UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2"

Transcrição

1 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I ) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0 1 0,0 0,3 a) Calcule as distribuições de probabilidade marginais de e Y. b) Calcule a covariância e a correlação entre e Y. c) Calcule a média e a variância para a função linear W = 3 + 4Y. 2) Um agente imobiliário encontra-se a estudar a relação entre o número de linhas nos anúncios em jornais relativos à venda de um apartamento () e o número de pedidos de esclarecimento resultantes deste anúncio (Y). Seja a variável aleatória, o número de pedidos de esclarecimento, composta de três categorias 0, pouco interesse, 1, algum interesse e 2, muito interesse. O agente imobiliário estimou a seguinte probabilidade conjunta: ,09 0,14 0,07 Y 4 0,07 0,23 0,16 5 0,03 0,10 0,11 a) Qual o valor da função probabilidade conjunta quando =1 e Y=4? Interprete o valor. b) Deduza a função probabilidade condicionada de Y dado =0. c) Deduza a função probabilidade condicionada de dado Y=5. d) Calcule e interprete a covariância entre e Y. e) Conclua se as variáveis são ou não independentes. 3) A seguinte tabela mostra para os titulares de cartões de crédito a probabilidade conjunta do número de cartões de crédito () e o número de compras a crédito realizadas numa semana (Y). Y ,08 0,13 0,09 0,06 0,03 2 0,03 0,08 0,08 0,09 0,07 3 0,01 0,03 0,06 0,08 0,08 a) Para uma pessoa escolhida aleatoriamente deste grupo de titulares de cartões de crédito qual a função probabilidade para o número de compras numa semana? b) Para uma pessoa possua três cartões de crédito qual a função probabilidade para o número de compras numa semana? c) Serão o número de cartões de crédito e o número de compras a crédito realizadas numa semana variáveis estatisticamente independentes? 4) Num estudo de mercado pretende-se saber se um novo modelo de computador pessoal que foi promovido num programa televisivo conseguiu tornar-se numa marca conhecida entre as pessoas que assistem ao programa regularmente. Depois de realizado um inquérito concluiu-se que 15% das pessoas assistem com regularidade ao programa e reconhecem a marca. Também se concluiu que 16% das pessoas assistem regularmente ao programa e que 45% das pessoas conhecem a marca. Defina o seguinte para de variáveis aleatórias:

2 2 = 1 se assiste regularmente ao programa = 0 caso contrário Y = 1 se a marca é identificada Y = 0 caso contrário a) Descreva a função probabilidade conjunta de e Y. b) Deduza a função condicionada de Y dado =1. c) Calcule a covariância entre e Y. 5) Um sinal consiste numa serie de vibrações de magnitude, tendo os valores -1, 0, 1, cada um com probabilidade 1/3. Um ruído consiste numa série de vibrações, de magnitude Y, tendo os valores -2, 0, 2, com probabilidades 1/6, 2/3, 1/6, respectivamente. Combinando-se o sinal com o ruído, obtemos o sinal efetivamente observado, Z=+Y. Construa a função de probabilidade para Z e calcule a sua média e variância, admitindo que sinal e ruído são independentes. 6) Numa comunidade onde apenas dez casais trabalham, fez-se um levantamento no qual foram obtidos os seguintes valores para os rendimentos anuais: Casal Rendimento do Homem () Rendimento da mulher (Y) a) Um casal é escolhido ao acaso entre os dez. Seja o rendimento do homem e Y o da mulher. b) Construa a distribuição de probabilidade conjunta de e Y. c) Determine as distribuições marginais de e Y. d) e Y são va independentes? Justifique. e) Calcule as médias e variâncias de e Y e a covariância entre elas. f) Considere a va Z igual à soma dos rendimentos de cada homem e mulher. Calcule a média e a variância de Z. g) Supondo que todos os casais tenham a renda de um ano disponível, e que se oferecerá ao casal escolhido possibilidade de comprar uma casa pelo preço de 20, qual a probabilidade de que o casal escolhido posa efetuar a compra? 7) Suponha que realizemos um experimento e os resultados possíveis sejam ω 1, ω 2, ω 3, ω 4 e ω 5. Definamos as va e Y cujos valores em CAD a ponto são dados BA tabela a seguir. Resultado Y ω ω ω ω ω Obtenha a distribuição de probabilidade de, Y, +Y, -Y-1 e -Y, supondo que os cinco resultados tenham a mesma probabilidade. Faça um diagrama de dispersão para as variáveis e Y. Idem para e +Y. 8) Numa sala estão cinco crianças cujas idades são (em anos): 3, 3, 4, 5, 5. Escolhem-se três crianças ao acaso para formar uma trinca. indica a idade da mais nova da turma e Y a da mais velha. a) Escreva a fdp conjunta de e Y b) Calcule E(x) e var(x). c) Calcule Cov(,Y) d) Calcule Var(+Y).

3 3 9) A distribuição de notas de certo tipo de teste é normal com µ H = 70 e σ H = 10 para os homens e µ M = 65 e σ M = 8 para as mulheres. Se esse teste for proposto numa classe na qual o numero de homens é igual ao dobro do número de mulheres, qual a porcentagem de pessoas que deverá ter nota maior que 80? 10) Se E()= µ e Var(x)= σ 2, escreva em função de µ e σ 2 as seguintes expressões: a) E ( 2 ) b) E [(-1)] 11) Num estudo sobre rotatividade de mão de obra, foram definidas para certa população as va = número de empregos que um funcionário teve no ultimo ano e Y= salário. Observe a seguinte distribuição conjunta: ,00 0,00 0,10 0,10 Y ,05 0,05 0,10 0, ,05 0,20 0, ,10 0,05 0,05 0 São dados E() = 2,5, DP() =1,0, E(Y) = 2.120, DP(Y) = 1.505,2 (DP significa desvio padrão) a) Calcule P(=2) e P(=2/Y=1.200); e Y são independentes? b) Obtenha o coeficiente de correlação entre e Y e interprete esse coeficiente para as variáveis em estudo. 12) Uma urna contém três bolas numeradas 0, 1, 2. Duas bolas são retiradas ao acaso e sucessivamente. Sejam as va = número da primeira bola retirada e Y = número da segunda bola retirada. Calcule: a) E(Y) b) Cov(,Y) c) Var(+Y), Nos casos em que as bolas são retiradas (i) com reposição; (ii) sem reposição. 13) Se ρ(,y) for o coeficiente de correlação entre e Y, e se tivermos que Z=A + B, W = CY+D, com A > 0, C >0, prove que ρ(,y) = ρ(z,w). 14) Uma urna contém n bolas numeradas de 1 ate n. Duas bolas são retiradas sucessivamente, sem reposição. Determine a distribuição do modulo da diferença entre os dois números observados. 15) Suponha que e Y sejam va com Var() = 1, Var(Y)=2 e ρ(,y) = 1/2. Determine Var(-2Y). 16) Sejam e Y variáveis com E() = E(Y) = 0 e Var(Y) = 1. Prove que ρ(z, U) = 0, se Z = +Y e U= -Y. a) Se ~ N(µ 1,σ 2 1) e Y~N(µ 2,σ 2 2), e se e Y são indepedentes, encontre a distribuição, a media e a variância da va a + y, a e b constantes. b) Um fato importante é o seguinte: se 1,..., n são va normais e independentes, n é uma va normal. Qual é a media e a variância de n se cada ~N(µ i,σ 2 i), i=1,...,n? 17) Se 1,..., n são va independentes, cada i com media µ i e variância σ 2 i, i= 1, 2,...,n, calcule E( ) e Var( ), com = ( n)/n. 18) Refaça o problema anterior para o caso de as va terem todas as mesmas medias µ e a mesma variância σ 2. 20) Supondo que ~ b(n,p) e Y ~ b(m,p), sendo ainda e Y va independentes. Mostre que +Y ~ b(m+n;p). 21) Se e Y forem va independentes, com distribuição de Poisson, com parâmetros λ 1 e λ 2, respectivamente, mostre que + Y terá distribuição de Poisson com parâmetro λ 1 + λ 2. 22) Uma variável aleatória bidimensional contínua (,Y) tem a função densidade de probabilidade: f(x,y) = kx 2 y, definida no triângulo formado pelos pontos (0,0), (1,0) e (0,2). Determinar:

4 4 a) O valor da constante k. b) P(Y < 1). c) P(Y < ). d) As distribuições marginais de e Y. 23) Demonstre que: a) E(+Y) = E() + E(Y) b) E(Y) = E().E(Y) quando e Y são variáveis aleatórias independentes. 24) Suponha que a tabela seguinte represente a distribuição de probabilidade conjunta da variável aleatória discreta (,Y). Calcule todas as distribuições marginais e verifique se são variáveis aleatórias independentes /12 1/6 0 Y 2 0 1/9 1/5 3 1/18 1/4 2/15 25) As variáveis aleatórias e Y são discretas em N = {0,1,2,...} com distribuição conjunta: 7 m n m e 4 3, m 0, 1, 2,...,n P( m; Y n) m! (n m)! 0, caso contrário Verifique se e Y são variáveis aleatórias independentes. com n N 26) Assuma que a variável aleatória (,Y) tem f.d.p. conjunta: f(x,y) = 1/2 para (x,y) dentro do quadrado (a, a), (a, -a), (-a, a) e (-a, -a) e f(x,y) = 0 caso contrário. a) Encontre o valor de a b) Encontre as funções de densidade marginais. 27) Assuma que duas pessoas estão um uma fila do guichê do Banco do Brasil. Seja o tempo que a pessoa A demora para ser atendida e Y o tempo que a pessoa B demora para ser atendida. Se a pessoa A está na frente da pessoa B, certamente será atendida primeiro, isto é, < Y. Seja a função de probabilidade conjunta: f (x, y) = 2 e y, 0 < x < y, > 0 a) Verifique se essa função é uma função de distribuição de probabilidade conjunta. b) Calcule as probabilidades marginais. c) Calcule P( < 1/, Y< 1/ ). 28) Dada a função c(x + y), a) Determine o valor de c que faz a função c(x + y) ser uma função de densidade de probabilidade conjunta ao longo da faixa 0 < x < 3 e x < y < x + 2. b)p ( < 1; Y < 2) c) P (1 < < 2) d) P (Y > 2) e) P ( < 2; Y < 2) f) E() g) a distribuição de probabilidades marginais da va. h) a distribuição de probabilidades condicionais de Y, dado = 1. i) E(Y x = 1) j) a distribuição de probabilidades condicionais de, dado que Y = 2.

5 5 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 1 Prof.: William Morán Sem. I ) Num esforço por melhorar a qualidade de uma fita de gravação marca, três novos tipos de fitas são testadas. Um mesmo som é gravado e comparado, obtendo-se os seguintes dados de distorção do som nas fitas de teste (valores de distorção de som menores são melhores): Fita A 66,7 65,7 60,3 Fita B 56,7 50,6 56,5 49,6 44,7 Fita C 65,4 55,9 57,5 61,3 a) Ao nível de 0,05 de significância, teste se as diferenças entre as três médias amostrais podem ser atribuídas ao acaso. Se existem diferenças significativas, determine qual das fitas é a melhor. Rta.: y 64,233; y 51,62; y 60, SST = 347,578 v1 = 2 SSE = 180,242 v2 = 9 F = 8,68 F(, v1, v2) = F(0,05; 2; 9) = 4,26 Existem diferenças significativas Q(, k, n k) = Q(0,05; 3; 9) = 3,86 A melhor fita é a fita B. b) Comente as condições do problema. Rta.: Revisar se as variâncias estão próximas, deve ser feito um amostragem aleatório, e deve ser feito um planejamento do experimento. 2) Testam-se 5 tipos de creme dental para reduzir a caries dental. Para tamanhos de amostras de n = 4, os valores da redução média das caries dentais para cada tipo de creme são: 1 = 1,976; 2 = 2,156; 3 = 1,798; 4 = 2,042; 5 = 2,282. Se a hipótese nula (H o = μ i, i = 1,..5) foi rejeitada (ou seja, pelo menos uma média é diferente), se pede determinar qual é a melhor creme dental, para = 0,01, v 1 = 4, v 2 = 15, com MSE = 8,3766 e ICi = 1,794. 3) O gerente de varejo de uma cadeia de alimentos deseja determinar se a localização do produto tem algum efeito sobre a venda de brinquedos para animais domésticos. Três diferentes localizações em corredores serão consideradas: frente, meio e fundo. Uma amostra aleatória de 18 lojas é selecionada, com 6 lojas, designadas aleatoriamente, para cada localização no corredor. O tamanho da área de exposição e o preço do produto são constantes para todas as lojas. Ao final do período de teste de 1 semana, os volumes de vendas (em milhares de reais) do produto em cada loja foram os seguintes: Frente 8,6 7,2 5,4 4,0 5,0 6,2 Meio 2,0 3,2 2,4 1,8 1,4 1,6 Fundo 4,6 2,8 6,0 2,2 2,8 4,0 a) Ao nível de significância de 0,05, há evidências de diferença na média de vendas entre as várias localizações nos corredores?. Se for apropriado, utilize comparações múltiplas para determinas a melhor localização. b) Para um caso real, comente as condições do problema. c) Utilize o anova de dois fatores para responder as questões anteriores. 4) O gerente de pessoal de uma grande seguradora deseja avaliar a eficácia de quatro diferentes programas de treinamento de vendas, desenvolvidos para novos empregados. Um grupo de 16 alunos recém-formados na faculdade é aleatoriamente indicado para os quatro programas, de modo que existam

6 quatro sujeitos em cada programa. Ao final do período de treinamento, cuja duração foi de um mês, é aplicado um exame padrão aos 16 sujeitos; os resultados são apresentados na tabela a seguir: 6 Programa y 75,75 1 Programa y 2 60,25 Programa y 3 59,50 Programa y 4 71,00 a) A variação dentro dos grupos parece ser semelhante para todos os grupos? A idéia aqui é calcular a variância de cada programa (linha). S 1 = 42.91; S 2 = 75.33; S 3 = 3; S 4 = 119.3; Como a variação dentro de cada tratamento não é semelhante, então a aplicação da ANOVA não é confiável. b) Se as condições forem apropriadas, em um nível de significância = 0,05, utilize o teste F de fator único para determinar se há evidências de diferença entre os programas de treinamento de vendas. Fazendo as contas, F = 5,25 e de tabelas F(4; 12; 0,5) = 3,26 Como F > F(4; 12; 0,05) então as médias dos programas são diferentes. c) Faça comparações múltiplas dos programas de treinamento e determine que programa é o melhor. Utilize = 0,05. Resposta: os melhores programas são o programa 1 e o programa 4 d) Utilize o anova de 2 fatores para responder as questões anteriores.

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA LISTA N O 4 Prof.: William Morán Sem. I - 0 ) Duas máquinas são usadas para encher garrafas de plástico que têm um volume

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Exame/1 o Teste/2 o Teste 2 o Semestre/1 a Época 2008/09 Duração: 3 horas/1 hora e 30 minutos 16/01/09

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Solução: X é Binomial(7; 0,4). (a) P(X = 0) = 0,6 7 = 0,0280. (b) P(X 3) = 1 P(X 2) = 1 [P(X = 0) + P(X = 1) + P(X = 2)] =

Solução: X é Binomial(7; 0,4). (a) P(X = 0) = 0,6 7 = 0,0280. (b) P(X 3) = 1 P(X 2) = 1 [P(X = 0) + P(X = 1) + P(X = 2)] = CAPÍTULO 2 Exercícios Resolvidos 1. Turbulência no avião A probabilidade de ocorrência de turbulência em um determinado percurso a ser feito por uma aeronave é de 0,4 em um circuito diário. Seja X o número

Leia mais

ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015

ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015 1. Numa revista foi publicada uma lista com as 100 empresas

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero? Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

COMENTÁRIOS DA PROVA DE MÉTODOS QUANTITATIVOS E RACIOCÍNIO LÓGICO BNDES 2011 ENGENHEIRO PROF PIO

COMENTÁRIOS DA PROVA DE MÉTODOS QUANTITATIVOS E RACIOCÍNIO LÓGICO BNDES 2011 ENGENHEIRO PROF PIO COMENTÁRIOS DA PROVA DE MÉTODOS QUANTITATIVOS E RACIOCÍNIO LÓGICO BNDES 2011 ENGENHEIRO PROF PIO Prezados concurseiros, segue abaixo os comentários das questões de métodos quantitativos, matemática financeira

Leia mais

UNIVERSIDADE DOS AÇORES Mestrado em Gestão (MBA)

UNIVERSIDADE DOS AÇORES Mestrado em Gestão (MBA) UNIVERSIDADE DOS AÇORES Mestrado em Gestão (MBA) Métodos Estatísticos 1º ano -1º Trimestre 2009/2010 Ficha de trabalho nº 1 Exercícios usando o SPSS PARTE 1 - Estatística Descritiva 1. As notas de 32 alunos

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I! A utilização de escores na avaliação de crédito! Como montar um plano de amostragem para o credit scoring?! Como escolher as variáveis no modelo de credit

Leia mais

Aula 11 Esperança e variância de variáveis aleatórias discretas

Aula 11 Esperança e variância de variáveis aleatórias discretas Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos Dados que podem ser necessários a algumas questões de Estatística: P (t > t α ) = α ν 0,05 0,025 15 1,753 2,131 16 1,746 2,120 28 1,791 2,048 30 1,697 2,042 (Valor: 1,4) Questão 1. Considere o seguinte

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Introdução à análise de dados discretos

Introdução à análise de dados discretos Exemplo 1: comparação de métodos de detecção de cárie Suponha que um pesquisador lhe apresente a seguinte tabela de contingência, resumindo os dados coletados por ele, oriundos de um determinado experimento:

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

Estatística Aplicada

Estatística Aplicada INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Estatística Aplicada Ano Lectivo 2006/2007 Ficha n.º1 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A):

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A): INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A): 1) A demanda quotidiana por um determinado produto no mercadinho

Leia mais

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:

Leia mais

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo MOQ-3 ESTATÍSTICA Proessor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Probabilidade e Estatística: The Science o collecting and analyzing data or the purpose o drawing conclusions and making

Leia mais

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

Estatística Aplicada para Engenharia Inferência para Duas Populações

Estatística Aplicada para Engenharia Inferência para Duas Populações Universidade Federal Fluminense Instituto de Matemática e Estatística Estatística Aplicada para Engenharia Inferência para Duas Populações Ana Maria Lima de Farias Departamento de Estatística Conteúdo

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO GRUPO: ESTATÍSTICA DATA: HORÁRIO: NOME DO CANDIDATO: CPF: ASSINATURA: INSTRUÇÕES:

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA 1 o Semestre Ficha de Exercícios - Teoria das Probabilidades 2009/2010

Leia mais

ESTATÍSTICA. Comando da Aeronáutica. EXAME DE ADMISSÃD Estágio de Adaptação de Oficiais Temporários da Aeronáutica 2013

ESTATÍSTICA. Comando da Aeronáutica. EXAME DE ADMISSÃD Estágio de Adaptação de Oficiais Temporários da Aeronáutica 2013 ESTATÍSTICA Comando da Aeronáutica EXAME DE ADMISSÃD Estágio de Adaptação de Oficiais Temporários da Aeronáutica 013 1 8 Poisson ESPECIALIDADE 31) Seja X uma variável aleatória com função de densidade

Leia mais

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências Probabilidade Introdução Tabelas Estatísticas População, Amostra e Variáveis Gráficos e Distribuição de Freqüências Renata Souza Conceitos Antigos de Estatística stica a) Simples contagem aritmética Ex.:

Leia mais

ESTATÍSTICA. Professor: Ricardo Vojta

ESTATÍSTICA. Professor: Ricardo Vojta ESTATÍSTICA Ciências Contábeis Professor: Ricardo Vojta RAMOS DA ESTATÍSTICA A estatística dedutiva (também conhecida como Estatística Descritiva) se encarrega de descrever o conjunto de dado desde a elaboração

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160 1 MQI 2003 Estatística para Metrologia semestre 2008.01 LISTA DE EXERCÍCIOS # 1 PROBLEMA 1 Uma empresa de TV a cabo toma uma amostra de 1000 clientes, com o objetivo de verificar a relação entre a renda

Leia mais

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora 7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

Epidemiologia. Profa. Heloisa Nascimento

Epidemiologia. Profa. Heloisa Nascimento Epidemiologia Profa. Heloisa Nascimento Medidas de efeito e medidas de associação -Um dos objetivos da pesquisa epidemiológica é o reconhecimento de uma relação causal entre uma particular exposição (fator

Leia mais

1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M.

1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M. ([HUFtFLRVÃÃ&DStWXORÃÃ Ã Tomou-se uma amostra de 000 pessoas num shopping center com o objetivo de verificar a relação entre o número de cartões de crédito e a renda familiar (em salários mínimos). Os

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O que é Estatística? Coleção de métodos

Leia mais

Oitava Lista de Exercícios Assuntos: Estatística Descritiva

Oitava Lista de Exercícios Assuntos: Estatística Descritiva Oitava Lista de Exercícios Assuntos: Estatística Descritiva 1. (Apostila 4 - ex.2.7) Na Tabela abaixo tem-se as médias dos alunos de 2 turmas de Introdução à Estatística Econômica da Faculdade de Economia

Leia mais

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 3

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 3 UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Disciplina: Estatística II LISTA DE EXERCÍCIOS 3 1. Testes de resistência à tensão foram feitas em duas estruturas

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

Escola Básica e Secundária de Alfandega da Fé

Escola Básica e Secundária de Alfandega da Fé Escola Básica e Secundária de Alfandega da Fé Prova de Avaliação MACS - 11.º B Em todas as respostas, indique todos os cálculos e todas as justificações necessárias. Atenção: quando, para um resultado,

Leia mais

Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4

Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4 ESCOLA DE ADMINISTRAÇÃO DE EMPRESAS DE SÃO PAULO FUNDAÇÃO GETULIO VARGAS Prova Parcial de Estatística I Data: Setembro / Professores: Eduardo Francisco Francisco Aranha Nelson Barth A Nome do Aluno: GABARITO

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Variáveis Aleatórias Exercício Num lançamento de 3 moedas equilibradas seja X avariável aleatória que representa o número de caras saídas Escreva a função de probabilidade de X Exercício Quantasvezessedevelançarumdadoaoarparaqueaprobabilidade

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º/11.º Anos ou 11.º/12.º Anos de Escolaridade Prova 835/1.ª Fase

Leia mais

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior Gestão de TI Evanivaldo Castro Silva Júnior Porque estudar Estatística em um curso de Gestão de TI? TI trabalha com dados Geralmente grandes bases de dados Com grande variabilidade Difícil manipulação,

Leia mais

PROVA ESCRITA DE ESTATÍSTICA VERSÃO A. 04 As classes de uma distribuição de freqüência devem ser mutuamente exclusivas para que

PROVA ESCRITA DE ESTATÍSTICA VERSÃO A. 04 As classes de uma distribuição de freqüência devem ser mutuamente exclusivas para que COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOT 00 EXAME DE CONHECIMENTOS ESPECIALIZADOS PROVA ESCRITA DE ESTATÍSTICA

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

UNIVERSIDADE DO ALGARVE

UNIVERSIDADE DO ALGARVE UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -

Leia mais

Questões de Exames Passados. 1. Considere o polígono integral das distribuições a seguir e responda as perguntas abaixo. F(x) C D

Questões de Exames Passados. 1. Considere o polígono integral das distribuições a seguir e responda as perguntas abaixo. F(x) C D Faculdade de Economia, Universidade Nova de Lisboa Tratamento de Dados André C. Silva Questões de Exames Passados 1. Considere o polígono integral das distribuições a seguir e responda as perguntas abaixo.

Leia mais

Aula 5 Metodologias de avaliação de impacto

Aula 5 Metodologias de avaliação de impacto Aula 5 Metodologias de avaliação de impacto Metodologias de Avaliação de Impacto Objetiva quantificar as mudanças que o projeto causou na vida dos beneficiários. Plano de Aula Método experimental: regressão

Leia mais

Momentos de uma variável aleatória

Momentos de uma variável aleatória Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Experimentos de Bernoulli) Considere as seguintes experimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na

Leia mais

Leia o texto abaixo para resolver as questões sobre população e amostra.

Leia o texto abaixo para resolver as questões sobre população e amostra. Leia o texto abaixo para resolver as questões sobre população e amostra. População e amostra População e amostra referem-se ao conjunto de entes cujas propriedades desejamos averiguar. População estatística

Leia mais

LISTA DE EXERCÍCIOS 2 INE 7001 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL

LISTA DE EXERCÍCIOS 2 INE 7001 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL LISTA DE EXERCÍCIOS INE 7 PROF. MARCELO MENEZES REIS ANÁLISE BIDIMENSIONAL ) Uma pesquisa foi realizada com os integrantes das três categorias (professores, servidores, estudantes) da UFSC. Perguntou-se

Leia mais

http://www.de.ufpb.br/~luiz/

http://www.de.ufpb.br/~luiz/ UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ Vimos que é possível sintetizar os dados sob a forma de distribuições de frequências

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

2ª LISTA DE EXERCÍCIOS

2ª LISTA DE EXERCÍCIOS DISCIPLINA: ESTATÍSTICA VITAL PROF. TARCIANA LIBERAL PERÍODO: 2014.2 2ª LISTA DE EXERCÍCIOS 1) Descreva o espaço amostral para cada um dos seguintes experimentos: a) Lançamento de um dado e de uma moeda;

Leia mais

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber 8 Teste de hipóteses com duas amostras Estatística Aplicada Larson Farber Seção 8.1 Testando a diferença entre duas médias (amostras grandes e independentes) Visão geral Para testar o efeito benéfico de

Leia mais

Pesquisador em Informações Geográficas e Estatísticas A I GESTÃO DA QUALIDADE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.

Pesquisador em Informações Geográficas e Estatísticas A I GESTÃO DA QUALIDADE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 7 EDITAL N o 04/2013 LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 01 - O candidato recebeu do fiscal o seguinte material: a) este CADERNO DE QUESTÕES, com os enunciados das 8 (oito) questões discursivas, sem

Leia mais

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS Olá, amigos! AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS Ainda não é chegada nossa aula derradeira! Sei que muitos estão chateados e com toda a razão do mundo pelo atraso destas últimas aulas. Noutra ocasião

Leia mais

Monitor Giovani Roveroto

Monitor Giovani Roveroto Monitor Giovani Roveroto Intervalo de Confiança 1. Suponha que o gerente de uma loja de comércio de tintas queira calcular a verdadeira quantidade de tinta contida em um galão, comprados de um fabricante

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

TADI Tratamento e Análise. de Dados/Informações. Prof. Camilo Rodrigues Neto. Aula 13 Exercícios

TADI Tratamento e Análise. de Dados/Informações. Prof. Camilo Rodrigues Neto. Aula 13 Exercícios TADI Tratamento e Análise de Dados/Informações Aula 13 - Exercícios 1 Exemplo 1 Suponha que parafusos a serem utilizados em tomadas elétricas são embaladas em caixas rotuladas como contendo 100 unidades.

Leia mais

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá

Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:

Leia mais

Instituto Politécnico de Viseu Escola Superior de Tecnologia

Instituto Politécnico de Viseu Escola Superior de Tecnologia Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005

Leia mais

Avaliando o que foi Aprendido

Avaliando o que foi Aprendido Avaliando o que foi Aprendido Treinamento, teste, validação Predição da performance: Limites de confiança Holdout, cross-validation, bootstrap Comparando algoritmos: o teste-t Predecindo probabilidades:função

Leia mais

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22 Teste para diferença de médias Exemplo Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes Martindale pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais