Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:"

Transcrição

1 Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar; que cada pessoa tenha um supermercado para o seu abastecimento exclusivo; Recursos limitados devem ser compartilhados. Ao compartilhar recursos, pode acontecer que no momento em que se queira fazer uso de um recurso, este esteja ocupado; necessidade de esperar aparecem as filas Um fluxo é o movimento de alguma entidade através de um ou mais canais de capacidade finita para ir de um ponto a outro. Capacidade finita significa que o canal só pode satisfazer a demanda a uma taxa finita. Exemplos: fluxo de automóveis (entidades) através de uma rede de caminhos (canais) transmissão de mensagens telefônicas (entidades) através da rede (canal) Os fluxos podem ser classificados em: Determinísticos: sistemas no qual o comportamento da demanda pelo serviço é previsível; Aleatório: não é possível predizer como vai se comportar a demanda pelo serviço.

2 Para descrever um sistema de filas um processo de entrada e um de saída devem ser especificados. Alguns exemplos podem ser vistos na tabela seguinte: Sistema Entrada Saída Banco Correntistas Atendentes Pizzaria Requisição de Atendente envia on-line pizza motoqueiro com a pizza Pedágio Automóveis Atendente cobra e libera o veículo A entrada é geralmente denominada de processo de chegada. Chegadas são denominadas de clientes. Em todos os sistemas será assumido que não mais do que uma chegada pode ocorrer em um único instante. Será assumido que o processo não é afetado pelo número de clientes no sistema. Se o processo de chegada não é afetado pelo número de consumidores presentes ele é descrito pela especificação de uma distribuição de probabilidade para os tempos inter chegadas sucessivas. Para descrever o processo de saída (processo de atendimento) de um sistema de filas é normalmente especificado uma distribuição de probabilidade distribuição dotempodeserviço que fornece o tempo de atendimento dos clientes. Em muitas situações será assumido que o tempo de atendimento é independente do número de clientes presentes. Geralmente dois regimes de atendimento são considerados: em série e em paralelo.

3 Regimes de atendimento O serviço é paralelo se todos os atendentes fornecem o mesmo tipo de atendimento e o cliente só precisa passar por um atendente. Ele é em série se o cliente precisa passar por vários atendentes antes de ter seu serviço completado. Uma linha de montagem é um exemplo de tal tipo de serviço. A disciplina da fila descreve o método usado para determinar a ordem em que os consumidores serão atendidos. O método mais comum é o FIFO (FirstInFirstOut) em que os clientes são atendidos pela ordem de chegada. Outro métodos é o LIFO (Last In First Out). Em alguns casos a ordem em que os clientes chegam não faz diferença é o método SIRO (Service In Randon Order). Um último método de atendimento é o atendimento por prioridade que classifica cada cliente de acordo com a maior ou menor necessidade de atendimento. Outro fator que deve ser considerado é o processo que um cliente utiliza para decidir em qual fila ele vai entrar. Por exemplo em alguns bancos o cliente deve entrar numa fila única. Quando existem várias ele vai optar pela mais curta. Na maioria das aplicações de filas deve-se tentar refletir a realidade e mantê-la computacionalmente tratável, assim a escolha mais comum é a distribuição Exponencial. 3

4 Uma variável aleatória T tem uma distribuição exponencial de parâmetro se sua fdp for do tipo:.e f(t) -t se se t t < Considere que a duração, em minutos, seja uma VAC exponencial com duração média de µ. Se alguém chegou justo na sua frente na cabine telefônica, determine a probabilidade de que você tenha que esperar mais do que minutos. P(X ) lim t [, t e ], e (e, t ) dt,,5,,5 e, , 79%, A função F(t) P(T t) é dada por: F(t) - e -t se t < se t Obs.: Tente determinar!,,9,8,7,6,5,4,3,,,

5 E(T) [ te te t ] t + e t.f(t)dt t. e + t e t dt t dt σ V(T) E(T ) E(T) E(T [ t ) e t ] te + t t.f(t)dt t. e + te t dt dt. t dt A variância será então: σ V(T) E(T E o desvio será: ) E(T) σ Assim se T tem uma distribuição exponencial, então: -t f(t) e F(t) P(T t) e P(T > t) e P(t T t) F(t µ E(T) σ σ V(T) E(T ) E(T) -t ) F(t ) e -t - t e -t Seja T uma VAC com distribuição exponencial de parâmetro. Determinar o a probabilidade de T assumir valores superiores ao seu valor esperado. P(X µ) F(µ) [ e e t ], ,79% 5

6 Seja T uma VAC com distribuição exponencial de parâmetro. Determinar o valor mediano de T. Um dos motivos da utilização da Exponencial na teoria das filas é a sua propriedade de falta de memória: P(T > t + h/ T t) P(T > h) Para quaisquer valores não negativos de t e h. Pode ser mostrado que nenhuma outra VAC tem esse mesmo tipo de propriedade. Essa propriedade é denominada de falta de memória da variável. Isto significa que se sabemos que um tempo t transcorreu desde a última chegada então a probabilidade de transcorra um tempo h até a próxima chegada não depende de t. Assim se quisermos saber o tempo para a próxima chegada não importa há quanto tempo tenha ocorrido a última chegada. Essa propriedade pode simplificar a análise dos sistemas de filas. Se o tempo entre chegadas é exponencial então a distribuição do número de chegadas em qualquer intervalo de tempo t é dado pelo seguinte teorema: 6

7 Tempos interchegadas são exponenciais com parâmetro se e só se o número de chegadas que ocorre num intervalo de tempo t segue uma distribuição de Poisson com parâmetro t. Uma VAD X tem uma distribuição de Poisson com parâmetro se, para x,,,..., a probabilidade de P(X x) é dada por: f(x)p(xx)(e - x )/x! para x,,, Se X tem uma distribuição de Poisson com parâmetro então, tem-se que: σ E(X)V(X) Assim: Se definirmosxcomo o número de chegadas que ocorrem durante qualquer intervalo de tempot, então o teorema diz que: P(X t x) [e -t (t) x ]/x! ComoX t tem uma distribuição de Poisson com parâmetro t então: E(X t )V(X t )t Uma média de t chegadas ocorre durante um intervalo de tempo t, assim pode ser pensado como o número médio de chegadas por unidade de tempo ou taxa de chegadas. Para que a taxa de chegadas seja considerada exponencial algumas hipóteses devem ser satisfeitas:. Chegadas sobre intervalos de tempo não sobrepostos são independentes;. Para valores de t pequenos, a probabilidade de uma chegada é proporcional ao tamanho do intervalo. 7

8 Se as condições e forem verdadeiras então: X t segue uma distribuição de Poisson com parâmetro t onde os tempos interchegadas são exponenciais de parâmetro. Em resumo: se a taxa de chegadas é estacionária e chegadas passadas não afetam as futuras, então os tempos interchegadas seguem uma distribuição exponencial com parâmetro e o número de chegadas em qualquer intervalo de tempotépoisson com parâmetro t. Sabe-se que a variável aleatória X é bimodal para x e x e que tem uma distribuição de Poisson. Sabendo que X é diferente de zero, a probabilidade de X assumir um valor menor do que 3 é dada por: (a) 4/e (b) 4/(e ) (c) /e (d) 4/e (e) 4/( e ). Se o tempo interchegadas não é exponencial, então ele pode ser modelado pela distribuição de Erlang. Uma distribuição de Erlang é uma VAC cuja fdp depende de dois parâmetros:rtaxa ekforma (que deve ser um inteiro positivo). Dados os parâmetrosrek a fdp da Erlang é dada por: Uma VAD T tem uma distribuição de Erlang de parâmetrosrek f(t)[r(rt) k- e -rt ]/(k )! parat Obs. A distribuição de Erlang será representada por E(r, k). A distribuição de Erlang é um caso particular da distribuição Gama. Agner Krarup Erlang (878 99), engenheiro dinamarquês que utilizou a teoria da Probabilidade para modelar e resolver problemas de telefonia. 8

9 Utilizando integração por partes podemos mostrar que se T tem uma distribuição de Erlang com parâmetrosrek, então: E(T)k/r V(T)k/r DANTAS, Carlos Alberto Barbosa. Probabilidade: Um Curso Introdutório. ed. São Paulo: EDUSP,. GRIMMETT, G. R., SITRZAKER, D. R. Probability and Random Processes. Oxford (London): Oxford University Press, 99. WISTON, Wayne L. Operations Research: Applications and Algorithms. 3 ed. Belmont (CA): Duxbury Press,

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que:

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que: Vamos admitir que o tempo de atendimento (tempo de serviço) de clientes diferentes são variáveis aleatórias independentes e que o atendimento de cada consumidor é dado por uma variável S tendo função densidade

Leia mais

Curso: Engenharia de Produção. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção

Curso: Engenharia de Produção. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção λ número médio de clientes que entram no sistema por unidade de tempo; µ número médio de clientes atendidos (que saem do sistema) por unidade de tempo; Servidores (mecânicos) no sistema; número de máquinas

Leia mais

Teoria das filas. Clientes. Fila

Teoria das filas. Clientes. Fila Teoria das filas 1 - Elementos de uma fila: População Clientes Fila Servidores 1 3 Atendimento Características de uma fila:.1 Clientes e tamanho da população População infinita > Chegadas independentes

Leia mais

Versão 1.0 09/Set/2013. www.wedocenter.com.br. WeDo Soluções para Contact Center Consultorias

Versão 1.0 09/Set/2013. www.wedocenter.com.br. WeDo Soluções para Contact Center Consultorias Verificação do Modelo de Erlang Ponto de Análise: Processo de chegada de contatos Operações de Contact Center Receptivo Por: Daniel Lima e Juliano Nascimento Versão 1.0 09/Set/2013 Ponto de Análise Processo

Leia mais

Uma introdução à Teoria das Filas

Uma introdução à Teoria das Filas Uma introdução à Teoria das Filas Introdução aos Processos Estocásticos 13/06/2012 Quem nunca pegou fila na vida? Figura: Experiência no bandejão Motivação As filas estão presentes em nosso cotidiano,

Leia mais

Sistemas de Filas: Aula 1. Amedeo R. Odoni 10 de outubro de 2001

Sistemas de Filas: Aula 1. Amedeo R. Odoni 10 de outubro de 2001 Sistemas de Filas: Aula 1 Amedeo R. Odoni 10 de outubro de 2001 Tópicos em Teoria das Filas 9. Introdução a sistemas de filas; lei de Little, M/M/1 10. Filas Markovianas (processo de renovação) 11. Fila

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Objetivos. Teoria de Filas. Teoria de Filas

Objetivos. Teoria de Filas. Teoria de Filas Objetivos Teoria de Filas Michel J. Anzanello, PhD anzanello@producao.ufrgs.br 2 Teoria de Filas Filas estão presentes em toda a parte; Exemplos evidentes de fila podem ser verificados em bancos, lanchonetes,

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

Introdução a Avaliação de Desempenho

Introdução a Avaliação de Desempenho Introdução a Avaliação de Desempenho Avaliar é pronunciar-se sobre as características de um certo sistema. Dado um sistema real qualquer, uma avaliação deste sistema pode ser caracterizada por toda e qualquer

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Modelo de Filas M/M/1 e M/M/m Prof. Othon Batista othonb@yahoo.com Modelo de Filas Nas aulas anteriores vimos a necessidade de se utilizar uma distribuição para representar

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

Distribuição de Erlang

Distribuição de Erlang Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) Susana Nascimento

Leia mais

Telefonia Celular: Troncalização. CMS60808 2015/1 Professor: Bruno Fontana da Silva

Telefonia Celular: Troncalização. CMS60808 2015/1 Professor: Bruno Fontana da Silva Telefonia Celular: Troncalização CMS60808 2015/1 Professor: Bruno Fontana da Silva TRONCALIZAÇÃO Troncalização Nos primeiros sistemas de telefonia, um canal era alocado para cada assinante de forma dedicada

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Introdução à Teoria das Filas

Introdução à Teoria das Filas Introdução à Teoria das Filas If the facts don't fit the theory, change the facts. --Albert Einstein Notação Processo de Chegada: Se os usuários chegam nos instantes t 1, t 2,..., t j, então as variáveis

Leia mais

Simulação de Sistemas Teoria das Filas Estrutura do Sistema

Simulação de Sistemas Teoria das Filas Estrutura do Sistema Simulação de Sistemas Teoria das Filas 1 2 3 Estrutura do Sistema Capacidade do sistema Canais de Serviço 1 Chegada de Clientes de chegada (tempo entre chegadas) Fila de Clientes Tempo de atendimento 2...

Leia mais

EE-981 Telefonia Prof. Motoyama 1º Semestre 2004. Capítulo 5. Tráfego Telefônico

EE-981 Telefonia Prof. Motoyama 1º Semestre 2004. Capítulo 5. Tráfego Telefônico -98 Telefonia rof. Motoyama º Semestre 4 Capítulo 5 Tráfego Telefônico 5. Introdução O objetivo do tráfego telefônico é dimensionar de maneira eficiente os recursos da rede telefônica. Os dimensionamentos

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento

ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento 33 Capítulo 4 Teoria de Filas ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento de sistemas de comunicação de dados. Muita atenção deve ser dada aos processos

Leia mais

Universidade Federal de Itajubá 02/09/2015 APRESENTAÇÃO APRESENTAÇÃO. Caminhonetes. Dados de entrada

Universidade Federal de Itajubá 02/09/2015 APRESENTAÇÃO APRESENTAÇÃO. Caminhonetes. Dados de entrada APRESENTAÇÃO - O QUE VAMOS EXPLORAR? Comando SPLIT Comando SEND APRESENTAÇÃO Lote de MP Fornecedor Armazém MP Máquina Caminhonetes Fornecedor Dados de entrada Cliente Taxa de produção da Máquina: 1 MP/min

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS

PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS Curso: Tecnologia em Redes de Computadores Prof.:Eduardo Araujo Site- http://professoreduardoaraujo.com INICIANDO O ESTUDO História: 1908 matemático

Leia mais

UNIDADE VI - Planejamento e Controle de Projetos

UNIDADE VI - Planejamento e Controle de Projetos UNIDADE VI - Planejamento e Controle de Projetos Características do Planejamento e Controle Tarefas do Planejamento e Controle Processo de Planejamento e Controle de Projetos Técnicas e Ferramentas de

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Revisão da Literatura Tema 2. Mestranda: Arléte Kelm Wiesner

Revisão da Literatura Tema 2. Mestranda: Arléte Kelm Wiesner Revisão da Literatura Tema 2 Mestranda: Arléte Kelm Wiesner Sistema Termo utilizado em muitas situações Prado (2014) afirma que: Sistema é uma agregação de objetos que têm alguma interação ou interdependência.

Leia mais

Exercícios Resolvidos da Distribuição de Poisson

Exercícios Resolvidos da Distribuição de Poisson . a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado

Leia mais

ADS - Medidas de Desempenho Típicas Desejadas

ADS - Medidas de Desempenho Típicas Desejadas ADS - Medidas de Desempenho Típicas Desejadas Vazão (Throughput) - é definida como a taxa de clientes total servida pelo sistema por unidade de tempo; Utilização (Utilization) - é medido como a fração

Leia mais

Opções Reais. Processos Estocásticos. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos

Opções Reais. Processos Estocásticos. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos Modelando Incerteza Opções Reais A incerteza em um projeto pode ter mais do que apenas dois estados. Na prática, o número de incertezas pode ser infinito Prof. Luiz Brandão brandao@iag.puc-rio.br IAG PUC-Rio

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

Subcamada MAC. O Controle de Acesso ao Meio

Subcamada MAC. O Controle de Acesso ao Meio Subcamada MAC O Controle de Acesso ao Meio Métodos de Acesso ao Meio As implementações mais correntes de redes locais utilizam um meio de transmissão que é compartilhado por todos os nós. Quando um nó

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Usando o Arena em Simulação

Usando o Arena em Simulação Usando o Arena em Simulação o ARENA foi lançado pela empresa americana Systems Modeling em 1993 e é o sucessor de dois outros produtos de sucesso da mesma empresa: SIMAN (primeiro software de simulação

Leia mais

Fig.1. Exemplo de fila com seus componentes. Sistema

Fig.1. Exemplo de fila com seus componentes. Sistema MÓDULO 5 - TEORIA DAS FILAS (Queueing Theory) Baseado em Andrade, Eduardo Leopoldino de, Introdução à pesquisa operacional, LTC - Livros Técnicos e Científicos, Rio de Janeiro, 2000.; Albernaz, Marco Aurélio,

Leia mais

TEORIA DAS FILAS 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL

TEORIA DAS FILAS 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL TEORIA DAS FILAS 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL A pesquisa operacional (PO) é uma ciência aplicada cujo objetivo é a melhoria da performance em organizações, ou seja, em sistemas produtivos

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Risco e Retorno dos Investimentos. Paulo Pereira Ferreira Miba 507

Risco e Retorno dos Investimentos. Paulo Pereira Ferreira Miba 507 Risco e Retorno dos Investimentos Paulo Pereira Ferreira Miba 507 Risco e Retorno Esperados Linha Característica Linha do Mercado de Títulos Linha de Combinação Realidade Brasileira genda Risco e Retorno

Leia mais

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO Em quase todas as nossas atividades diárias precisamos enfrentar filas para atender as nossas necessidades. Aguardamos em fila na padaria, nos bancos, quando trafegamos

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

Classificação: Determinístico

Classificação: Determinístico Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Da mesma forma que sistemas os modelos de simulação podem ser classificados de várias formas. O mais usual é classificar os modelos

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Introdução a Teoria das Filas

Introdução a Teoria das Filas DISC. : PESQUISA OPERACIONAL II Introdução a Teoria das Filas Prof. Mestre José Eduardo Rossilho de Figueiredo Introdução a Teoria das Filas Introdução As Filas de todo dia. Como se forma uma Fila. Administrando

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

Teoria das Filas Luciano Cajado Costa 1

Teoria das Filas Luciano Cajado Costa 1 1 UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA CENTRO TECNOLÓGIO - CT CURSO: CIÊNICIA DA COMPUTAÇÃO DISCIPLINA : TEORIA DAS FILAS E SIMULAÇÃO Teoria das Filas Luciano Cajado Costa 1 1 Professor Substituto da

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO

APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO Ana Victoria da Costa Almeida (anavictoriaalmeida@yahoo.com.br / UEPA) Kelvin Cravo Custódio (kelvim_scb9@hotmail.com

Leia mais

Gestão da Produção Variabilidade das operações Filas de espera

Gestão da Produção Variabilidade das operações Filas de espera Variabilidade das operações Filas de espera José Cruz Filipe IST / ISCTE / EGP JCFilipe Abril 26 Tópicos Variabilidade dos fluxos Teoria clássica das filas de espera Medidas de desempenho das filas de

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Terminologia Básica Utilizada em de Sistemas Terminologia Básica Uma série de termos

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

Gestão de Operações II Teoria das Filas

Gestão de Operações II Teoria das Filas Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,

Leia mais

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns:

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns: A notação utilizada na teoria da fila é variada ma, em geral, a eguinte ão comun: λ número médio de cliente que entram no itema or unidade de temo; µ número médio de cliente atendido (que aem do itema)

Leia mais

Aspecto Fluidez no Estudo de Interseção Semaforizada e não Semaforizada

Aspecto Fluidez no Estudo de Interseção Semaforizada e não Semaforizada SP 01/07/92 NT 151/92 Aspecto Fluidez no Estudo de Interseção Semaforizada e não Semaforizada Núcleo de Estudos de Tráfego 1. Introdução Além da segurança, o semáforo influi muito nos atrasos sofridos

Leia mais

VE = (0.1)($100) + (0.2)($50) + (0.7)($10) = $27.

VE = (0.1)($100) + (0.2)($50) + (0.7)($10) = $27. Pindyck & Rubinfeld, Capítulo 5, Incerteza :: EXERCÍCIOS 1. Considere uma loteria com três possíveis resultados: uma probabilidade de 0,1 para o recebimento de $100, uma probabilidade de 0,2 para o recebimento

Leia mais

AVALIAÇÃO DE DESEMPENHO EM REDES DE COMPUTADORES UTILIZANDO TEORIA DE FILAS 1

AVALIAÇÃO DE DESEMPENHO EM REDES DE COMPUTADORES UTILIZANDO TEORIA DE FILAS 1 AVALIAÇÃO DE DESEMPENHO EM REDES DE COMPUTADORES UTILIZANDO TEORIA DE FILAS 1 Anderson Luis Marchi 2 ; Tiago Boechel 3 ; Juliano Tonizetti Brignoli 4 INTRODUÇÃO A comunicação é uma das maiores necessidades

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Aplicação da Teoria das Filas à Operação de Transportes

Aplicação da Teoria das Filas à Operação de Transportes Aplicação da Teoria das Filas à Operação de Transportes Lâminas preparadas por: S. H. Demarchi Bibliografia: Setti, J.R (2002). Tecnologia de Transportes USP, São Carlos Fogliatti, M.C. e N.M.C. Mattos

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2

SÉRIE: Probabilidade Parte 2: Variáveis Contínuas 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 SUMÁRIO 1. VARIÁVEIS ALEATÓRIAS CONTÍNUAS... 2 1.1. CÁLCULO DE PROBABILIDADE COM UMA VAC... 2 1.2. A FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA... 3 1.3. VARIÁVEL ALEATÓRIA CONTÍNUA (CARACTERIZAÇÃO)... 4 1.3.1.

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Figura 2.1: Carro-mola

Figura 2.1: Carro-mola Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Teoria de Filas e Sistemas de Comunicação

Teoria de Filas e Sistemas de Comunicação Faculdade de Engenharia Departamento de Engenharia Eletrônica e Telecomunicações Teoria de Filas e Sistemas de Comunicação (revisão: Outubro/2013) 1 1 Programa Revisão de Probabilidade e Estatística Processos

Leia mais

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

'DGRVGH(QWUDGD SDUD D6LPXODomR

'DGRVGH(QWUDGD SDUD D6LPXODomR 6LPXODomR GH6LVWHPDV 'DGRVGH(QWUDGD SDUD D6LPXODomR,1387 'DGRVGH(QWUDGD SDUD D6LPXODomR 3URSyVLWRReproduzir o comportamento aleatório / estocástico do sistema real dentro do modelo de simulação. *$5%$*(,1*$5%$*(287

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Filas de Espera. Slide 1. c 1998 José Fernando Oliveira FEUP

Filas de Espera. Slide 1. c 1998 José Fernando Oliveira FEUP Filas de Espera Slide 1 Transparências de apoio à leccionação de aulas teóricas Versão 1 c 1998 Filas de Espera 1 Introdução Fenómeno corrente no dia-a-dia Slide 2 clientes pessoas, veículos ou outras

Leia mais

PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas

PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas CARACTERÍSTICA PRINCIPAL: presença de clientes solicitando serviços em um posto de serviço e que, eventualmente, devem esperar até que o posto esteja disponível

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

16.36: Engenharia de Sistemas de Comunicação. Aulas 17/18: Modelos de Retardo para Redes de Dados

16.36: Engenharia de Sistemas de Comunicação. Aulas 17/18: Modelos de Retardo para Redes de Dados 16.36: Engenharia de Sistemas de Comunicação Aulas 17/18: Modelos de Retardo para Redes de Dados Slide 1 Redes de Pacotes Comutados Mensagens dividas em Pacotes que são roteados ao seu destino PC PC PC

Leia mais

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência. MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

Métodos de Simulação em Logística

Métodos de Simulação em Logística Call Center Métodos de Simulação em Logística Exercício HelpDesk No departamento de suporte técnico da empresa está sendo estudada uma nova forma de atender os chamados dos clientes. A gerência deseja

Leia mais

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E Ondas Eletromagnéticas. (a) Ondas Planas: - Tendo introduzido dinâmica no sistema, podemos nos perguntar se isto converte o campo eletromagnético de Maxwell em uma entidade com existência própria. Em outras

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160 1 MQI 2003 Estatística para Metrologia semestre 2008.01 LISTA DE EXERCÍCIOS # 1 PROBLEMA 1 Uma empresa de TV a cabo toma uma amostra de 1000 clientes, com o objetivo de verificar a relação entre a renda

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

QoS para VoIP II: Calculador VoIP de Largura de Banda e Atraso

QoS para VoIP II: Calculador VoIP de Largura de Banda e Atraso QoS para VoIP II: Calculador VoIP de Largura de Banda e Atraso Esta série de tutoriais sobre Qualidade de Serviço (QoS) para Voz sobre IP (VoIP) apresentará algumas particularidades relativas à Qualidade

Leia mais

Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa. O tamanho do grupo é uma variável aleatória discreta

Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa. O tamanho do grupo é uma variável aleatória discreta Aula 5 Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios? Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa.

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

Teoria de Filas Aula 15

Teoria de Filas Aula 15 Teoria de Filas Aula 15 Aula de hoje Correção Prova Aula Passada Prova Little, medidas de interesse em filas Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo

Leia mais

- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng.

- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Unidade Acadêmica Tecnologia Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Palhoça, Março de 2010 2 Sumário 1.0 TEORIA DAS FILAS... 3 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL... 3 1.2 ASPECTOS GERAIS DA

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

TEORIA DAS FILAS (Queueing Theory)

TEORIA DAS FILAS (Queueing Theory) TEORIA DAS FILAS (Queueing Theory) 1. INTRODUÇÃO A abordagem matemática das filas se iniciou em 1908, na cidade de Copenhague, Dinamarca. O pioneiro da investigação foi o matemático Agner Krarup Erlang

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Resumo Marcos Henrique de Carvalho 1 Gabriel Alves da Costa Lima 2 Antonio Elias Junior 3 Sergio Rodrigues

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Prof. Antonio Torres antonioctorres@gmail.com @_antonioctorres. Fundamentos de Sistemas Operacionais UNIP/2015

Prof. Antonio Torres antonioctorres@gmail.com @_antonioctorres. Fundamentos de Sistemas Operacionais UNIP/2015 Prof. Antonio Torres antonioctorres@gmail.com @_antonioctorres Fundamentos de Sistemas Operacionais UNIP/2015 Disciplinas FUNDAMENTOS DE SISTEMAS OPERACIONAIS Horários Quarta-feira Fundamentos de Sistemas

Leia mais