A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns:"

Transcrição

1 A notação utilizada na teoria da fila é variada ma, em geral, a eguinte ão comun: λ número médio de cliente que entram no itema or unidade de temo; µ número médio de cliente atendido (que aem do itema) or unidade de temo; L número médio de cliente no itema; L q número médio de cliente na fila; L número médio de cliente endo atendido; W temo médio que o cliente fica no itema; W q temo médio que o cliente fica na fila; W temo médio que um cliente leva ara er atendido. W(t) a robabilidade de que um cliente fique mai do que um temo t no itema; W q (t) a robabilidade de que um cliente fique mai do que um temo t na fila. Para um itema de fila etá em etado etacionário, tem-e: L λw L q λw q L λw L é exreo em número de cliente, λ é exreo em termo de cliente or hora e W é exreo em hora. Aim λw tem a mema unidade (cliente) de L. A trê equaçõe acima ão válida ara qualquer itema de fila.

2 É um itema com temo interchegada exonencialmente ditribuído de arâmetro λ e temo de erviço exonencialmente ditribuído com arâmetro µ e com ervidore atuando em aralelo e uma única fila de cliente. Se cliente etiverem no itema então todo etarão endo atendido. Se > cliente etiverem no itema então cliente etarão eerando na fila. Qualquer cliente que chegar e encontrar um ervidor ocioo erá atendido imediatamente e aquele que não encontrarem ervidore livre entrarão na fila eerando ara erem atendido. Banco e correio na qual todo o cliente eeram numa fila única ão muita veze rereentado or ee tio de modelo. Para decrever ee tio de modelo da mema forma como o demai erá uoto que: λ λ ara,,, 3, Se ervidore etiverem ocuado então a finalização do erviço ocorre a uma taxa de µ + µ + + µ µ Semre que cliente etiverem reente o min(, ) ervidore etarão ocuado. Aim: µ min(, )µ. Reumindo então ee modelo ode er rereentado como um roceo de nacimento e morte com o eguinte arâmetro: λ λ ara,,, 3, µ µ ara,,,, µ µ ara, +, +, Define-e ρ λ/(µ) ara ρ <, então: i (ρ) (ρ) + i i!!( ρ) e (ρ) ara,,...,! ( ρ) P ρ P ara, +, +,...!!

3 Se ρ, então não exite um etado etacionário. Em outra alavra e a taxa de chegada é igual ou maior a taxa de erviço λ µ então o itema não dará mai conta. Pode er motrado que, a robabilidade do etado etacionário, quando todo o ervidore etão ocuado é dado or: (ρ) P( )!( ρ) que é a robabilidade de que um conumidor tenha que entrar na fila. Ea robabilidade é batante utilizada em telefonia e é conhecida como fórmula C de Erlang. O temo de eera médio na fila é dado or: (ρ) ( )! Uma vez que: (ρ )! P ρ P! (ρ)! ara Vamo coniderar o doi termo earadamente. Tomando o rimeiro termo, tem-e: Note-e que: (ρ) (ρ).!! (ρ) ρ ρ + + ρ + (ρ) ρ Então: (ρ) (ρ)!! (ρ)! (ρ)! (ρ)! [( )ρ ρ ] + ( )ρ ( ρ) ( ρ) + ρ( ρ) /ρ + ) + ρ Para o egundo termo, tem-e que: (ρ)! (ρ) ρ!! (ρ) ρ! (ρ)! + / ρ ρ (ρ)!( ρ) 3

4 Juntando o doi reultado, temo: (ρ)! (ρ)! + + /ρ (ρ) + + ( ρ) )! + /ρ ρ / ρ /ρ + (ρ) + ( ρ) ρ ρ!( ρ) Coniderando ete reultado em termo da fórmula de Erlang, tem-e: + (ρ) P(J )ρ!( ρ) ρ Com a exreão do número de cliente na fila, ode-e determinar o temo gato na fila, ela relação de Little. Tem-e que: L q λw q Aim: P( ) Wq λ µ λ Para determinar L (e então W) utiliza-e o fato de que L L q + L. Uma vez que W /µ, utilizando o Teorema um, egue que: L λ/µ e então: L L q + λ/µ. Também: P( ) W L/λ + Wq + + λ µ µ µ λ µ W(t) a robabilidade de que um cliente fique mai do que um temo t no itema; W q (t) a robabilidade de que um cliente fique mai do que um temo t na fila. W(t) P(W > t) e e µ t µ t t( ) µ ρ (ρ) [ e ] +!( ρ)( ρ) µ t( ρ) [ e ] + P( ) * ( ρ) (*) Quando ρ, então W(t) P(W > t) e µ t [ + P( ) µ t] 4

5 W q (t) a robabilidade de que um cliente fique mai do que um temo t na fila. Wq (t) P(Wq > t) (ρ) e!( ρ) µ t( ρ ) P( )e µ t( ρ) Conidere um banco com doi caixa. Uma média de 8 cliente or hora chegam ao banco e eeram na fila ara erem atendido. Cada caixa leva na média, minuto ara atender um cliente. Determine:. O número eerado de cliente no banco?. O temo médio gato or cliente no banco? 3. A fração de temo que um caixa etá livre? Temo um itema M/M/ com λ 8 cliente or hora e µ 5 cliente or hora. Aim ρ 8/.5,8 < e ortanto exite um etado etacionário. Para λ nenhum etado etacionário irá exitir. A robabilidade de o itema etar vazio é dado or: i ( ) ( ) (.,8),6 ρ ρ ,8 + +,6 + i i!!( ρ)!(,8),4 Então: (ρ) (.,8) (/9) 6,4 P( ),7!( ρ)!(,8) 9 P( ) ρ.,7.,8 L q,84 cliente ρ,8. Tem-e L L q + λ/µ,84 + 8/5 4,44 cliente. Então: W 4,44/8,556 hora 3,33 minuto. 3. Para determinar o temo que um atendente etá livre é recio coniderar que io irá ocorrer emre que e na metade do 5

6 temo (or imetria) em que. Então a robabilidade de eque o ervidor etea livre é dada or +,5. Como /9, bata determinar. Tem-e (ρ) /! e, então (.,8)(/9)/ 8/45,777. Aim a robabilidade de que um atendente etea livre é: (/9) +,8/9,8/9, % O gerente de um banco quer determinar quanto caixa devem trabalhar na exta feira. Para cada minuto que um cliente gata na fila o gerente etima um cuto de $,5. Uma média de doi cliente or minuto chegam ao banco. Na média um caixa atende um cliente a cada minuto. O banco tem um cuto de $ 9, a hora ara contratar um caixa. Para minimizar a oma do cuto quanto caixa o banco deve manter trabalhando na exta? Temo um itema M/M/ com λ cliente or minuto e µ,5 cliente or minuto. Aim ρ (λ/µ) < requer que (4/) < ara que o itema etea em equilíbrio. Aim 5. Ito é, deve exitir elo meno 5 caixa ara que a fila não vá ara o infinito. Vamo calcular agora o cuto ara 5, 6, Cuto (Serviço + Eera) or minuto. Cuto de erviço 9/6 $,5, á que cada caixa ganha $ 9, a hora. Cuto de eera (Número eerado de cliente/minuto).(cuto de eera/cliente) Ma: cuto de eera/cliente,5w q. Como chegam cliente, em média or minuto: Cuto de eera.,5w q,w q. Para 5, ρ /,5.5,8 e P( 5),55. Ainda W q L q /λ P( )/(µ λ),55/(5.,5 ), minuto. 6

7 Aim ara 5. Cuto de eera/minuto,., $, e Cuto total,5.5 +, $,86. Como 6 tem um cuto de erviço de 6.,5 $,9 or minuto, 6 caixa não tem um cuto menor do que 5 caixa. Aim 5 caixa é o número ótimo. Colocando de outro forma: adicionar um caixa ode ouar no máximo centavo or minuto em cuto de eera, ma como um caixa cuta 5 centavo or minuto, não é vantaoo contratar mai do que cinco caixa. GRIMMETT, G. R., SITRZAKER, D. R. Probability and Random Procee. Oxford (London): Oxford Univerity Pre, 99. KLEINROCK, Leonard. Queueing Sytem: v. : Theory. New York: John Wiley, 975. WISTON, Wayne L. Oeration Reearch: Alication and Algorithm. 3 ed. Belmont (CA): Duxbury Pre,

consumidores por hora. Uma média de três clientes por hora chegam solicitando serviço. A capacidade

consumidores por hora. Uma média de três clientes por hora chegam solicitando serviço. A capacidade D i i l i n a : P e u i a O e r a i o n a l C u r o : E e i a l i z a ç ã o e m M é t o d o Q u a n t i t a t i v o : E t a t í t i a e M a t e m á t i a A l i a d a i t a d o i d e e x e r í i o o b r

Leia mais

operação. Determine qual o percentual de vezes que o servidor adicional será acionado.

operação. Determine qual o percentual de vezes que o servidor adicional será acionado. P r i m e i r o e m e t r e d e 2 4 Revião da Poion e da Exponencial. Suponha ue o aceo a um ervidor de web iga uma Poion com taxa de uatro aceo por minuto. (i) Encontre a probabilidade de ue ocorram aceo

Leia mais

Curso: Engenharia de Produção. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção

Curso: Engenharia de Produção. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção λ número médio de clientes que entram no sistema por unidade de tempo; µ número médio de clientes atendidos (que saem do sistema) por unidade de tempo; Servidores (mecânicos) no sistema; número de máquinas

Leia mais

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que:

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que: Vamos admitir que o tempo de atendimento (tempo de serviço) de clientes diferentes são variáveis aleatórias independentes e que o atendimento de cada consumidor é dado por uma variável S tendo função densidade

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras Livro para a SBEA (material em contrução) Edmundo Rodrigue 9 4.1. Análie granulométrica Granulometria, graduação ou compoição granulométrica de um agregado é a ditribuição percentual do eu divero tamanho

Leia mais

Uma introdução à Teoria das Filas

Uma introdução à Teoria das Filas Uma introdução à Teoria das Filas Introdução aos Processos Estocásticos 13/06/2012 Quem nunca pegou fila na vida? Figura: Experiência no bandejão Motivação As filas estão presentes em nosso cotidiano,

Leia mais

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar;

Leia mais

Investigação Operacional

Investigação Operacional Ivetigação Operacioal Fila de Epera Liceciatura em Egeharia Civil Liceciatura em Egeharia do Território Nuo Moreira - 4/5 roblema Nuo Moreira - 4/5 No erviço de urgêcia do hopital da cidade o paciete ão

Leia mais

Teoria de Filas. Agner Krarup Erlang (*1878, Lonborg, Dinamarca; 1929, Copenhagen, Dinamarca). Fernando Nogueira Teoria de Filas 1

Teoria de Filas. Agner Krarup Erlang (*1878, Lonborg, Dinamarca; 1929, Copenhagen, Dinamarca). Fernando Nogueira Teoria de Filas 1 Teoria de Fila Ager Kraru Erlag (*878, Loborg, Diamarca; 99, Coehage, Diamarca). Ferado Nogueira Teoria de Fila Itrodução O etudo de Teoria de Fila trata com o feômeo de aguardar em fila uado medida rereetativa

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto rtocano@id.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B eolução Fíica FM.9 1. e Com bae na tabela, obervamo que o atleta etá com 5 kg acima do peo ideal. No gráfico, temo, para a meia maratona: 1 kg,7 min 5 kg x x,5 min. Na configuração apreentada, a força

Leia mais

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória.

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória. Reolução do Problema de Carregamento e Decarregamento 3D de Contêinere em Terminai Portuário para Múltiplo Cenário via Repreentação por Regra e Algoritmo Genético Aníbal Tavare de Azevedo (UNICAMP) anibal.azevedo@fca.unicamp.br

Leia mais

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID AÇÕES E CONTROLE Açõe de Controle Relação Controlador/Planta Controlador roorcional Efeito integral Efeito derivativo Controlador PI Controle de Sitema Mecânico - MC - UNICAMP Açõe comun de controle Ação

Leia mais

3 Amplificador óptico a fibra dopada

3 Amplificador óptico a fibra dopada 3 Amlificador ótico a fibra doada Em qualquer itema de tranmião o amlificador tem um ael imortante de catar o inal que leva a informação, amlificá-lo, e devolvê-lo ara o canal de tranmião ou ara o recetor,

Leia mais

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto tocano@im.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

FORMULÁRIO DE TEORIA DAS FILAS (QUEUEING THEORY)

FORMULÁRIO DE TEORIA DAS FILAS (QUEUEING THEORY) D i i l i n a : u i a O r a i o n a l I I T o r i a d a f i l a - F o r m u l á r i o S g u n d o m t r d FOMUÁIO DE TEOIA DAS FIAS (QUEUEING THEOY Na notação d ndall uma fila é drita or: A/B/C/Z//m Ou

Leia mais

Objectivo Geral: Familiarização com os conceitos de sinais, espectros e modulação.

Objectivo Geral: Familiarização com os conceitos de sinais, espectros e modulação. Deartamento de Engenharia Electrotécnica Secção de Telecomunicaçõe Metrado integrado em Engenharia Electrotécnica e de Comutadore Licenciatura em Engenharia Informática º Trabalho de Laboratório Gruo:

Leia mais

Exercícios Resolvidos de Biofísica

Exercícios Resolvidos de Biofísica Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Modelo de Filas M/M/1 e M/M/m Prof. Othon Batista othonb@yahoo.com Modelo de Filas Nas aulas anteriores vimos a necessidade de se utilizar uma distribuição para representar

Leia mais

Fotografando o Eclipse Total da Lua

Fotografando o Eclipse Total da Lua Fotografando o Eclipe Total da Lua (trabalho apreentado para o Mueu de Atronomia e Ciência Afin) http://atrourf.com/diniz/artigo.html Autor: Joé Carlo Diniz (REA-BRASIL) "Você pode e deve fotografar o

Leia mais

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS Reumo Luca Franco de Ai¹ Marcelo Semenato² ¹Intituto Federal de Educação, Ciência e Tecnologia/Campu Jataí/Engenharia Elétrica/PIBIT-CNPQ lucafranco_jty@hotmail.com

Leia mais

Tensão Induzida por Fluxo Magnético Transformador

Tensão Induzida por Fluxo Magnético Transformador defi deartamento de fíica Laboratório de Fíica www.defi.ie.i.t Tenão Induzida or Fluxo Magnético Tranformador Intituto Suerior de Engenharia do Porto- Deartamento de Fíica Rua Dr. António Bernardino de

Leia mais

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada.

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada. Compenadore 0.1 Introdução Controle 1 - DAELN - UTFPR Prof. Paulo Roberto Brero de Campo O compenadore ão utilizado para alterar alguma caracterítica do itema em malha fechada. 1. Avanço de fae (lead):

Leia mais

Fenômenos de Transporte I

Fenômenos de Transporte I Fenômeno de Tranorte I Aula Prof. r. Gilberto Garcia Cortez 9.3 Ecoamento em um duto e tubo. 9.3. Conideraçõe erai O ecoamento em duto ou tubo é etudo de rande imortância, oi ão o reonáei elo tranorte

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode

Leia mais

PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS

PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS PLANEJAMENTO DE CAPACIDADES E RESOLUÇÃO DE PROBLEMAS Curso: Tecnologia em Redes de Computadores Prof.:Eduardo Araujo Site- http://professoreduardoaraujo.com INICIANDO O ESTUDO História: 1908 matemático

Leia mais

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s). 2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()

Leia mais

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2 Reitência do Materiai SUMÁRIO 1. TESÕES DE CISLHMETO... 1 1.1 DIMESIOMETO... 1. EXEMPLOS... Cialhamento 0 Prof. Joé Carlo Morilla Reitência do Materiai 1. Tenõe de Cialhamento Quando dua força cortante

Leia mais

Mecânica dos Fluidos (MFL0001) CAPÍTULO 4: Equações de Conservação para Tubo de Corrente

Mecânica dos Fluidos (MFL0001) CAPÍTULO 4: Equações de Conservação para Tubo de Corrente Mecânica do Fluido (MFL000) Curo de Engenharia Civil 4ª fae Prof. Dr. Doalcey Antune Ramo CAPÍTULO 4: Equaçõe de Conervação ara Tubo de Corrente Fonte: Bitafa, Sylvio R. Mecânica do Fluido: noçõe e alicaçõe.

Leia mais

Modelagem Matemática e Simulação computacional de um atuador pneumático considerando o efeito do atrito dinâmico

Modelagem Matemática e Simulação computacional de um atuador pneumático considerando o efeito do atrito dinâmico Modelagem Matemática e Simulação computacional de um atuador pneumático coniderando o efeito do atrito dinâmico Antonio C. Valdiero, Carla S. Ritter, Luiz A. Raia Depto de Ciência Exata e Engenharia, DCEEng,

Leia mais

PROCEDIMENTO DE MERCADO AM.04 Cálculo de Votos e Contribuição

PROCEDIMENTO DE MERCADO AM.04 Cálculo de Votos e Contribuição PROCEDIMENTO DE MERCADO AM.04 Cálculo de Voto e Contribuição Reponável pelo PM: Acompanhamento do Mercado CONTROLE DE ALTERAÇÕES Verão Data Decrição da Alteração Elaborada por Aprovada por PM AM.04 - Cálculo

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos.

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos. 132 7.6. Acoplamento do Momento Angular. A informação dada atravé da ditribuição electrónica no átomo não é uficiente para decrever completamente o etado do átomo, uma vez que não explica como o momento

Leia mais

ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS

ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS 3 a 6 de outubro de 0 Univeridade Federal Rural do Rio de Janeiro Univeridade Severino Sombra aoura RJ ESTUDOS EXPERIMENTIS SOBRE LIÇÃO DS PROPRIEDDES DE FLUIDOS DE PERFURÇÃO EM MEIOS POROSOS NISOTRÓPICOS.

Leia mais

Professora FLORENCE. Resolução:

Professora FLORENCE. Resolução: 1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

Sistemas de Filas Simples

Sistemas de Filas Simples Sistemas de Filas Simles Teoria de Filas Processo de chegada: se os usuários de uma fila chegam os istates t, t, t 3,..., t, as variáveis aleatórias τ t - t - são chamadas de itervalos etre chegadas. As

Leia mais

CRECHE COMUNITARIA PINGO DE GENTE AV.Senador Levindo Coelho 130 Tirol CEP.30662-290 CNPJ: 21508312.0001/80

CRECHE COMUNITARIA PINGO DE GENTE AV.Senador Levindo Coelho 130 Tirol CEP.30662-290 CNPJ: 21508312.0001/80 ORGANIZAÇÃO PROPONENTE: CRECHE COMUNITARIA PINGO DE GENTE PROJETO : CUIDANDO EDUCANDO E CONSTRUINDO CIDADÃOS DO FUTURO. LINHA PROGRAMÁTICA DO PROJETO Creche, Educação Infantil, Socialização,Garantia de

Leia mais

P(seleção de um elemento baixo) = p P(seleção de um elemento médio) = p. P(seleção de um elemento alto) = p

P(seleção de um elemento baixo) = p P(seleção de um elemento médio) = p. P(seleção de um elemento alto) = p . A Distribuição Multinomial - Teste Qui-Quadrado. Inferência Estatística Uma imortante generalização da rova de Bernoulli (), é a chamada rova multinomial. Uma rova de Bernoulli () ode roduzir dois resultados

Leia mais

D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : 0 1

D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : 0 1 T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : S e x t a f e i r a, 4 d e n o v e m b r o d e 2. O número de navios etroleiros que chegam à determinada refinaria or dia tem uma distribuição

Leia mais

TRANSFORMADORES DE POTENCIAL

TRANSFORMADORES DE POTENCIAL TRANSFORMADORES DE POTENCIA 1 - Introdução: Tio de TP TP Eletromagnético (TP) TP Caacitivo (TPC) Até 138 k Acima de 138 k Funçõe Báica - Iolamento contra alta tenõe. - Fornecimento no ecundário de uma

Leia mais

FUNÇÕES DE TRANSFERÊNCIA

FUNÇÕES DE TRANSFERÊNCIA CAPÍTULO FUNÇÕE DE TRANFERÊNCIA INTRODUÇÃO O filtro contínuo roceam inai definido em qualquer intante de temo e que têm qualquer amlitude oível O filtro contínuo odem er realizado com diferente tecnologia

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2 r od la ort no C UNESDADE DE MOG DAS CUZES - ENGENHAA EÉCA Prof. Joé oberto Marque CUSO DE ENGENHAA EÉCA EEÔNCA DE POÊNCA Ex. ONE CHAEADA PWM ABAXADOA BUCK Objetivo: O objetivo deta exeriência é demontrar

Leia mais

PESQUISA OPERACIONAL: UMA APLICAÇÃO DA TEORIA DAS FILAS A UM SISTEMA DE ATENDIMENTO

PESQUISA OPERACIONAL: UMA APLICAÇÃO DA TEORIA DAS FILAS A UM SISTEMA DE ATENDIMENTO PESQUISA OPERACIONAL: UMA APLICAÇÃO DA TEORIA DAS FILAS A UM SISTEMA DE ATENDIMENTO Rafael de Bruns Sérgio Pacífico Soncim Maria Cristina Fogliatti de Sinay - Phd Instituto Militar de Engenharia IME, Mestrado

Leia mais

Estudo Experimental da Erosão Localizada na Proximidade de Pilares de Pontes. Maria Manuela C. Lemos Lima 1

Estudo Experimental da Erosão Localizada na Proximidade de Pilares de Pontes. Maria Manuela C. Lemos Lima 1 Etudo Experimental da Eroão Localizada na Proximidade de Pilare de Ponte Maria Manuela C. Lemo Lima 1 Univeridade do Minho, epartamento de Engenharia Civil Azurém, P 4800-058 Guimarãe, Portugal RESUMO

Leia mais

Aplicação da Teoria das Filas à Operação de Transportes

Aplicação da Teoria das Filas à Operação de Transportes Aplicação da Teoria das Filas à Operação de Transportes Lâminas preparadas por: S. H. Demarchi Bibliografia: Setti, J.R (2002). Tecnologia de Transportes USP, São Carlos Fogliatti, M.C. e N.M.C. Mattos

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: jorgewgut@up.br Um modelo de imulação é uma repreentação

Leia mais

XLVI Pesquisa Operacional na Gestão da Segurança Pública

XLVI Pesquisa Operacional na Gestão da Segurança Pública PROBLEMA DE CORTE UNIDIMENSIONAL COM SOBRAS APROVEITÁVEIS: RESOLUÇÃO DE UM MODELO MATEMÁTICO Adriana Cherri Departamento de Matemática, Faculdade de Ciência, UNESP, Bauru adriana@fc.unep.br Karen Rocha

Leia mais

Técnicas Econométricas para Avaliação de Impacto. Problemas de Contaminação na Validação Interna

Técnicas Econométricas para Avaliação de Impacto. Problemas de Contaminação na Validação Interna Técnica Econométrica para Avaliação e Impacto Problema e Contaminação na Valiação Interna Rafael Perez Riba Centro Internacional e Pobreza Braília, 18 e junho e 28 Introução Valiação Interna é quano um

Leia mais

Ww Ws. w = e = Vs 1 SOLO CONCEITOS BÁSICOS

Ww Ws. w = e = Vs 1 SOLO CONCEITOS BÁSICOS 1 SOLO CONCEITOS BÁSICOS O olo, ob o ponto de vita da Engenharia, é um conjunto de partícula ólida com vazio ou poro entre ela. Ete vazio podem etar preenchido com água, ar ou ambo. Aim o olo é : - eco

Leia mais

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI

Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI Modelos Estocásticos Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 LEGI Capítulo 7 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA Nota: neste capítulo ilustram-se alguns dos conceitos de

Leia mais

Nestas notas será analisado o comportamento deste motor em regime permanente.

Nestas notas será analisado o comportamento deste motor em regime permanente. MOTO DE INDUÇÃO TIFÁSICO 8/0/006 Ivan Camargo Introdução O motor de indução trifáico correponde a, aproximadamente, 5 % da carga elétrica do Brail, ou eja, 50 % da carga indutrial que, por ua vez, correponde

Leia mais

Teoria de Filas Aula 15

Teoria de Filas Aula 15 Teoria de Filas Aula 15 Aula de hoje Correção Prova Aula Passada Prova Little, medidas de interesse em filas Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo

Leia mais

CAPÍTULO 6 - Testes de significância

CAPÍTULO 6 - Testes de significância INF 16 CAPÍTULO 6 - Tete de ignificância Introdução Tete de ignificância (também conhecido como Tete de Hipótee) correpondem a uma regra deciória que no permite rejeitar ou não rejeitar uma hipótee etatítica

Leia mais

/HYDQWDUÃDOJXQVÃWHPDVÃUHODWDUÃH[SHULrQFLDVÃHPÃWRUQRÃGHVVHVÃWHPDVÃGHEDWrORVÃDSRQWDGRÃ VXDÃGLPHQVmRÃHÃSRVVLELOLGDGHVÃGHÃWUDEDOKRVÃEXVFDÃGHÃXPÃGLDJQyVWLFRÃSDUDÃFRPSUHHQGHUÃ RÃFRPSOH[RÃGHQWURÃGHÃXPDÃUHDOLGDGHÃUHVJDWDQGRÃRÃFRWLGLDQRÃLQtFLRÃGDÃSUREOHPDWL]DomR

Leia mais

FOTOMETRIA FOTOELÉTRICA UBV E A DETERMINAÇÃO DAS MASSAS DO SISTEMA HD27507

FOTOMETRIA FOTOELÉTRICA UBV E A DETERMINAÇÃO DAS MASSAS DO SISTEMA HD27507 FOTOMETRIA FOTOELÉTRICA U E A DETERMINAÇÃO DAS MASSAS DO SISTEMA HD27507 Walter. Joé Maluf 1,a, Júlio. Céar Penereiro 1 e 2,b e Joé. Renato Rei Maia 2 1 OMCJN Obervatório Municial de Camina Jean Nicolini.

Leia mais

EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS

EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO - UNICAMP EE-832 - LABORATÓRIO DE ELETRÔNICA INDUSTRIAL EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS 7. Introdução A máquina de corrente

Leia mais

16.36: Engenharia de Sistemas de Comunicação. Aulas 17/18: Modelos de Retardo para Redes de Dados

16.36: Engenharia de Sistemas de Comunicação. Aulas 17/18: Modelos de Retardo para Redes de Dados 16.36: Engenharia de Sistemas de Comunicação Aulas 17/18: Modelos de Retardo para Redes de Dados Slide 1 Redes de Pacotes Comutados Mensagens dividas em Pacotes que são roteados ao seu destino PC PC PC

Leia mais

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.) Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

Simulação de Sistemas Teoria das Filas Estrutura do Sistema

Simulação de Sistemas Teoria das Filas Estrutura do Sistema Simulação de Sistemas Teoria das Filas 1 2 3 Estrutura do Sistema Capacidade do sistema Canais de Serviço 1 Chegada de Clientes de chegada (tempo entre chegadas) Fila de Clientes Tempo de atendimento 2...

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CEFET-SP ÁREA INDUSTRIAL Disciplina: Mecânica dos Fluidos Aplicada Exercícios Resolvidos 1 a lista.

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CEFET-SP ÁREA INDUSTRIAL Disciplina: Mecânica dos Fluidos Aplicada Exercícios Resolvidos 1 a lista. ÁREA INDUSTRIAL Diciplina: Mecânica do Fluido Aplicada Exercício Reolvido 1 a lita Profeor: 1 de 7 Data: /03/008 Caruo Em todo o problema, ão upoto conhecido: água =1000kgm 3 e g= 9,80665m 1. Motrar que

Leia mais

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO Thale Cainã do Santo Barbalho 1 ; Álvaro Daniel Tele Pinheiro 2 ; Izabelly Laria Luna

Leia mais

Gestão de Operações II Teoria das Filas

Gestão de Operações II Teoria das Filas Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,

Leia mais

Introdução a Teoria das Filas

Introdução a Teoria das Filas DISC. : PESQUISA OPERACIONAL II Introdução a Teoria das Filas Prof. Mestre José Eduardo Rossilho de Figueiredo Introdução a Teoria das Filas Introdução As Filas de todo dia. Como se forma uma Fila. Administrando

Leia mais

Simplified method for calculation of solid slabs supported on flexible beams: validation through the non-linear analysis

Simplified method for calculation of solid slabs supported on flexible beams: validation through the non-linear analysis Teoria e Prática na Engenharia Civil, n.14, p.71-81, Outubro, 2009 Método implificado para cálculo de laje maciça apoiada em viga fleívei: validação por meio da análie não linear Simplified method for

Leia mais

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori.

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Fíica Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Introdução: Ao uarmo uma chave de roda para retirar o parafuo para trocar o pneu de um automóvel, a roda inteira pode

Leia mais

Máquinas Eléctricas. Motores de indução. Motores assíncronos. Arranque

Máquinas Eléctricas. Motores de indução. Motores assíncronos. Arranque Motore de indução Arranque São motore robuto e barato (fabricado em maa), embora tendo o inconveniente de não erem regulávei. Conequentemente, uma vez definido um binário e uma corrente, ete apena dependem

Leia mais

Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Redes MPLS, com Duas Classes de Serviço

Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Redes MPLS, com Duas Classes de Serviço Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Rede MPLS, com Dua Clae de Serviço Rita Girão Silva a,c (Tee de Doutoramento realizada ob upervião de Profeor Doutor Joé Craveirinha a,c e Profeor

Leia mais

8 Equações de Estado

8 Equações de Estado J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo

Leia mais

- 106 - - TRANSFORMADOR MONOFÁSICO CONSIDERAÇÕES INICIAIS: NOÇÕES DE ELETROMAGNETISMO PRINCIPAIS LEIS:

- 106 - - TRANSFORMADOR MONOFÁSICO CONSIDERAÇÕES INICIAIS: NOÇÕES DE ELETROMAGNETISMO PRINCIPAIS LEIS: - 6 - CAÍTULO X - TRAFORMADOR MOOFÁICO COIDERAÇÕE IICIAI: OÇÕE DE ELETROMAGETIMO RICIAI LEI: a) LEI DE BIOT - AVART : "Uma corrente elétrica percorrendo um condutor, cria em torno deste condutor um campo

Leia mais

Afetação de recursos, produtividade e crescimento em Portugal 1

Afetação de recursos, produtividade e crescimento em Portugal 1 Artigo 65 Afetação de recuro, produtividade e crecimento em Portugal 1 Daniel A. Dia 2 Carlo Robalo Marque 3 Chritine Richmond 4 Reumo No período 1996 a 2011 ocorreu uma acentuada deterioração na afetação

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

Análise de Sensibilidade de Anemômetros a Temperatura Constante Baseados em Sensores Termo-resistivos

Análise de Sensibilidade de Anemômetros a Temperatura Constante Baseados em Sensores Termo-resistivos UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIA E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE Análie de Senibilidade de Anemômetro a Temperatura Contante Baeado em Senore Termo-reitivo

Leia mais

Os projetos realizados pelos Núcleos se encaixam em todas as áreas de enfoque do Rotary, sendo

Os projetos realizados pelos Núcleos se encaixam em todas as áreas de enfoque do Rotary, sendo Núcleo Rotary de Deenvolvimento Comunitário (NRDC) Reultado da pequia de 2013 e 2014 I. NRDC e eu projeto: 2014 2013 87% do NRDC e reuniram pelo meno uma vez por mê. 34% do NRDC dieram ter membro na faixa

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE P U C R S PONTIFÍCI UNIERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI CURSO DE ENGENHRI CIIL CONCRETO RMDO II FORÇ CORTNTE Pro. lmir Schäer PORTO LEGRE MRÇO DE 006 1 FORÇ CORTNTE 1- Notaçõe principai

Leia mais

6.2.1 Prescrições gerais

6.2.1 Prescrições gerais CAPÍTULO 6.2 PRESCRIÇÕES RELATIVAS AO FABRICO E AOS ENSAIOS SOBRE OS RECIPIENTES SOB PRESSÃO, AEROSSÓIS, RECIPIENTES DE BAIXA CAPACIDADE CONTENDO GÁS (CARTUCHOS DE GÁS) E CARTUCHOS DE PILHAS DE COMBUSTÍVEL

Leia mais

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9

Neste pequeno artigo resolveremos o problema 2 da USAMO (USA Mathematical Olympiad) 2005: (x 3 + 1)(x 3 + y) = 147 157 (x 3 + y)(1 + y) = 157 147 z 9 Ésófatorar... Serámesmo? Neste equeno artigo resolveremos o roblema 2 da USAMO (USA Mathematical Olymiad) 2005: Problema. Prove que o sistema x 6 + x + x y + y = 147 157 x + x y + y 2 + y + z 9 = 157 147

Leia mais

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA TAUTOLOGIA C1 C2 C3 v A coluna C3 é formada or valores lógicos verdadeiros (), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA C1 C2 C3 C1 C2 C3 A coluna C3 é formada or valores lógicos falsos (), Logo,

Leia mais

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL Copright 004, Intituto Braileiro de Petróleo e Gá - IBP Ete Trabalho Técnico Científico foi preparado para apreentação no 3 Congreo Braileiro de P&D em Petróleo e Gá, a er realizado no período de a 5 de

Leia mais

Breve apontamento sobre enrolamentos e campos em sistemas trifásicos

Breve apontamento sobre enrolamentos e campos em sistemas trifásicos Breve aontamento obre enrolamento e camo em itema trifáico. Introdução Nete documento areentam-e o fundamento da criação do camo girante da máquina eléctrica rotativa. Ete aunto é tratado de forma muito

Leia mais

ANÁLISE LINEAR COM REDISTRIBUIÇÃO E ANÁLISE PLÁSTICA DE VIGAS DE EDIFÍCIOS

ANÁLISE LINEAR COM REDISTRIBUIÇÃO E ANÁLISE PLÁSTICA DE VIGAS DE EDIFÍCIOS Anai do 47º Congreo Braileiro do Concreto - CBC005 Setembro / 005 ISBN 85-98576-07-7 Volume XII - Projeto de Etrutura de Concreto Trabalho 47CBC06 - p. XII7-85 005 IBRACON. ANÁLISE LINEAR COM REDISTRIBUIÇÃO

Leia mais

Versão 1.0 09/Set/2013. www.wedocenter.com.br. WeDo Soluções para Contact Center Consultorias

Versão 1.0 09/Set/2013. www.wedocenter.com.br. WeDo Soluções para Contact Center Consultorias Verificação do Modelo de Erlang Ponto de Análise: Processo de chegada de contatos Operações de Contact Center Receptivo Por: Daniel Lima e Juliano Nascimento Versão 1.0 09/Set/2013 Ponto de Análise Processo

Leia mais

Documento Auxiliar do Conhecimento de Transporte Eletrônico

Documento Auxiliar do Conhecimento de Transporte Eletrônico Documento Auxiliar do Conhecimento de Transporte Eletrônico 8338 Documento Auxiliar do Conhecimento de Transporte Eletrônico 8339 Documento Auxiliar do Conhecimento de Transporte Eletrônico 8340 Documento

Leia mais

RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES

RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES RECORRÊNCIAS DO TIPO FIBONACCI E APLICAÇÕES JOSÉ H. DA CRUZ, MARINA T. MIZUKOSHI E RONALDO A. DOS SANTOS Reumo. O cláico problema envolvendo populaçõe de coelho propoto por Fibonacci em 1202 foi a bae

Leia mais

- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng.

- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Unidade Acadêmica Tecnologia Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Palhoça, Março de 2010 2 Sumário 1.0 TEORIA DAS FILAS... 3 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL... 3 1.2 ASPECTOS GERAIS DA

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

Transporte pneumático

Transporte pneumático Transorte neumático Objetios Comreender os tios de transorte neumático Faixas de alicação Comonentes odelagem matemática Velocidade mínima de transorte Projeto de sistemas de transorte neumático OP1 Oerações

Leia mais

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD Teste de ióteses VÍCTOR UGO LACOS DÁVILAD Teste De ióteses. Exemlo. Cosidere que uma idustria comra de um certo fabricate, ios cuja resistêcia média à rutura é esecificada em 6 kgf (valor omial da esecificação).

Leia mais

APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO

APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO APLICAÇÃO DA TEORIA DAS FILAS NO SISTEMA DE ATENDIMENTO DE UMA EMPRESA DO RAMO ALIMENTÍCIO Ana Victoria da Costa Almeida (anavictoriaalmeida@yahoo.com.br / UEPA) Kelvin Cravo Custódio (kelvim_scb9@hotmail.com

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA CA E CC - GAT

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA CA E CC - GAT XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Verão.0 22 a 25 Novembro de 2009 Recife PE GRUPO IV GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA CA E CC GAT

Leia mais

IX SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA

IX SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA IX SEPOPE 3 a 7 de maio de 4 May, 3 th to 7 rd 4 Rio de Janeiro (RJ) Brail IX SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA IX SYMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de

Leia mais

CALIBRAÇÃO DO GASÔMETRO SECO POR MEIO DE GASÔMETRO SECO DE REFERÊNCIA (PADRÃO)

CALIBRAÇÃO DO GASÔMETRO SECO POR MEIO DE GASÔMETRO SECO DE REFERÊNCIA (PADRÃO) ENERGÉTICA IND.E COM. LTDA. Ra Gravataí, 99 Rocha CEP 20975-030 Rio de Janeiro RJ CNPJ 29.341.583/0001-04 IE 82.846.190 Fone: (0xx21) 3797-9800; Fax: (0xx21) 3797-9830 www.energetica.ind.r CALIBRAÇÃO DO

Leia mais

Revista Agroambiental - Dezembro/2011

Revista Agroambiental - Dezembro/2011 evita Agroambiental - Deembro/211 Avaliação da correção gravimétrica do terreno calculada a partir de Modelo Digitai de Elevação e aociado ao Sitema Geodéico Braileiro e ao EGM28 Karoline Pae Jamur Univeridade

Leia mais

PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas

PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas PROBLEMAS DE CONGESTIONAMENTO: Teoria das Filas CARACTERÍSTICA PRINCIPAL: presença de clientes solicitando serviços em um posto de serviço e que, eventualmente, devem esperar até que o posto esteja disponível

Leia mais

Estes postos não permitem mais nenhuma adição de ordens novas, sendo, portanto assumidos como as restrições de capacidade para TODA a operação.

Estes postos não permitem mais nenhuma adição de ordens novas, sendo, portanto assumidos como as restrições de capacidade para TODA a operação. Fascículo 8 Planejamento e controle da capacidade Prover a capacidade produtiva para satisfazer a demanda atual e futura é uma responsabilidade fundamental da atividade de administração da produção. Um

Leia mais