamento do sistema dependente do tempo. A necessidade de uma ferramenta deste tipo surgiu das

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

Métodos Quantitativos. aula 6

Métodos Quantitativos. aula 6 Métodos Quantitativos aula 6 Prof. Dr. Marco Antonio Insper Ibmec São Paulo Teoria das Filas Elementos de uma Fila: 1. População 2. Clientes 3. Fila 4. Serviço Sinônimos e Jargão de área Podem aparecer

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Introdução a Avaliação de Desempenho de Sistemas Prof. Othon M. N. Batista othonb@yahoo.com Roteiro Definição de Sistema Exemplo de Sistema: Agência Bancária Questões

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

Se estiver no Mercosul, também poderá contar com os serviços de emergência, bastando ligar para 55 11 4133 6537.

Se estiver no Mercosul, também poderá contar com os serviços de emergência, bastando ligar para 55 11 4133 6537. Assist24h_AutoPasseio_jul 6/13/07 4:32 PM Page 1 CARO SEGURADO Para você que adquiriu o Real Automóvel e contratou os serviços de Assistência 24 horas, este é o seu guia de serviços da Real Assistência.

Leia mais

Engenheiro de Telecomunicações pelo Instituto de Estudos Superiores da Amazônia IESAM (Belém, Pará).

Engenheiro de Telecomunicações pelo Instituto de Estudos Superiores da Amazônia IESAM (Belém, Pará). Transmissão Digital em Banda Base: Modelagem do Canal Este tutorial apresenta a implementação da formatação de um pulso para transmissão digital em banda base que simule a resposta ao impulso de um canal

Leia mais

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por

Leia mais

Cálculo do conjunto paralelo

Cálculo do conjunto paralelo Cálculo do conjunto paralelo Vamos usar letras maiúsculas A; B, etc para representar conjuntos e letras minusculas x, y, etc para descrever seus pontos. Vamos usar a notação x para descrever a norma de

Leia mais

ELEMENTOS DA TEORIA DAS FILAS

ELEMENTOS DA TEORIA DAS FILAS ELEMENTOS DA TEORIA DAS FILAS OSWALDO FADIGAS TORRES "As teorias podem ser descritas em têrmos simples, ainda que se refiram a fenômenos que não pareçam sê-lo." - J. D. WILLIAMS Com êste artigo, exposição

Leia mais

Intervalo de Confiança. Prof. Herondino S. F.

Intervalo de Confiança. Prof. Herondino S. F. Intervalo de Confiança Prof. Herondino S. F. Grau de Confiança Qual a temperatura média do corpo humano? A temperatura média do corpo humano é realmente 37 C. Na tabela abaixo, tem-se a temperatura de

Leia mais

- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng.

- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Unidade Acadêmica Tecnologia Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Palhoça, Março de 2010 2 Sumário 1.0 TEORIA DAS FILAS... 3 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL... 3 1.2 ASPECTOS GERAIS DA

Leia mais

Exercícios de Filas de Espera Enunciados

Exercícios de Filas de Espera Enunciados Capítulo 8 Exercícios de Filas de Espera Enunciados Enunciados 124 Problema 1 Os autocarros de uma empresa chegam para limpeza à garagem central em grupos de cinco por. Os autocarros são atendidos em ordem

Leia mais

Estudo de simulação para a minimização das filas em uma agência dos Correios do município de Viçosa

Estudo de simulação para a minimização das filas em uma agência dos Correios do município de Viçosa Estudo de simulação para a minimização das filas em uma agência dos Correios do município de Viçosa Maísa Nascimento Soares (UFV) maisansoares@gmail.com Tatiane Silva Cardoso Muglia (UFV) tatianemuglia@yahoo.com.br

Leia mais

CAPÍTULO 7 O SERVIÇO DOS AGENTES

CAPÍTULO 7 O SERVIÇO DOS AGENTES CAPÍTULO 7 O SERVIÇO DOS AGENTES A inteligência... é a capacidade de criar objetos artificiais, especialmente ferramentas para fazer ferramentas. ( Henri Bergson) O serviço dos agentes surge como uma prestação

Leia mais

Avaliação de Desempenho de Sistemas. Conceitos Básicos de Sistemas e Modelos

Avaliação de Desempenho de Sistemas. Conceitos Básicos de Sistemas e Modelos Avaliação de Desempenho de Sistemas Conceitos Básicos de Sistemas e Modelos O que é Desempenho? Webster s? The manner in which a mechanism performs. Aurélio: Conjunto de características ou de possibilidades

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Modelo de Filas M/M/1 e M/M/m Prof. Othon Batista othonb@yahoo.com Modelo de Filas Nas aulas anteriores vimos a necessidade de se utilizar uma distribuição para representar

Leia mais

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES Olá, pessoal! Tudo bem? Vou neste artigo resolver a prova de Fïsica para a Polícia Rodoviária Federal, organizada pelo CESPE-UnB. Antes de resolver cada questão, comentarei sobre alguns trechos das minhas

Leia mais

3URI0DUFHOR0RUHWWL)LRURQL

3URI0DUFHOR0RUHWWL)LRURQL 6,8/$d 2(2'(/$*(&2387$&,21$/ 3URIDUFHORRUHWWL)LRURQL (;(5&Ë&,26±ž%LPHVWUH Desenhe o modelo para as situações descritas abaixo: $ $FDGHPLD GH *LQiVWLFD, Uma academia recebe alunos em intervalos de tempo

Leia mais

Gestão da Produção Variabilidade das operações Filas de espera

Gestão da Produção Variabilidade das operações Filas de espera Variabilidade das operações Filas de espera José Cruz Filipe IST / ISCTE / EGP JCFilipe Abril 26 Tópicos Variabilidade dos fluxos Teoria clássica das filas de espera Medidas de desempenho das filas de

Leia mais

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Espaço de Estados (CP1 www.professores.deq.ufscar.br/ronaldo/cp1 DEQ/UFSCar 1 / 69 Roteiro 1 Modelo Não-Linear Modelo

Leia mais

Fernando Cesar da Silva Vanina Macowski Durski Silva. Arteris - Autopista Litoral Sul Universidade Federal de Santa Catarina

Fernando Cesar da Silva Vanina Macowski Durski Silva. Arteris - Autopista Litoral Sul Universidade Federal de Santa Catarina Fernando Cesar da Silva Vanina Macowski Durski Silva Arteris - Autopista Litoral Sul Universidade Federal de Santa Catarina Sistema de socorro mecânico em rodovia federal concedida: um estudo de caso na

Leia mais

Medida de correlação entre padrões pontuais de origemdestino

Medida de correlação entre padrões pontuais de origemdestino Medida de correlação entre padrões pontuais de origemdestino Renato M. Assunção, Danilo L. Lopes Departamento de Estatística Universidade Federal de Minas Gerais (UFMG) Caixa Postal 70 3170-901 Belo Horizonte

Leia mais

Manual de uso do aplicativo Filho Sem Fila

Manual de uso do aplicativo Filho Sem Fila Manual de uso do aplicativo Filho Sem Fila Código escola Ao abrir o aplicativo, será exibida tela solicitando o código da escola que utilizará o sistema. Para acessar, basta digitar o código fornecido

Leia mais

A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1

A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1 A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1 A IMPORTÂNCIA DA MATEMÁTICA O desenvolvimento das sociedades tem sido também materializado por um progresso acentuado no plano científico e nos diversos domínios

Leia mais

VERSÃO 2.4.12 DISCADOR AUTOMÁTICO DE CHAMADAS TELEFÔNICAS GUIA DO USUÁRIO

VERSÃO 2.4.12 DISCADOR AUTOMÁTICO DE CHAMADAS TELEFÔNICAS GUIA DO USUÁRIO VERSÃO 2.4.12 GUIA DO USUÁRIO DISCADOR AUTOMÁTICO DE CHAMADAS TELEFÔNICAS DISCADOR AUTOMÁTICO DE CHAMADAS TELEFÔNICAS Através do discador automático de chamadas faça com que sua equipe de atendimento alcance

Leia mais

XI Encontro de Iniciação à Docência

XI Encontro de Iniciação à Docência 4CCENDFMT01 EXEMPLO DE APLICAÇÃO DE UMA METODOLOGIA PARA A SOLUÇÃO DE PROBLEMAS DE FÍSICA E MATEMÁTICA Erielson Nonato (1) e Pedro Luiz Christiano (3) Centro de Ciências Exatas e da Natureza/Departamento

Leia mais

N T 208. Cálculo do ciclo de verdes ótimos quando o fluxo de saturação não é constante. Engº: Sun Hsien Ming. Apresentação

N T 208. Cálculo do ciclo de verdes ótimos quando o fluxo de saturação não é constante. Engº: Sun Hsien Ming. Apresentação N T 208 Cálculo do ciclo de verdes ótimos quando o fluxo de saturação não é constante Engº: Sun Hsien Ming Apresentação O presente trabalho é uma tradição livre de alguns trechos do livro Traffic Signals

Leia mais

Oficina Porcentagem e Juros

Oficina Porcentagem e Juros Oficina Porcentagem e Juros Esta oficina está dividida em duas partes. A primeira consiste em uma revisão do conceito de porcentagem. Na segunda parte, os alunos deverão aplicar os conceitos vistos na

Leia mais

Análise matemática para avaliação de desempenho em ambientes Peer-to-Peer

Análise matemática para avaliação de desempenho em ambientes Peer-to-Peer Análise matemática para avaliação de desempenho em ambientes Peer-to-Peer Érico Santos Rocha 1, Janaina Lemos 1, Daniel Bertoglio 1, Rafael Ávila 1, Luis Paulo Luna de Oliveira 1 1 PIPCA - Programa de

Leia mais

Filas de Espera. Slide 1. c 1998 José Fernando Oliveira FEUP

Filas de Espera. Slide 1. c 1998 José Fernando Oliveira FEUP Filas de Espera Slide 1 Transparências de apoio à leccionação de aulas teóricas Versão 1 c 1998 Filas de Espera 1 Introdução Fenómeno corrente no dia-a-dia Slide 2 clientes pessoas, veículos ou outras

Leia mais

Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura

Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Emílio Augusto Coelho-Barros 1,2 Jorge Alberto Achcar 2 Josmar Mazucheli 3 1 Introdução Em análise

Leia mais

ANÁLISE DE POLÍTICAS MITIGADORAS DE FILA APLICADAS NUM ESTACIONAMENTO NO MUNICÍPIO DE SÃO PAULO UTILIZANDO SIMULAÇÃO ESTOCÁSTICA DE EVENTOS DISCRETOS

ANÁLISE DE POLÍTICAS MITIGADORAS DE FILA APLICADAS NUM ESTACIONAMENTO NO MUNICÍPIO DE SÃO PAULO UTILIZANDO SIMULAÇÃO ESTOCÁSTICA DE EVENTOS DISCRETOS ANÁLISE DE POLÍTICAS MITIGADORAS DE FILA APLICADAS NUM ESTACIONAMENTO NO MUNICÍPIO DE SÃO PAULO UTILIZANDO SIMULAÇÃO ESTOCÁSTICA DE EVENTOS DISCRETOS Edson Roberto da Silva Michelon (USP) edichelon@gmail.com

Leia mais

CAPÍTULO 2 MATEMÁTICA FINANCEIRA

CAPÍTULO 2 MATEMÁTICA FINANCEIRA CAPÍTULO 2 MATEMÁTICA FINANCEIRA A Matemática Financeira se preocupa com o valor do dinheiro no tempo. E pode-se iniciar o estudo sobre o tema com a seguinte frase: NÃO SE SOMA OU SUBTRAI QUANTIAS EM DINHEIRO

Leia mais

MATEMÁTICA BÁSICA. Operações

MATEMÁTICA BÁSICA. Operações MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = +6 +3 = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3)

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

Participar do processo de modernização industrial decorrente da Adoção de novas tecnologias, elegendo prioridades em nível nacional.

Participar do processo de modernização industrial decorrente da Adoção de novas tecnologias, elegendo prioridades em nível nacional. Sumário Introdução 5 omportamento do capacitor em A 6 Funcionamento do capacitor em A 6 Reatância capacitiva 8 Fatores que influenciam reatância capacitiva 9 Relação entre tensão ca, corrente ca e reatância

Leia mais

MRP II. Planejamento e Controle da Produção 3 professor Muris Lage Junior

MRP II. Planejamento e Controle da Produção 3 professor Muris Lage Junior MRP II Introdução A lógica de cálculo das necessidades é conhecida há muito tempo Porém só pode ser utilizada na prática em situações mais complexas a partir dos anos 60 A partir de meados da década de

Leia mais