Versão /Set/ WeDo Soluções para Contact Center Consultorias

Tamanho: px
Começar a partir da página:

Download "Versão 1.0 09/Set/2013. www.wedocenter.com.br. WeDo Soluções para Contact Center Consultorias"

Transcrição

1 Verificação do Modelo de Erlang Ponto de Análise: Processo de chegada de contatos Operações de Contact Center Receptivo Por: Daniel Lima e Juliano Nascimento Versão /Set/2013

2 Ponto de Análise Processo de Chegada Contact Center receptivo Modelo genérico de filas em ambientes de Contact Center Contact Center Receptivo Clientes em atendimento t t t t Clientes Entram em contato Fila Clientes aguardando para atendimento (caso não exista agentes disponíveis) 9:00 10:00 Total de contatos esperados: 60 Se, t = 1min Então teremos 1 chamada por minuto Essa interpretação é INCORRETA, pois não representa a realidade É possível, utilizando técnicas de previsão, estimar a quantidade de clientes que entrarão em contato em um determinado intervalo de tempo (ex.: considerando a média histórica, 60 clientes deverão entrar em contato das 9:00 as 10:00). O problema nesse tipo de modelo é saber, dentro desse intervalo, qual será o comportamento de chegada desses clientes, considerando que não temos o controle dos contatos e que eles são independentes entre si, configurando então um modelo ALEATÓRIO. Sabemos pela percepção prática que não é uniforme. Ex.: considerando que serão recebidos 60 contatos em 1 hora, sabemos que esses 60 contatos não chegarão todos ao mesmo tempo, nem mesmo 1 por minuto. Então como funciona esse comportamento de chegada dos contatos? 9:00 10:00 Através dos modelos de Erlang (A, B, C ou X), podemos ter duas definições de como funciona o processo de chegada nestes casos: Definição 1 = O processo de chegada das chamadas assume um comportamento que pode ser explicado pela distribuição de Poisson ou, Definição 2 = O tempo entre as chamadas assume um comportamento que pode ser explicado pela distribuição Exponencial.

3 Realidade Analisando um caso real Para verificar se o modelo de Erlang realmente representa a realidade, analisamos um caso real. Tempo entre chegadas ("interchegadas") [seg] Qtde (Frequência) Soma 574,00 Média 1,57

4 Conclusão Erlang vs. Realidade Para verificar se o modelo de Erlang realmente representa a realidade, analisamos um caso real. Tempo entre chegadas ("interchegadas") [seg] Qtde (Frequência) - PREVISÃO (Erlang) Distribuição Exponencial Previsão de Chegadas usando Distribuição Exponencial Erlang - Real Erlang - Real Absoluto Erlang - Real % , % , % , % , % , % 5 8 0, % 6 8 0, % 7 5 0, % 8 4 0, % 9 0 0, % , % , % , % , % , % , % , % , % , % DIF Erro: Soma 574,00 1,00 574,00 0,00 45,83 0,19 Média 1,57 1, ,57 7,98% Conclusão: Podemos perceber que o desvio entre a realidade e o modelo de Erlang que utiliza a distribuição EXPONENCIAL para generalização dos tempo de inter chegada das chamadas é muito baixo, assegurando-o como um modelo valido e preciso para aplicação em ambientes de Contact Center (por este aspecto).

5 Observações gerais 01- Neste material analisamos apenas uma das premissas assumidas pelo modelo de Erlang, que é a distribuição exponencial dos tempos de interchegada. Outras premissas do modelo, tal como a distribuição do tempo de espera e atendimento não foram analisados. 02- Na base de dados utilizada, as chamadas estão gravadas com tempo mínimo de segundos (ex.: Chegada 01 10:21:01). Por isso, foi feito um ajuste de arredondamento no desenho da função exponencial utilizada. Obs.: no excel foi utilizada a função GAMMA, que possui o mesmo comportamento EXPONENCIAL porém é cumulativa. A função DIST.EXPONENCIAL não retorna valores inversos:

6 Gestão inteligente gera resultados!

Erlang X Aplicado a Contact Center

Erlang X Aplicado a Contact Center Erlang X Aplicado a Contact Center WeDo Consultorias Elaborado por: Daniel Lima Evolução da História Ger Koole (60 s present) Erlang X Conceito Erlang C - Paciência infinita Erlang X - ex.: com 40 de Paciência

Leia mais

ADS - Medidas de Desempenho Típicas Desejadas

ADS - Medidas de Desempenho Típicas Desejadas ADS - Medidas de Desempenho Típicas Desejadas Vazão (Throughput) - é definida como a taxa de clientes total servida pelo sistema por unidade de tempo; Utilização (Utilization) - é medido como a fração

Leia mais

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar;

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Modelo de Filas M/M/1 e M/M/m Prof. Othon Batista othonb@yahoo.com Modelo de Filas Nas aulas anteriores vimos a necessidade de se utilizar uma distribuição para representar

Leia mais

Simulação de Sistemas Teoria das Filas Estrutura do Sistema

Simulação de Sistemas Teoria das Filas Estrutura do Sistema Simulação de Sistemas Teoria das Filas 1 2 3 Estrutura do Sistema Capacidade do sistema Canais de Serviço 1 Chegada de Clientes de chegada (tempo entre chegadas) Fila de Clientes Tempo de atendimento 2...

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Teoria das filas. Clientes. Fila

Teoria das filas. Clientes. Fila Teoria das filas 1 - Elementos de uma fila: População Clientes Fila Servidores 1 3 Atendimento Características de uma fila:.1 Clientes e tamanho da população População infinita > Chegadas independentes

Leia mais

'DGRVGH(QWUDGD SDUD D6LPXODomR

'DGRVGH(QWUDGD SDUD D6LPXODomR 6LPXODomR GH6LVWHPDV 'DGRVGH(QWUDGD SDUD D6LPXODomR,1387 'DGRVGH(QWUDGD SDUD D6LPXODomR 3URSyVLWRReproduzir o comportamento aleatório / estocástico do sistema real dentro do modelo de simulação. *$5%$*(,1*$5%$*(287

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

A experiência do cliente pode ser medida através da monitoria de qualidade? Nossa resposta é NÃO! Veja a explicação...

A experiência do cliente pode ser medida através da monitoria de qualidade? Nossa resposta é NÃO! Veja a explicação... A experiência do cliente pode ser medida através da monitoria de qualidade? Nossa resposta é NÃO! Veja a explicação... Por: Daniel Lima e Marcos Pires Veja este exemplo genérico de um processo de atendimento

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode

Leia mais

Exercícios Resolvidos da Distribuição de Poisson

Exercícios Resolvidos da Distribuição de Poisson . a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado

Leia mais

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA Conceitos sob a ótica de Avaliação de Desempenho de Sistemas Marcos Portnoi Edição 26.6.2010 Universidade Salvador

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Distribuição de Erlang

Distribuição de Erlang Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) Susana Nascimento

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms

fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms O uso da Calculadora Científica (Casio fx) fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms Prof. Ms. Renato Francisco Merli 2013 1 Sumário 1. Antes de Começar... 2 2. Cálculos Básicos... 8 3. Cálculos

Leia mais

Gestão de Operações II Teoria das Filas

Gestão de Operações II Teoria das Filas Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,

Leia mais

Conceitos de Telefonia Celular Trafego. Depto. de Engenharia Elétrica Faculdade de Tecnologia Universidade de Brasília

Conceitos de Telefonia Celular Trafego. Depto. de Engenharia Elétrica Faculdade de Tecnologia Universidade de Brasília Conceitos de Telefonia Celular Trafego Depto. de Engenharia Elétrica Faculdade de Tecnologia Universidade de Brasília Objetivos Mostrar primeiros contatos com teoria de despacho e filas Aprender os rudimentos

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Informações importantes para o dimensionamento do call center

Informações importantes para o dimensionamento do call center Informações importantes para o dimensionamento do call center Informações importantes para dimensionamento do call center Este documento tem por objetivo especificar dados e indicadores mais importantes

Leia mais

Otimização para Contact Center. Ger Koole. MG books Amsterdam

Otimização para Contact Center. Ger Koole. MG books Amsterdam Otimização para Contact Center Ger Koole MG books Amsterdam Prefácio à edição brasileira Há mais de 12 anos trabalhando com planejamento de Contact Centers no Brasil, sempre tivemos dificuldade de encontrar

Leia mais

Simulação Industrial

Simulação Industrial Licenciatura em Engenharia e Gestão Industrial Simulação Industrial Enunciados de Exercícios Para as Aulas Práticas Acácio M. de O. Porta Nova Departamento de Engenharia e Gestão Instituto Superior Técnico

Leia mais

Prof. Samuel Henrique Bucke Brito

Prof. Samuel Henrique Bucke Brito - Cálculo de Sub-Redes www.labcisco.com.br ::: shbbrito@labcisco.com.br Prof. Samuel Henrique Bucke Brito Endereço IP Endereço IP = Identificador de Rede + Identificador de Host Obs.: Hosts com diferentes

Leia mais

Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa. O tamanho do grupo é uma variável aleatória discreta

Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa. O tamanho do grupo é uma variável aleatória discreta Aula 5 Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios? Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa.

Leia mais

TEORIA DAS FILAS 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL

TEORIA DAS FILAS 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL TEORIA DAS FILAS 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL A pesquisa operacional (PO) é uma ciência aplicada cujo objetivo é a melhoria da performance em organizações, ou seja, em sistemas produtivos

Leia mais

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder

Intervalo de Confiança e cálculo de tamanho de amostra. Henrique Dantas Neder Intervalo de Confiança e cálculo de tamanho de amostra Henrique Dantas Neder Intervalo de confiança para a média da população µ X Até o momento discutimos as propriedades da distrbuição normal e vimos

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Avaliação de Desempenho de Sistemas Discretos Parte IV: Simulação Professor: Reinaldo Gomes reinaldo@dsc.ufcg.edu.br Parte 4 Simulação P A R T E Etapas básicas em um estudo de simulação Geração de números

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO

APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO Ana Victoria da Costa Almeida (anavictoriaalmeida@yahoo.com.br / UEPA) Kelvin Cravo Custódio (kelvim_scb9@hotmail.com

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia EXCEL 2013 Este curso traz a vocês o que há de melhor na versão 2013 do Excel, apresentando seu ambiente de trabalho, formas de formatação de planilhas, utilização de fórmulas e funções e a criação e formatação

Leia mais

Workshop Nível de Serviço vs. Abandono

Workshop Nível de Serviço vs. Abandono Esse material é uma réplica parcial do material utilizado em Workshops da WeDo para o mercado brasileiro. Em caso de duvidas, entre em contato conosco: Workshop Nível de Serviço vs. Abandono Mai, 2014

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Módulo 4 PREVISÃO DE DEMANDA

Módulo 4 PREVISÃO DE DEMANDA Módulo 4 PREVISÃO DE DEMANDA Conceitos Iniciais Prever é a arte e a ciência de predizer eventos futuros, utilizando-se de dados históricos e sua projeção para o futuro, de fatores subjetivos ou intuitivos,

Leia mais

- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng.

- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Unidade Acadêmica Tecnologia Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Palhoça, Março de 2010 2 Sumário 1.0 TEORIA DAS FILAS... 3 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL... 3 1.2 ASPECTOS GERAIS DA

Leia mais

Métodos Quantitativos. aula 3

Métodos Quantitativos. aula 3 Métodos Quantitativos aula 3 Prof. Dr. Marco Antonio Insper Ibmec São Paulo Simulação Empresarial Auxílio na tomada de decisão. Criação de cenários otimistas e pessimistas. Poder de previsão baseada em

Leia mais

MINISTE RIO DA EDUCAÇA O UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE CIE NCIAS EXATAS

MINISTE RIO DA EDUCAÇA O UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE CIE NCIAS EXATAS MINISTE RIO DA EDUCAÇA O UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE CIE NCIAS EXATAS Programa de Pós-Graduação em Estatística e Experimentação Agropecuária Prova do Processo Seletivo para o Mestrado

Leia mais

Teoria de Filas Aula 15

Teoria de Filas Aula 15 Teoria de Filas Aula 15 Aula de hoje Correção Prova Aula Passada Prova Little, medidas de interesse em filas Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo

Leia mais

Estudos sobre modelagem e simulação de sistemas de filas M/M/1 e M/M/ 2

Estudos sobre modelagem e simulação de sistemas de filas M/M/1 e M/M/ 2 Estudos sobre modelagem e simulação de sistemas de filas M/M/1 e M/M/ 2 Paulo Henrique Borba Florencio (PUC-GO) phenrique3103@gmail.com Maria José Pereira Dantas (PUC-GO) mjpdantas@gmail.com Resumo: Modelos

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4

Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4 ESCOLA DE ADMINISTRAÇÃO DE EMPRESAS DE SÃO PAULO FUNDAÇÃO GETULIO VARGAS Prova Parcial de Estatística I Data: Setembro / Professores: Eduardo Francisco Francisco Aranha Nelson Barth A Nome do Aluno: GABARITO

Leia mais

ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento

ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento 33 Capítulo 4 Teoria de Filas ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento de sistemas de comunicação de dados. Muita atenção deve ser dada aos processos

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Exame/1 o Teste/2 o Teste 2 o Semestre/1 a Época 2008/09 Duração: 3 horas/1 hora e 30 minutos 16/01/09

Leia mais

A TEORIA DAS FILAS COMO FERRAMENTA DE APOIO PARA ANALISE DE UMA EMPRESA DE LAVA-RÁPIDO EM VOLTA REDONDA

A TEORIA DAS FILAS COMO FERRAMENTA DE APOIO PARA ANALISE DE UMA EMPRESA DE LAVA-RÁPIDO EM VOLTA REDONDA A TEORIA DAS FILAS COMO FERRAMENTA DE APOIO PARA ANALISE DE UMA EMPRESA DE LAVA-RÁPIDO EM VOLTA REDONDA Byanca Porto de Lima byanca_porto@yahoo.com.br UniFOA Bruna Marta de Brito do Rego Medeiros brunamartamedeiros@hotmail.com

Leia mais

DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA

DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA DETERMINAÇÃO DO TAMANHO DE UMA AMOSTRA INTRODUÇÃO O pesquisador social procura tirar conclusões a respeito de um grande número de sujeitos. Por exemplo, ele poderia desejar estudar: os 170.000.000 de cidadãos

Leia mais

UDESC DCC TADS DISCIPLINA : PESQUISA OPERACIONAL QUINTA LISTA DE EXERCÍCIOS

UDESC DCC TADS DISCIPLINA : PESQUISA OPERACIONAL QUINTA LISTA DE EXERCÍCIOS UDESC DCC TADS DISCIPLINA : PESQUISA OPERACIONAL QUINTA LISTA DE EXERCÍCIOS 1.) Clientes chegam a uma barbearia, de um único barbeiro, com uma duração média entre chegadas de 20 minutos. O barbeiro gasta

Leia mais

Este dimensionamento pode ser feito utilizando os calculadores de Erlang C e Erlang B do Teleco.

Este dimensionamento pode ser feito utilizando os calculadores de Erlang C e Erlang B do Teleco. Dimensionamento de Centrais de Atendimento (Call Center) Este tutorial apresenta os conceitos básicos para dimensionamento de centrais de atendimento também conhecidas como Call Center ou Contact Center.

Leia mais

Nova Funcionalidade desenvolvida, disponível na versão 8.9.0, release 2370 ou superior.

Nova Funcionalidade desenvolvida, disponível na versão 8.9.0, release 2370 ou superior. Nova Funcionalidade desenvolvida, disponível na versão 8.9.0, release 2370 ou superior. O Objetivo é melhorar os cálculos das retenções nas notas fiscais de serviços. Confira as alterações. No menu do

Leia mais

Objetivos. Teoria de Filas. Teoria de Filas

Objetivos. Teoria de Filas. Teoria de Filas Objetivos Teoria de Filas Michel J. Anzanello, PhD anzanello@producao.ufrgs.br 2 Teoria de Filas Filas estão presentes em toda a parte; Exemplos evidentes de fila podem ser verificados em bancos, lanchonetes,

Leia mais

Métodos de Simulação em Logística

Métodos de Simulação em Logística Call Center Métodos de Simulação em Logística Exercício HelpDesk No departamento de suporte técnico da empresa está sendo estudada uma nova forma de atender os chamados dos clientes. A gerência deseja

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

Módulo Contact Solution

Módulo Contact Solution Módulo Contact Solution O Contact Solution é uma ferramenta completa e customizável de fácil utilização para análise dos registros de sua central de atendimento (Contact Center), com possibilidade de efetuar

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

3DUkPHWURVGH6LPXODomR

3DUkPHWURVGH6LPXODomR $5(1$ 3DUkPHWURVGH6LPXODomR Usados para: Orientar as decisões dentro do modelo; Apresentar na animação resultados parciais; Efetuar cálculos para as estatísticas finais. 5(&85626 )LOD 14QRPHGDILOD : retorna

Leia mais

3DUkPHWURVGH6LPXODomR

3DUkPHWURVGH6LPXODomR $5(1$ 3DUkPHWURVGH6LPXODomR Usados para: Orientar as decisões dentro do modelo; Apresentar na animação resultados parciais; Efetuar cálculos para as estatísticas finais. 5(&85626 )LOD 14QRPHGDILOD : retorna

Leia mais

Usando o Arena em Simulação

Usando o Arena em Simulação Usando o Arena em Simulação o ARENA foi lançado pela empresa americana Systems Modeling em 1993 e é o sucessor de dois outros produtos de sucesso da mesma empresa: SIMAN (primeiro software de simulação

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Conteúdo. 1 Introdução. MINUTA Histograma do 1o Sorteio da NF Salvador xxx/2014. 1º Sorteio Eletrônico da Nota Fiscal Salvador

Conteúdo. 1 Introdução. MINUTA Histograma do 1o Sorteio da NF Salvador xxx/2014. 1º Sorteio Eletrônico da Nota Fiscal Salvador 1º Sorteio Eletrônico da Nota Fiscal Salvador Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução O software de Sorteio Eletrônico da Nota Fiscal

Leia mais

O SAC na era das comunicações. digitais multicanal, o que há de novo?

O SAC na era das comunicações. digitais multicanal, o que há de novo? O SAC na era das comunicações digitais multicanal, o que há de novo? O que há de novo em: Planejamento de Capacidade Importância Porque planejamento de capacidade?... Agentes de Atendimento Cliente Final

Leia mais

Uma solução única e escalonável para o seu negócio

Uma solução única e escalonável para o seu negócio - PABX IP Híbrido Uma solução única e escalonável para o seu negócio Servidor de Comunicação Corporativo O é um sistema híbrido inteligente apropriado para pequenas e medias empresas e que oferece serviços

Leia mais

Sistemas de Filas: Aula 1. Amedeo R. Odoni 10 de outubro de 2001

Sistemas de Filas: Aula 1. Amedeo R. Odoni 10 de outubro de 2001 Sistemas de Filas: Aula 1 Amedeo R. Odoni 10 de outubro de 2001 Tópicos em Teoria das Filas 9. Introdução a sistemas de filas; lei de Little, M/M/1 10. Filas Markovianas (processo de renovação) 11. Fila

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Análise operacional do terminal público do porto do Rio Grande usando teoria de filas

Análise operacional do terminal público do porto do Rio Grande usando teoria de filas Análise operacional do terminal público do porto do Rio Grande usando teoria de filas Karina Pires Duarte 1, Milton Luiz Paiva de Lima 2 1 Mestranda do curso de Engenharia Oceânica- FURG, Rio Grande, RS

Leia mais

1) Botão "Ler Versão": apresenta a versão do firmware do leitor de cartões acoplado;

1) Botão Ler Versão: apresenta a versão do firmware do leitor de cartões acoplado; O utilitário de Configuração do Leitor de Cartões Magnéticos MagPass, foi desenvolvido para facilitar a re-configuração do mesmo* para necessidades específicas dos clientes ou de aplicativos utilizados

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos Dados que podem ser necessários a algumas questões de Estatística: P (t > t α ) = α ν 0,05 0,025 15 1,753 2,131 16 1,746 2,120 28 1,791 2,048 30 1,697 2,042 (Valor: 1,4) Questão 1. Considere o seguinte

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

AVALIAÇÃO DE DESEMPENHO EM REDES DE COMPUTADORES UTILIZANDO TEORIA DE FILAS 1

AVALIAÇÃO DE DESEMPENHO EM REDES DE COMPUTADORES UTILIZANDO TEORIA DE FILAS 1 AVALIAÇÃO DE DESEMPENHO EM REDES DE COMPUTADORES UTILIZANDO TEORIA DE FILAS 1 Anderson Luis Marchi 2 ; Tiago Boechel 3 ; Juliano Tonizetti Brignoli 4 INTRODUÇÃO A comunicação é uma das maiores necessidades

Leia mais

Gestão da Produção Variabilidade das operações Filas de espera

Gestão da Produção Variabilidade das operações Filas de espera Variabilidade das operações Filas de espera José Cruz Filipe IST / ISCTE / EGP JCFilipe Abril 26 Tópicos Variabilidade dos fluxos Teoria clássica das filas de espera Medidas de desempenho das filas de

Leia mais

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2 Funções contínuas, equações diferenciais ordinárias, Exp e Log Roberto Imbuzeiro Oliveira 21 de Fevereiro de 214 Conteúdo 1 O que vamos ver 1 2 Fatos preliminares sobre espaços métricos 2 3 Existência

Leia mais

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo)

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Prof. Esp. João Carlos Hipólito e-mail: jchbn@hotmail.com Sobre o professor: Contador; Professor da Faculdade de Ciências Aplicadas e Sociais

Leia mais

Dimensionamento da capacidade de atendimento da nova portaria industrial norte da CST-Arcelor por simulação

Dimensionamento da capacidade de atendimento da nova portaria industrial norte da CST-Arcelor por simulação Dimensionamento da capacidade de atendimento da nova portaria industrial norte da CST-Arcelor por simulação Bruno Camara Vieira (CST-Arcelor/FAESA) bruno.vieira@arcelor.com.br Daniella G. Barros S. de

Leia mais

Medidas de Variação ou Dispersão

Medidas de Variação ou Dispersão Medidas de Variação ou Dispersão Estatística descritiva Recapitulando: As três principais características de um conjunto de dados são: Um valor representativo do conjunto de dados: uma média (Medidas de

Leia mais

6LPXODomR H0RGHODJHP &RPSXWDFLRQDO 1~PHURV $OHDWyULRV 3DUDTXH 6HUYHP " São responsáveis pela aleatoriedade nos modelos de simulação.

6LPXODomR H0RGHODJHP &RPSXWDFLRQDO 1~PHURV $OHDWyULRV 3DUDTXH 6HUYHP  São responsáveis pela aleatoriedade nos modelos de simulação. 6LPXODomR H0RGHODJHP &RPSXWDFLRQDO 1~PHURV $OHDWyULRV 0pWRGR GH0RQWH&DUOR 3DUDTXH 6HUYHP " São responsáveis pela aleatoriedade nos modelos de simulação. Acompanhados da curva de comportamento do sistema,

Leia mais

Uma introdução à Teoria das Filas

Uma introdução à Teoria das Filas Uma introdução à Teoria das Filas Introdução aos Processos Estocásticos 13/06/2012 Quem nunca pegou fila na vida? Figura: Experiência no bandejão Motivação As filas estão presentes em nosso cotidiano,

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Acordo de Nível de Serviço

Acordo de Nível de Serviço VERSÃO 20120815 Acordo de Nível de Serviço Gestão Compartilhada Página. 2 de 13 Sumário PARTE 1... 3 1 INTRODUÇÃO... 3 2 DEFINIÇÕES... 4 2.1 GESTÃO COMPARTILHADA... 4 2.2 PROVEDOR... 4 2.3 CLIENTE... 4

Leia mais

Geração de variáveis aleatórias

Geração de variáveis aleatórias Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

16.36: Engenharia de Sistemas de Comunicação. Aulas 17/18: Modelos de Retardo para Redes de Dados

16.36: Engenharia de Sistemas de Comunicação. Aulas 17/18: Modelos de Retardo para Redes de Dados 16.36: Engenharia de Sistemas de Comunicação Aulas 17/18: Modelos de Retardo para Redes de Dados Slide 1 Redes de Pacotes Comutados Mensagens dividas em Pacotes que são roteados ao seu destino PC PC PC

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

Restauração de Imagens. Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática

Restauração de Imagens. Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática Restauração de Imagens Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática 1 Tópicos Introdução Modelo de degradação/restauração Modelo

Leia mais

MANUAL DO PROGRAMA CSPSNet

MANUAL DO PROGRAMA CSPSNet MANUAL DO PROGRAMA CSPSNet Qualquer dúvida entre em contato: (33)32795093 01 USUÁRIO/CSPSNet O sistema CSPSNet está configurado para funcionar corretamente nos seguintes browsers: Internet Explorer 8.0,

Leia mais

Suporte Técnico. Procedimento de Abertura de Chamados. 2010. Siemens Product Lifecycle Management Software Inc. All rights reserved

Suporte Técnico. Procedimento de Abertura de Chamados. 2010. Siemens Product Lifecycle Management Software Inc. All rights reserved Suporte Técnico Procedimento de Abertura de Chamados Siemens Siemens PLM PLM Software Software O Suporte Técnico da GTAC O Global Technical Access Center, ou GTAC, é o site global de informações técnicas

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Medidas de Tendência Central Generalidades Estatística Descritiva: Resumo ou descrição das características importantes de um conjunto conhecido de dados populacionais Inferência Estatística: Generalizações

Leia mais