Opções Reais. Processos Estocásticos. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Opções Reais. Processos Estocásticos. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos"

Transcrição

1 Modelando Incerteza Opções Reais A incerteza em um projeto pode ter mais do que apenas dois estados. Na prática, o número de incertezas pode ser infinito Prof. Luiz Brandão IAG PUC-Rio Podemos obter um modelo mais detalhado da incerteza assumindo que uma variável segue um processo estocástico, ou aleatório. alor alor Tempo alor Tempo Processo Estocástico: Uma variável que evolve no tempo de uma maneira que é pelo menos parcialmente aleatória. A maioria dos problemas reais são modelados utilizandose processos estocásticos de tempo contínuo com variável contínua. Por outro lado, processos de tempo contínuo exigem o uso de cálculo para a resolução das equações diferenciais estocásticas que modelam estes processos. Processos de tempo contínuo podem ser aproximados através de processos discretos, cuja modelagem é mais simples. Estudaremos a seguir os principais modelos de tempo contínuo, e posteriormente, a modelagem discreta correspondente. 50 Tempo

2 Processo de Markov O Processo de Markov é um processo estocástico onde somente o valor atual da variável é relevante para predizer a evolução futura do processo. Isso significa que valores históricos ou mesmo o caminho através do qual a variável atingiu o seu valor atual são irrelevantes para a determinação do seu valor futuro. Assume-se que preços de ativos em geral, como ações e comodities seguem um processo de Markov. Dentro dessa premissa, assumimos que o preço atual de uma ação reflete todas as informações históricas bem como as expectativas a respeito do preço futuro desta ação. Dentro desse modelo, seria impossível prever o valor futuro de uma ação baseado em informações históricas de preço. Random Walk Random Walk, ou Caminho Aleatório, é um dos processos estocásticos mais básicos. O nome deriva do caminho seguido por um marinheiro bêbado andando ao longo do cais. Os seus passos trôpegos variam aleatoriamente de direção enquanto que o seu destino final se torna mais incerto com tempo. Random Walk é um processo de Markov em tempo discreto que tem incrementos independentes na forma de: S t+1 = S t + ε t onde S t+1 é o valor da variável no tempo t+1 S t é o valor da variável no tempo t ε t é uma variável aleatória com probabilidade P(ε t =1 ) = P(ε t =-1) = Random Walk Random Walk O Random Walks pode incluir um termo de crescimento, ou drift, que representa um crescimento de longo prazo. Sem o termo de drift, a melhor estimativa do próximo valor da variável S t+1 é o seu valor atual, uma vez que o termo de erro é normalmente distribuído com média zero. Com o termo de drift, ou crescimento, os valores futuros da variável tendem a crescer de maneira proporcional a taxa de crescimento

3 Processo de Wiener Um processo de Wiener é um processo estocástico que tem uma media de zero e variância de um por ano. O processo de Wiener é um caso particular do processo de Markov, e também é conhecido como Movimento Browniano. Esse processo foi descrito pela primeira vez pelo botânico Robert Brown em 187, e é utilizado na física para descrever o movimento de pequenas partículas sujeitas a um grande numero de pequenos choques aleatórios. Este processo tem esse nome em homenagem ao matemático Norbert Wiener, que em 193 desenvolveu a teoria matemática do movimento Browniano. Processo de Wiener O processo de Wiener possui três características importantes: É um processo de Markov em temo contínuo Cada incremento do processo é independente dos incrementos anteriores Mudanças no processo são normalmente distribuídas com variância que aumenta linearmente com o tempo. Um processo de Wiener é uma versão em tempo contínuo do Random Walk na forma: St+ 1 = St + dz onde dz = ε dt e ε N(0,1) [ ] 0 var[ ] Edz= dz= dt Movimento Aritmético Browniano O processo de Wiener é um processo estacionário, sem termo de drift. Se adicionarmos um crescimento de longo prazo ao processo de Wiener obtemos um Movimento Aritmético (MAB) Browniano, que tem a seguinte representação matemática: St+ 1 = St + μdt + σ dz ds = μdt + σdz ds N ( μdt, σ dt) A evolução de um MAB é a combinação de duas parcelas: Um crescimento linear, com taxa μ Um crescimento aleatório com distribuição normal e com desvio padrão σ O foco do MAB é na mudança no valor da variável, ao invés do valor da variável em si. Por ser um Random Walk, o MAB também tem uma distribuição normal. MAB (10) Movimento Aritmético Browniano (com e sem drift)

4 Limitações do Modelo MAB O MAB também é conhecido como o modelo aditivo porque a variável cresce de um valor constante em cada período de tempo. No entanto, para a modelagem de ativos o MAB apresenta alguns problemas: Como o termo aleatório é uma variável normalmente distribuída, o valor da variável pode eventualmente se tornar negativo, o que não pode acontecer com preços de ativos. Para uma ação que não paga dividendos, no MAB a taxa de retorno desta ação se reduz como tempo à medida que o valor da ação aumenta. Sabemos, no entanto, que os investidores exigem uma taxa de retorno constante, independente do preço da ação. No MAB o desvio padrão é constante ao longo do tempo, enquanto que para melhor modelar ativos o desvio padrão deveria ser proporcional ao valor do ativo. Esses motivos fazem com que o MAB não seja o processo mais indicado para modelar preços de ações ou ativos em geral. 13 Movimento Geométrico Browniano Um processo mais apropriado para modelar ativos é um processo onde o retorno e a volatilidade proporcionais do processo são constantes. Este modelo é conhecido como o Movimento Geométrico Browniano, ou MGB, ou modelo Multiplicativo. A evolução de um MGB é a combinação de duas parcelas: Um crescimento proporcional, com taxa μ Um crescimento aleatório proporcional, com distribuição normal e com desvio padrão σ A sua forma em tempo contínuo é: onde μ = Taxa de retorno esperada σ = olatilidade do valor do ativo d d = μdt + σdz or = μdt + σ dz Movimento Geométrico Browniano Movimento Geométrico Browniano Podemos representar um MGB também como d = μdt + σ dz Através de cálculo infinitesimal sabemos que dx Então se ln temos x = d x Infelizmente não podemos substituir isso diretamente na equação do MGB, pois processos estocásticos exigem análise através de calculo estocástico, ou um processo de Ito. Dessa forma, a representação correta é dln = vdt+σ dz onde 1 dln x = dx x d ln = d 1 v = μ σ Observe que d/ é o retorno sobre e tem distribuição normal, pois é um MAB. Em tempo contínuo, o retorno do preço é dado por. Como os retornos de tem distribuição normal, tem distribuição lognormal. v = ln ( 1 0) O MGB possui três características que o faz ser ideal para modelar preços de ativos: Permite crescimento exponencial, como no caso de juros compostos. Os retornos são normalmente distribuídos, o que facilita a sua manipulação matemática. O valor de não pode se tornar negativo, como ocorre com os preços de ativos. 15

5 Realizações de um MGB Processo de Reversão à Média MGB - Movimento Geométrico Browniano Como vimos anteriormente, no MGB a variável tende a alcançar valores bastante diferentes do seu valor inicial. Embora isso possa ser realista para modelar o valor da maioria dos ativos, existe um grupo de ativos que não se comporta desta maneira. Acredita se que muitos ativos como petróleo, cobre, produtos agrícolas e outros comodities tem o seu preço correlacionado com o seu custo marginal de produção, embora possam sofrer variações aleatórias no curto prazo. A medida que o preço varia, os produtores irão aumentar a produção para se beneficiar dos preços altos e reduzi-lo para evitar perdas quando os preços forem baixos. Isso irá forçar os preços a reverter ao seu valor de equilíbrio de longo prazo Processo de Reversão à Média Realizações de um Processo de Reversão à Média Existem diversos modelos de reversão à média. Um dos mais simples é o modelo de Ornstein-Uhlenbeck, que tem a seguinte expressão matemática: d = η( ) dt + σ dz η onde = velocidade da reversão = a média de longo prazo para a qual tende a reverter. A velocidade da reversão indica quão rapidamente a variável reverte para o seu valor de equilíbrio de longo prazo Processo de Reversão à Média

6 Comentários Finais Os modelos de MAB, MGB e Reversão à Media são também conhecidos como modelos de difusão, uma que que o valor das suas variáveis muda em incrementos muito pequenos de cada vez. Processos aonde o valor da variável muda repentinamente são denominados de modelos de jump. O MAB é mais utilizado para processos físicos, enquanto que o MGB é largamente utilizado para modelar preços de ativos financeiros e ativos reais. Esse será o principal processo que utilizaremos neste curso. Processos de reversão a media são muito utilizados para modelar taxas de juros e preços de comodities. 1 Modelando o Ativo Básico Modelando o Ativo Básico MGB Se o ativo básico segue uma MGB, temos Para simular o caminho seguido por usamos um modelo discreto: Isso pode ser modelado em Excel como: a representação é: d = μdt + σdz t+ 1 t = μtδ t+ σtε Δt ε N(0,1) = t 1 + t μ Δ t t + + σt NORMSIN ( RAND()) t Δ ε t = t + μtδ t+ σt RiskNormal(0,1) Δt ε 3 Podemos também simular Ln () ao invés de diretamente, uma vez que: Para simular o caminho temos: σ d ln = μ dt + σdz σ lnt+ 1 lnt = μ Δ t+ σε Δt = t+ 1 e t σ r Δ t+ σε Δt 4

7 Modelando o Ativo Básico Avaliando Opções com Simulação Isso pode ser modelado em Excel como: σ = μ t σ NORMSIN ( RAND()) t Δ + Δ t+ 1 t e a representação é: RiskNormal σ, t t μ Δ σ Δ t+ 1 = t e Opções também podem ser avaliadas utilizando Simulação de Monte Carlo. Isso é feito analisando cada realização do caminho do ativo básico e determinando o valor da opção no seu vencimento. O valor da opção é o valor presente esperado do valor da opção em cada realização. O ativo básico e o valor presente do valor da opção no vencimento são modelados utilizando-se avaliação neutra a risco 5 6 Exemplo: Call Européia Ativo básico: Ação que não paga dividendos Ação segue uma MGB S 0 = $ olatilidade σ =0% Tempo para expiração T = 1 ano Preço de Exercício X = $ Taxa livre de risco é r = 7% μ = 11% A solução de Monte Carlo com 10,000 iterações é A solução exata (Black and Scholes) é $ Note que a taxa de retorno (risco) μ do ativo básico não é utilizada para a valoração da opção Opções Reais Prof. Luiz Brandão IAG PUC-Rio File: Opção Call MC.xls 7

Opções Reais. Modelagem do Ativo Básico. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos. IAG PUC-Rio

Opções Reais. Modelagem do Ativo Básico. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos. IAG PUC-Rio Opções Reais Modelagem do Ativo Básico Prof. Luiz Brandão brandao@iag.puc-rio.br IAG PUC-Rio Processos Estocásticos Modelando Incerteza Processos Estocásticos A incerteza em um projeto pode ter mais do

Leia mais

Análise de Sensibilidade

Análise de Sensibilidade Análise de Risco de Projetos Análise de Risco Prof. Luiz Brandão Métodos de Avaliação de Risco Análise de Cenário Esta metodologia amplia os horizontes do FCD obrigando o analista a pensar em diversos

Leia mais

IND 2072 - Análise de Investimentos com Opções Reais

IND 2072 - Análise de Investimentos com Opções Reais IND 2072 - Análise de Investimentos com Opções Reais PROVA P2 1 o Semestre de 2007-03/07/2007 OBS: 1) A prova é SEM CONSULTA. Nota da prova = mínimo{10; pontuação da P2 + crédito da P1} 2) Verdadeiro ou

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Este capítulo é divido em duas seções, a primeira seção descreve a base de

Este capítulo é divido em duas seções, a primeira seção descreve a base de 30 3. Metodologia Este capítulo é divido em duas seções, a primeira seção descreve a base de dados utilizada, identificando a origem das fontes de informação, apresentando de forma detalhada as informações

Leia mais

4 Processos Estocásticos e Simulação de Monte Carlo

4 Processos Estocásticos e Simulação de Monte Carlo 33 4 Processos Estocásticos e Simulação de Monte Carlo O processo estocástico faz a descrição de uma variável com comportamento ao menos em parte de maneira aleatória através do tempo, onde se assume valores

Leia mais

Análise de Sensibilidade

Análise de Sensibilidade Métodos de Avaliação de Risco Opções Reais Análise de Risco Prof. Luiz Brandão brandao@iag.puc-rio.br IAG PUC-Rio Análise de Cenário Esta metodologia amplia os horizontes do FCD obrigando o analista a

Leia mais

The Midas Formula BBC 1999

The Midas Formula BBC 1999 The Midas Formula BBC 1999 Raquel M. Gaspar ISEG, UTL Workshop de Mercados e Investimentos Financeiros 3 e 4 Dezembro 2007 Os mercados têm risco 1 O que são opções? São contractos financeiros que, a troco

Leia mais

5 Avaliação da Conversão de uma Termelétrica para Bicombustível

5 Avaliação da Conversão de uma Termelétrica para Bicombustível 5 Avaliação da Conversão de uma Termelétrica para Bicombustível 5.1 Introdução A idéia principal deste capítulo é apresentar a avaliação econômica da conversão de uma usina termelétrica a Gás Natural,

Leia mais

Opções. Opção. Tipos de Opções. Uma opção de compra (call) é um contrato que te da o direito de comprar

Opções. Opção. Tipos de Opções. Uma opção de compra (call) é um contrato que te da o direito de comprar Opções Prf. José Fajardo EBAPE-FGV Opção É um contrato que da o direito, mais não a obrigação de comprar ou vender um determinado ativo subjacente a um determinado preço Tipos de Opções Uma opção de compra

Leia mais

Objectivo. Ephi-ciência Financeira Principios de Avaliação de Opções. Definição e Carcterização de Opções Tipos de Opções Princípios de Avaliação

Objectivo. Ephi-ciência Financeira Principios de Avaliação de Opções. Definição e Carcterização de Opções Tipos de Opções Princípios de Avaliação Principios de Avaliação de Opções Objectivo Definição e Carcterização de Opções Tipos de Opções Princípios de Avaliação João Cantiga Esteves Senior Partner 1 ACTIVOS FINANCEIROS DERIVADOS Perfis de Resultados

Leia mais

6 Análise dos resultados

6 Análise dos resultados 6 Análise dos resultados Os cálculos para análise econômica de um projeto E&P, devem considerar que os dados empregados são imprecisos e sem certeza da ocorrência dos resultados esperados, apesar de estarem

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

Objectivo. Ephi-ciência Financeira Tópicos Avançados sobre Opções -III. Definição e Carcterização de Opções Tipos de Opções Princípios de Avaliação

Objectivo. Ephi-ciência Financeira Tópicos Avançados sobre Opções -III. Definição e Carcterização de Opções Tipos de Opções Princípios de Avaliação Tópicos Avançados sobre Opções -III Objectivo Definição e Carcterização de Opções Tipos de Opções Princípios de Avaliação João Cantiga Esteves Senior Partner 1 ACTIVOS FINANCEIROS DERIVADOS MODELO BLACK-SCHOLES

Leia mais

3 Modelagem. 3.1 Considerações Iniciais

3 Modelagem. 3.1 Considerações Iniciais 3 Modelagem 3.1 Considerações Iniciais A avaliação de um contrato elétrico deve basear-se no conhecimento das variáveis que interferem no resultado futuro deste contrato, sendo aquelas que incorporam incertezas

Leia mais

O preço de uma opção de compra segundo a teoria de Black, Scholes e Merton

O preço de uma opção de compra segundo a teoria de Black, Scholes e Merton O preço de uma opção de compra segundo a teoria de Black, Scholes e Merton Há opções de compra e de venda, do tipo europeu e do tipo americano. As do tipo americano podem ser exercidas a qualquer momento,

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

XV COBREAP CONGRESSO BRASILEIRO DE ENGENHARIA DE AVALIAÇÕES E PERÍCIAS- IBAPE/SP -2009 NATUREZA DO TRABALHO: AVALIAÇÃO

XV COBREAP CONGRESSO BRASILEIRO DE ENGENHARIA DE AVALIAÇÕES E PERÍCIAS- IBAPE/SP -2009 NATUREZA DO TRABALHO: AVALIAÇÃO XV COBREAP CONGRESSO BRASILEIRO DE ENGENHARIA DE AVALIAÇÕES E PERÍCIAS- IBAPE/SP -2009 NATUREZA DO TRABALHO: AVALIAÇÃO RESUMO Os investimentos em projetos da construção imobiliária vêm sofrendo uma instabilidade

Leia mais

Material complementar à série de videoaulas de Opções.

Material complementar à série de videoaulas de Opções. Apostila de Opções Contatos Bradesco Corretora E-mail: faq@bradescobbi.com.br Cliente Varejo: 11 2178-5757 Cliente Prime: 11 2178-5722 www.bradescocorretora.com.br APOSTILA DE OPÇÕES Material complementar

Leia mais

Fábio Henrique de Sousa Coelho. Avaliação de opções exóticas por Simulação de Monte Carlo com Técnicas de Redução de Variância

Fábio Henrique de Sousa Coelho. Avaliação de opções exóticas por Simulação de Monte Carlo com Técnicas de Redução de Variância Fábio Henrique de Sousa Coelho Avaliação de opções exóticas por Simulação de Monte Carlo com Técnicas de Redução de Variância COPPEAD / UFRJ 004 ii Avaliação de opções exóticas por Simulação de Monte Carlo

Leia mais

volatilidade Josué Xavier de Carvalho Rosane Riera Freire Luca Moriconi Pontifícia Universidade Católica - Rio Universidade Federal do Rio de Janeiro

volatilidade Josué Xavier de Carvalho Rosane Riera Freire Luca Moriconi Pontifícia Universidade Católica - Rio Universidade Federal do Rio de Janeiro Opções: cálculo a partir da flutuação empírica da volatilidade Josué Xavier de Carvalho Rosane Riera Freire Luca Moriconi Pontifícia Universidade Católica - Rio Universidade Federal do Rio de Janeiro 2010

Leia mais

BC-0005 Bases Computacionais da Ciência. Modelagem e simulação

BC-0005 Bases Computacionais da Ciência. Modelagem e simulação BC-0005 Bases Computacionais da Ciência Aula 8 Modelagem e simulação Santo André, julho de 2010 Roteiro da Aula Modelagem O que é um modelo? Tipos de modelos Simulação O que é? Como pode ser feita? Exercício:

Leia mais

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência. MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição

Leia mais

Risco e Retorno dos Investimentos. Paulo Pereira Ferreira Miba 507

Risco e Retorno dos Investimentos. Paulo Pereira Ferreira Miba 507 Risco e Retorno dos Investimentos Paulo Pereira Ferreira Miba 507 Risco e Retorno Esperados Linha Característica Linha do Mercado de Títulos Linha de Combinação Realidade Brasileira genda Risco e Retorno

Leia mais

Modelos de Simulação de Monte Carlo: Aplicações ao Cálculo do Value-at-Risk e à Análise de Opções de Compra Européias sem Dividendos

Modelos de Simulação de Monte Carlo: Aplicações ao Cálculo do Value-at-Risk e à Análise de Opções de Compra Européias sem Dividendos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Modelos de Simulação de Monte Carlo: Aplicações ao Cálculo do Value-at-Risk e à Análise de Opções de Compra Européias sem Dividendos Helio Cabral

Leia mais

4 A modelagem estocástica

4 A modelagem estocástica 4 A modelagem estocástica A utilização da metodologia de opções ficou, durante muito tempo, limitada a ativos financeiros que possuíam dados abundantes, e o preço de mercado do ativo subjacente era diretamente

Leia mais

Negociação de Volatilidade no Mercado Brasileiro de Opções sobre Taxa de Câmbio

Negociação de Volatilidade no Mercado Brasileiro de Opções sobre Taxa de Câmbio Negociação de Volatilidade no Mercado Brasileiro de Opções sobre Taxa de Câmbio Sandro Hüttner Chimisso (FISUL) coordcurso@fisul.edu.br Gilberto de Oliveira Kloeckner (UFRGS) gokloeckner@ppga.ufrgs.br

Leia mais

2 Teoria das Opções Reais

2 Teoria das Opções Reais 2 Teoria das Opções Reais 2.1. Introdução Este capítulo descreve os conceitos da teoria de opções reais utilizada para a avaliação de ativos reais, tais como projetos de investimento, avaliação de projetos

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

4. Metodologia. Capítulo 4 - Metodologia

4. Metodologia. Capítulo 4 - Metodologia Capítulo 4 - Metodologia 4. Metodologia Neste capítulo é apresentada a metodologia utilizada na modelagem, estando dividida em duas seções: uma referente às tábuas de múltiplos decrementos, e outra referente

Leia mais

FUNDAÇÃO INSTITUTO CAPIXABA DE PESQUISAS EM CONTABILIDADE, ECONOMIA E FINANÇAS FUCAPE NEWTON VALLADÃO JUNIOR

FUNDAÇÃO INSTITUTO CAPIXABA DE PESQUISAS EM CONTABILIDADE, ECONOMIA E FINANÇAS FUCAPE NEWTON VALLADÃO JUNIOR FUNDAÇÃO INSTITUTO CAPIXABA DE PESQUISAS EM CONTABILIDADE, ECONOMIA E FINANÇAS FUCAPE NEWTON VALLADÃO JUNIOR OPÇÕES REAIS: Testes de aplicabilidade do Least Squares Monte Carlo (LSM) VITÓRIA 2007 1 NEWTON

Leia mais

AVALIAÇÃO DE MÉTODOS NUMÉRICOS PARA PRECIFICAÇÃO DE DERIVATIVOS: REVISÃO E APLICAÇÃO À OPÇÃO DE COMPRA DE TELEBRÁS PN 1

AVALIAÇÃO DE MÉTODOS NUMÉRICOS PARA PRECIFICAÇÃO DE DERIVATIVOS: REVISÃO E APLICAÇÃO À OPÇÃO DE COMPRA DE TELEBRÁS PN 1 DERIVATIVOS: REVISÃO E APLICAÇÃO À OPÇÃO DE COMPRA DE TELEBRÁS PN 1 Richard Saito E-mail: rsaito@finenge.com FGV-EAESP/Brasil Ricardo Ratner Rochman E-mail: Ricardo.Rochman@fgv.br FGV-EAESP/Brasil RESUMO

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA A GEOMETRIA DO VaR: (Value at risk) Aplicações computacionais AUTOR: RODOLFO VENDRASCO TACIN PROFESSOR

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

Juros Simples, Compostos, e Contínuos

Juros Simples, Compostos, e Contínuos Juros Simples, Compostos, e Contínuos Conceito Principal Juros são o preço pago pelo benefício do empréstimo de dinheiro por um certo período de tempo. Tipicamente, a taxa de juros é expressa como uma

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE CIÊNCIAS ECONÔMICAS DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE CIÊNCIAS ECONÔMICAS DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS 0 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE CIÊNCIAS ECONÔMICAS DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS APREÇANDO OPÇÕES VIA MÉTODO DE MONTE-CARLO BRUNO VIACELLI PONTELLO PORTO ALEGRE 2010 1 BRUNO

Leia mais

Avaliação de Opções Barreira segundo o Modelo CEV

Avaliação de Opções Barreira segundo o Modelo CEV Instituto Superior das Ciências do Trabalho e da Empresa Faculdade de Ciências da Universidade de Lisboa Departamento de Finanças do ISCTE Departamento de Matemática da FCUL Avaliação de Opções Barreira

Leia mais

Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls

Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls O objetivo principal do cartão de relatório elementar é comunicar o progresso do aluno para os pais, alunos e outros funcionários

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. Exercícios A U L A 10 Meta da aula Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. objetivo aplicar os conhecimentos adquiridos nas Aulas 4 a 9 por meio da

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

1. Introdução. 1.1 Introdução

1. Introdução. 1.1 Introdução 1. Introdução 1.1 Introdução O interesse crescente dos físicos na análise do comportamento do mercado financeiro, e em particular na análise das séries temporais econômicas deu origem a uma nova área de

Leia mais

4. Revisão Bibliográfica - Trabalhos sobre Opções Reais no Mercado Imobiliário

4. Revisão Bibliográfica - Trabalhos sobre Opções Reais no Mercado Imobiliário 44 4. Revisão Bibliográfica - Trabalhos sobre Opções Reais no Mercado Imobiliário 4.1. Urban Land Prices under Uncertainty (Titman 1985) No artigo publicado em Junho de 1985, Sheridan Titman, ao observar

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

1 INTRODUÇÃO. 1 Valor Presente Líquido. 2 Do inglês Capital Asset Pricing Model ou Modelo de Precificação de Ativos.

1 INTRODUÇÃO. 1 Valor Presente Líquido. 2 Do inglês Capital Asset Pricing Model ou Modelo de Precificação de Ativos. 17 1 INTRODUÇÃO A eficiência dos métodos tradicionais de análise de investimentos, como o VPL 1 obtido a partir do desconto dos fluxos de caixas usando uma taxa que reflita o custo de oportunidade do investidor,

Leia mais

ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS

ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS PROBABILIDADES E COMBINATÓRIA ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 Introdução ao cálculo Conhecer terminologia das probabilidades de Probabilidades

Leia mais

NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS. Mayara Condé Rocha Murça TRA-53 Logística e Transportes

NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS. Mayara Condé Rocha Murça TRA-53 Logística e Transportes NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS Mayara Condé Rocha Murça TRA-53 Logística e Transportes Setembro/2013 Introdução Estimativas acuradas do volume de produtos e serviços processados pela

Leia mais

Escolha de Portfólio. Professor do IE-UNICAMP http://fernandonogueiracosta.wordpress.com/

Escolha de Portfólio. Professor do IE-UNICAMP http://fernandonogueiracosta.wordpress.com/ Escolha de Portfólio considerando Risco e Retorno Aula de Fernando Nogueira da Costa Fernando Nogueira da Costa Professor do IE-UNICAMP http://fernandonogueiracosta.wordpress.com/ Relação entre risco e

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

Relevância das Diferenças entre Contratos Futuros e a Termo: O Caso do Trio

Relevância das Diferenças entre Contratos Futuros e a Termo: O Caso do Trio 1 Relevância das Diferenças entre Contratos Futuros e a Termo: O Caso do Trio Rafael de Godoy Oliveira Andrade (EESP/FGV) Afonso de Campos Pinto (EESP/FGV) Resumo Visando estudar as diferenças entre contratos

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar;

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Avaliação de Desempenho de Sistemas Discretos Parte IV: Simulação Professor: Reinaldo Gomes reinaldo@dsc.ufcg.edu.br Parte 4 Simulação P A R T E Etapas básicas em um estudo de simulação Geração de números

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Levando em conta decisões de investimento não-triviais.

Levando em conta decisões de investimento não-triviais. Levando em conta decisões de investimento não-triviais. Olivier Blanchard* Abril de 2002 *14.452. 2º Trimestre de 2002. Tópico 4. 14.452. 2º Trimestre de 2002 2 No modelo de benchmark (e na extensão RBC),

Leia mais

Equações diferencias são equações que contém derivadas.

Equações diferencias são equações que contém derivadas. Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM Decaimento radioativo Resultados experimentais mostram que elementos radioativos desintegram a uma taxa proporcional à quantidade presente do elemento. Se Q = Q(t) é a

Leia mais

COMO DETERMINAR O PREÇO DE UMA

COMO DETERMINAR O PREÇO DE UMA COMO DETERMINAR O PREÇO DE UMA O que são opções? Precificação de opções Exemplo de árvore recombinante Autores: Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas graduado pela EAESP/FGV.

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

MANKIW, N.G ECONOMIA DA INFORMAÇÃO 3/3/2009 PROF. GIACOMO BALBINOTTO NETO [UFRGS] 1 O MODELO DE MANKIW (1986) ECONOMIA DA INFORMAÇÃO

MANKIW, N.G ECONOMIA DA INFORMAÇÃO 3/3/2009 PROF. GIACOMO BALBINOTTO NETO [UFRGS] 1 O MODELO DE MANKIW (1986) ECONOMIA DA INFORMAÇÃO ECONOMIA DA INFORMAÇÃO PPGE/UFRGS SELEÇÃO ADVERSA E O COLAPSO DO MERCADO DE CRÉDITO O MODELO DE MANKIW (1986) O MODELO DE MANKIW (1986) Bibliografia: MANKIW, N.G. (1986). The Allocation of Credit and Financial

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba Departamento de Física Universidade Federal da Paraíba 23 de Março de 2009 O que são os métodos de Monte-Carlo? Métodos numéricos que utilizam amostragem estatística (em contraposição a métodos determinísticos)

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Parte 1 Risco e Retorno

Parte 1 Risco e Retorno TÓPICOSESPECIAIS EM FINANÇAS: AVALIAÇÃO DE PROJETOS E OPÇÕES REAIS. AGENDA 1. RISCO E RETORNO 2. CUSTO DE CAPITAL PROF. LUIZ E. BRANDÃO 3. CUSTO MÉDIO PONDERADO DE CAPITAL (WACC) RAFAEL IGREJAS Parte 1

Leia mais

2 Independência e dependência das taxas de juro

2 Independência e dependência das taxas de juro 1 Incerteza e juro aleatório Considere-se o intervalo [0, n], o tempo medido em anos, e a partição [0, 1], (1, 2],..., (n 1, 1] e suponha-se que no início do ano t são aplicadas C t unidades de capital,

Leia mais

PRECIFICAÇÃO DE OPÇÕES DE COMPRA NO MERCADO BRASILEIRO: UMA ABORDAGEM RELATIVA DE MÉTODO NUMÉRICO FRENTE AO MODELO DE BLACK & SCHOLES.

PRECIFICAÇÃO DE OPÇÕES DE COMPRA NO MERCADO BRASILEIRO: UMA ABORDAGEM RELATIVA DE MÉTODO NUMÉRICO FRENTE AO MODELO DE BLACK & SCHOLES. 1 1 INTRODUÇÃO 1.1 APRESENTAÇÃO DO TEMA O mercado financeiro tem refletido celeremente às mudanças no ambiente empresarial. Incorporando novas ferramentas computacionais a tradicionais modelos matemáticos,

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA Relatório Parcial Trabalho de Graduação II Avaliação de modelos matemáticos no cálculo do Value-at-Risk (VaR) em carteiras de instrumentos

Leia mais

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL Marcelo Maciel Monteiro Universidade Federal Fluminense, Engenharia de Produção Rua Martins Torres 296, Santa Rosa, Niterói, RJ, Cep 24240-700

Leia mais

MODELO DE VOLATILIDADE ESTOCÁSTICA COM SALTOS APLICADO A COMMODITIES AGRÍCOLAS

MODELO DE VOLATILIDADE ESTOCÁSTICA COM SALTOS APLICADO A COMMODITIES AGRÍCOLAS 1 MODELO DE VOLATILIDADE ESTOCÁSTICA COM SALTOS APLICADO A COMMODITIES AGRÍCOLAS Roberto Andreotti Bodra (EESP/FGV) Afonso de Campos Pinto (EESP/FGV) Resumo: Mensalmente são publicados relatórios pelo

Leia mais

MODULAÇÃO AM E DEMODULADOR DE ENVELOPE

MODULAÇÃO AM E DEMODULADOR DE ENVELOPE 204/ MODULAÇÃO AM E DEMODULADOR DE ENVELOPE 204/ Objetivos de Estudo: Desenvolvimento de um modulador AM e um demodulador, utilizando MatLab. Visualização dos efeitos de modulação e demodulação no domínio

Leia mais

O estudo de um indicador de comportamento do segurado brasileiro Francisco Galiza, Mestre em Economia (FGV)

O estudo de um indicador de comportamento do segurado brasileiro Francisco Galiza, Mestre em Economia (FGV) O estudo de um indicador de comportamento do segurado brasileiro Francisco Galiza, Mestre em Economia (FGV) Este artigo tem por objetivo analisar as taxas de aversão ao risco em alguns ramos do mercado

Leia mais

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO Em quase todas as nossas atividades diárias precisamos enfrentar filas para atender as nossas necessidades. Aguardamos em fila na padaria, nos bancos, quando trafegamos

Leia mais

Módulo 4 PREVISÃO DE DEMANDA

Módulo 4 PREVISÃO DE DEMANDA Módulo 4 PREVISÃO DE DEMANDA Conceitos Iniciais Prever é a arte e a ciência de predizer eventos futuros, utilizando-se de dados históricos e sua projeção para o futuro, de fatores subjetivos ou intuitivos,

Leia mais

Introdução a Avaliação de Desempenho

Introdução a Avaliação de Desempenho Introdução a Avaliação de Desempenho Avaliar é pronunciar-se sobre as características de um certo sistema. Dado um sistema real qualquer, uma avaliação deste sistema pode ser caracterizada por toda e qualquer

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

Mercados e Investimentos Financeiros. Cesaltina Pacheco Pires

Mercados e Investimentos Financeiros. Cesaltina Pacheco Pires Mercados e Investimentos Financeiros Cesaltina Pacheco Pires iv Índice Prefácio xiii 1 Introdução 1 1.1 Activos reais e activos financeiros...................... 1 1.2 Escolhaintertemporaletaxadejuro...

Leia mais

Avaliação de Projetos de Investimento com Opções Reais: Cálculo de Valor de Opção de Espera de uma Unidade Separadora de Propeno

Avaliação de Projetos de Investimento com Opções Reais: Cálculo de Valor de Opção de Espera de uma Unidade Separadora de Propeno Daniel Almeida Domingues Fonseca Avaliação de Projetos de Investimento com Opções Reais: Cálculo de Valor de Opção de Espera de uma Unidade Separadora de Propeno EPGE/FGV Rio de Janeiro, 18 de Fevereiro

Leia mais

3 Matemática financeira e atuarial

3 Matemática financeira e atuarial 3 Matemática financeira e atuarial A teoria dos juros compostos em conjunto com a teoria da probabilidade associada à questão da sobrevivência e morte de um indivíduo são os fundamentos do presente trabalho.

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

A POLITICA DE DIVIDENDOS E OUTROS PAYOUTS ESTV-IPV

A POLITICA DE DIVIDENDOS E OUTROS PAYOUTS ESTV-IPV A POLITICA DE DIVIDENDOS E OUTROS PAYOUTS ESTV-IPV Sumário Diferentes Tipos de Dividendos O Modelo de Distribuição de Dividendos O caso da Irrelevância da Política de Dividendos Recompra de Acções e Ampliações

Leia mais

Modalidades. Aluguel de ações; Mercado a termo; Operações estruturadas; Financiamento com opções; Long & Short; Day Trade;

Modalidades. Aluguel de ações; Mercado a termo; Operações estruturadas; Financiamento com opções; Long & Short; Day Trade; Modalidades Fora o clássico buy & hold, que é a compra e eventual construção de uma posição comprada no mercado acionário algumas outras modalidades são: Aluguel de ações; Mercado a termo; Operações estruturadas;

Leia mais

OPÇÕES FINANCEIRAS - Exame (resolução)

OPÇÕES FINANCEIRAS - Exame (resolução) OPÇÕES FINANCEIRAS - Exame (resolução) 1/0/006 1. (a) Aplicando o lema de Itô ao processo obtém-se: y (t) :=exp( bt) X (t), (1) dy (t) = be bt X (t) dt + e bt {[a + bx (t)] dt + W (t) dw (t)} = ae bt dt

Leia mais

2. Imagine um mercado que apresenta as seguintes curvas de oferta e demanda: (Curva de Demanda)

2. Imagine um mercado que apresenta as seguintes curvas de oferta e demanda: (Curva de Demanda) Universidade de Brasília Departamento de Economia Disciplina: Economia Quantitativa I Professor: Carlos Alberto Período: 1/7 Segunda Prova Questões 1. Resolver a seguinte integral: 1 ln ( 1 + x.5 ) dx

Leia mais

Por dentro da Política de Investimentos IPERGS Porto Alegre (RS) Fev/2015

Por dentro da Política de Investimentos IPERGS Porto Alegre (RS) Fev/2015 Por dentro da Política de Investimentos IPERGS Porto Alegre (RS) Fev/2015 Política de Investimento Os RPPS possuem obrigação legal de elaborar anualmente sua política de investimentos; Essa política deve

Leia mais

Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo!

Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo! Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo! Como usar de forma consistente PF, COCOMOIl, Simulação de Monte Carlo e seu bom senso em estimativas de software

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais