MB-210 Probabilidade e Estatística

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MB-210 Probabilidade e Estatística"

Transcrição

1 Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari denise 2o. semestre/2013

2 Variáveis Aleatórias

3 Roteiro Motivação Definição VA s Discretas VA s Contínuas Função Distribuição de Probabilidade (fdp) Função Distribuição Acumulada (FDA)

4 Variáveis Aleatórias Motivação Problemas no mundo real envolvem quantidades que não possuem valor fixo ou determinístico: número de bebês que nascem em um determinado hospital por dia tempo de chegada de um ônibus na estação o volume de chuva em SJC em um determinado ano o número de terremotos na Califórnia por mês a produção de trigo em uma certa safra Variáveis Aleatórias Funções complexas de muitos fatores aleatórios sobre os quais não temos controle Transformam um espaço amostral qualitativo em quantitativo

5 Variáveis Aleatórias (Unidimensionais) Definição Uma variável aleatória é uma função que associa a cada elemento do espaço amostral um número real. Notação: X ( ) : Ω R s X(s) Ω R Probabilidade: {X (s) = x} = P[X (s) = x] = P[X = x] = p(x)

6 Variáveis Aleatórias Exemplos (1) Componentes eletrônicos fabricados em uma linha de produção são submetidos a inspeção, sendo classificados como defeituosos ou sem defeitos. Temos: Espaço amostral: Ω = {D, N} (discreto) X (D) = 0 e X (N) = 1

7 Variáveis Aleatórias Exemplos (1) Componentes eletrônicos fabricados em uma linha de produção são submetidos a inspeção, sendo classificados como defeituosos ou sem defeitos. Temos: Espaço amostral: Ω = {D, N} (discreto) X (D) = 0 e X (N) = 1 O número de nascimentos de gêmeos é aproximadamente 1 em cada 90. Seja X a v.a. definida pelo número de nascimentos em um hospital até o nascimento dos primeiros gêmeos. Sejam G o evento representando o nascimento de gêmeos e N o nascimento de uma única crianca. Temos: Espaço amostral: Ω = {G, NG, NNG, NNNG,...} X (NNN }{{... N } G) = i i 1

8 Variáveis Aleatórias Exemplos (2) Seja X a v.a. definida pelo tempo de espera (em horas) entre dois motoristas consecutivos que ultrapassam a velocidade de uma rodovia, detectados por um radar. Temos: Espaço amostral: Ω = {x R : x 0} (contínuo)

9 Variáveis Aleatórias Exemplos (2) Seja X a v.a. definida pelo tempo de espera (em horas) entre dois motoristas consecutivos que ultrapassam a velocidade de uma rodovia, detectados por um radar. Temos: Espaço amostral: Ω = {x R : x 0} (contínuo) Um determinado ônibus chega à estação rodoviária todos os dias entre as 11:00h e 11:30h. Seja X a v.a. definida pelo tempo de chegada do ônibus. Temos: Espaço amostral: Ω = {x R : 11 < x < 11,5} (contínuo)

10 Variáveis Aleatórias Observações: Variável aleatória: nome inadequado v.a. Função Probabilidade Tipos de v.a. s: Qualitativas VA s Discretas Quantitativas Contínuas

11 VA s Discretas Uma v.a. X é dita discreta se assumir um número finito ou infinito e enumerável de valores reais distintos x 1, x 2,..., x n,... (espaço amostral enumerável: contagem) Neste caso: Ω = n {s : X (s) = x n } = n {X = x n } e {X = x i } {X = x j } =, i j Portanto, do axioma (iii): 1 = P[Ω] = n P[X = x n ]

12 VA s Contínuas Uma v.a. X é dita contínua se assumir um número infinito não-enumerável de valores e a probabilidade de que X assuma um valor em particular é nula (espaço amostral não-enumerável: medição) Neste caso: P[X = x i ] = 0, i

13 Função Distribuição de Probabilidade (fdp) caso discreto Seja X uma v.a. discreta que assume os valores discretos x 1, x 2,..., x n,... Definimos a fdp de X como sendo a função Condições f X ( ) : R [0, 1] { P[X = xj ], se x = x f X (x) = j, j = 1, 2,..., n,... 0, se x x j 1. f X (x j ) 0 para j = 1, 2, f X (x j ) = 0 para x x j, j = 1, 2, j f X (x j ) = 1 Nomenclatura alternativa: função massa, função probabilidade ou função freqüência discreta

14 Função Distribuição de Probabilidade (fdp) caso discreto Exemplo Um lote de 8 computadores em uma loja contém 3 defeituosos. Um cliente seleciona ao acaso e compra 2 destes computadores. Qual a distribuição de probabilidade para o número de computadores defeituosos comprados? Solução

15 Função Distribuição de Probabilidade (fdp) caso contínuo Seja X uma v.a. contínua. Definimos a fdp de X como sendo a função f X ( ) : R [0, ) tal que, para quaisquer números a b Condições P[a X b] = b a f X (u)du 1. f X (x) 0, x R 2. f X (x)dx = 1 3. P[X = c] = 0, c R. Portanto, para quaisquer números a < b: P[a X b] = P[a < X b] = P[a X < b] = P[a < X < b] Nomenclatura alternativa: função densidade ou função densidade de probabilidade

16 Função Distribuição de Probabilidade (fdp) caso contínuo Exemplo Suponha que o erro medido na temperatura de reação ( C) em um experimento controlado em laboratório seja uma v.a. contínua cuja fdp é dada por: { 1 f X (x) = 3 x 2, 1 < x < 2 0, caso contrário Verifique que a condição (2) é válida. Calcule P[0 < X 1]. Solução

17 Função Distribuição Acumulada (FDA) Definição A FDA de uma v.a. X, representada por F X ( ) é a função F X ( ) : R [0, 1] F X (x) = P[X x], < x < Condições 1. F X ( ) é monotônica não-decrescente: 2. F X ( ) = 3. F X ( ) é contínua pela direita: F X (x 1 ) < F X (x 2 ), x 1 < x 2 lim F X (x) = 0 e F X (+ ) = lim F X (x) = 1 x x + F X (x) = lim F X (x + h) 0<h 0 Nomenclatura alternativa: função distribuição

18 Função Distribuição Acumulada (FDA) Propriedades Caso Discreto: F X ( ) pode ser obtida a partir de f X ( ) e vice-versa. (i) Dada f X ( ), F X (x) = P[X x] = x j <x f X (x j ) (ii) Dada F X ( ), f X (x j ) = F X (x j ) lim F X (x j h) 0<h 0

19 Função Distribuição Acumulada (FDA) caso discreto Exemplo: Computadores defeituosos (continuação) 1. Determine a FDA para a v.a. X = no. de computadores defeituosos comprados pelo cliente 2. Usando F X (x), verifique que f X (2) = 3/28 Solução

20 Função Distribuição Acumulada (FDA) Propriedades Caso Contínuo: F X ( ) pode ser obtida a partir de f X ( ) e vice-versa. (i) Dada f X ( ), F X (x) = P[X x] = x f X (u)du Para cada x, F X ( ) corresponde à área debaixo da curva de f X ( ) à esquerda de x. (ii) Dada F X ( ), f X (x) = df X (x) dx

21 Função Distribuição Acumulada (FDA) caso contínuo Exemplo: Reação química (continuação) 1. Determine a FDA para a v.a. X = erro na medida da temperatura de reação 2. Usando F X (x), calcule P[0 < X 1] Solução

22 Variáveis Aleatórias Multidimensionais

23 Variáveis Aleatórias Multidimensionais Definição Sejam X 1, X 2,..., X k v.a. s definidas no mesmo espaço de probabilidades E = (Ω, A, P[ ]). A coleção X = (X 1, X 2,..., X k ) é chamada v.a. k-dimensional. As v.a. s X 1, X 2,..., X k são chamadas v.a. s conjuntas. (Daqui em diante, consideraremos apenas o caso bidimensional).

24 Função Distribuição de Probabilidade (fdp) caso discreto A v.a. bidimensional discreta Z = (X, Y ) é dita v.a. conjunta discreta se assumir apenas os valores de um conjunto enumerável de pontos (x,y) no espaço R 2. Definimos a fdp discreta de (X,Y ) como sendo a função f X,Y (x,y) = P[X = x, Y = y], para qualquer valor (x,y) que o (X,Y ) possa assumir. Condições 1. f X,Y (x,y) 0 para todo (x,y) 2. X Y f X,Y (x,y) = 1 3. Para qualquer subconjunto A do plano xy P[(X,Y ) A] = f X,Y (x,y) (x,y) A

25 Função Distribuição de Probabilidade (fdp) caso discreto Exemplo Duas canetas esferográficas são escolhidas aleatoriamente de uma caixa que contém 3 canetas azuis, 2 canetas vermelhas e 3 canetas verdes. Seja X a v.a. que representa o número de canetas azuis e Y a v.a. que representa o número de canetas vermelhas selecionadas. Determine: A fdp conjunta de X e Y P[(X,Y ) A], em que A é a região definida por {(x,y) x + y 1} Solução

26 Função Distribuição de Probabilidade (fdp) caso contínuo A v.a. bidimensional discreta Z = (X, Y ) é dita v.a. conjunta contínua se existe uma função f X,Y (, ) tal que F X,Y (x,y) = para todo (x,y) no plano real. Condições y x 1. f X,Y (x,y) 0 para todo (x,y) 2. f X,Y (x,y)dxdy = 1 3. Para qualquer região A do plano xy P[(X,Y ) A] = f X,Y (u,v)dudv A f X,Y (x,y)dxdy

27 Função Distribuição de Probabilidade (fdp) caso contínuo Exemplo Um fabricante de bombons produz caixas de chocolates recheados com creme, caramelo e nozes e cobertura de chocolate amargo ou chocolate ao leite. Para uma certa caixa escolhida ao acaso, sejam X e Y, respectivamente, as proporções de chocolate ao leite e amargo com recheio de creme e suponha que a fdp conjunta correspondente seja dada por { 2 f X,Y (x,y) = 5 (2x + 3y), 0 x 1, 0 y 1 0, c.c Verifique se a condição (2) é válida Determine P[(X,Y ) A], em que A = {(x,y) 0 < x < 1/2, 1/4 < y < 1/2} Solução

28 Função Distribuição Acumulada (FDA) Definição A FDA conjunta de uma v.a. bidimensional Z = (X,Y ), representada por F X,Y (, ) é a função F X,Y (, ) : R 2 [0, 1], tal que F X,Y (x,y) = P[X x, Y y], (x,y)

29 Função Distribuição Acumulada (FDA) Definição Condições (análogas ao caso unidimensional) 1. F X ( ) é monotônica não-decrescente: P[x 1 < X x 2 ; y 1 < Y y 2 ] = F X,Y (x 2,y 2 ) F X,Y (x 2,y 1 ) F X,Y (x 1,y 2 ) + F X,Y (x 1,y 1 ) 0, 2. x 1 x 2 ; y 1 y 2 F X,Y (, y) = F X,Y (x, ) = F X,Y (, ) = lim F X,Y (x,y) = 0, x lim F X,Y (x,y) = 0, y lim F X,Y (x,y) = 1 x,y y x 3. F X,Y (x,y) é contínua em cada argumento: F X,Y (x,y) = lim F X,Y (x + h, y) = lim F X,Y (x, y + h) 0<h 0 0<h 0

30 Função Distribuição de Probabilidade (fdp) Marginal Seja Z = (X,Y ) uma v.a. conjunta. As distribuições marginais de X e Y são dadas por 1. Caso discreto f X (x) = y f X,Y (x,y) e f Y (y) = x f X,Y (x,y) 2. Caso contínuo f X (x) = f X,Y (x,y)dy e f Y (y) = f X,Y (x,y)dx

31 Função Distribuição de Probabilidade (fdp) Marginal Exemplos Determine as fdp s marginais para os exemplos anteriores. Verifique que as fdp s marginais são, de fato, fdp s. Solução

32 Função Distribuição de Probabilidade (fdp) Condicional Seja Z = (X,Y ) uma v.a. conjunta com fdp conjunta f X,Y (, ). As distribuições condicionais de X Y = y e Y X = x, representadas respectivamente, por f Y X ( x) e f X Y ( y), são dadas por: f Y X (y x) = f X,Y (x,y), f X (x) com f X (x) > 0 f X Y (x y) = f X,Y (x,y), f Y (y) com f Y (y) > 0 1. Caso discreto P[a < X < b Y = y] = f X Y (x y) 2. Caso contínuo P[a < X < b Y = y] = a<x<b b a f X Y (x y)dx

33 Função Distribuição de Probabilidade (fdp) Condicional Exemplos 1. Caso discreto: No exemplo das canetas, determine a distribuição condicional de X, dado Y = 1 e a empregue para calcular P[X = 0 Y = 1]. 2. Caso contínuo: A fdp conjunta para as v.a. s (X,Y ), em que X = variação unitária de temperatura e Y = proporção de variação do espectro produzido por uma determinada partícula atômica, é dada por { 10xy f X,Y (x,y) = 2, 0 < x < y < 1 0, c.c. Solução Determine as fdp s marginais fx (x) e f Y (y) e a fdp condicional f Y X (y x) Qual a probabilidade de que o espectro varie mais que a metade do total de observações, dado que a temperatura sofreu um acréscimo de 0,25 unidade.

34 Independência Estatística Sejam X e Y duas v.a. s (contínuas ou discretas) com fdp conjunta f X,Y (, ) e distribuições marginais f X (x) e f Y (y). As v.a. s X e Y são ditas estatisticamente independentes se, e somente se, f X,Y (x,y) = f X (x)f Y (y), (x,y) (Demonstração) Independência Estatística para v.a. s discretas É possível que o produto das fdp s marginais seja igual à fdp conjunta para algumas (mas não todas as) combinações de (x,y). Portanto, se existir algum ponto (x,y) para o qual f X,Y (x,y) é definida e tal que f X,Y (x,y) f X (x)f Y (y), as v.a. s discretas X e Y não são estatisticamente independentes.

35 Independência Estatística Exemplos 1. Caso discreto: No exemplo das canetas, mostre que as v.a. s X e Y não são estatisticamente independentes. 2. Caso contínuo: Verifique se as v.a. s X e Y cuja fdp conjunta é dada por { x f X,Y (x,y) = 4 (1 + 3y 2 ), 0 < x < 2, 0 < y < 1 0, c.c. Solução são estatisticamente independentes.

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Distribuição de Probabilidade Conjunta

Distribuição de Probabilidade Conjunta . DISTRIBUIÇÃO DE ROBABILIDADE CONJUNTA O nosso estudo de variável aleatória e de suas funções de probabilidade até agora se restringiram a espaços amostrais unidimensionais nos quais os valores observados

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Probabilidade Condicional e Independência

Probabilidade Condicional e Independência Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 17/08/2011 Probabilidade

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY UNIVERSIDDE FEDERL D BHI INSTITUTO DE MTEMÁTIC DEPRTMENTO DE ESTTÍSTIC v. demar de Barros s/n - Campus de Ondina 40170-110 - Salvador B Tel:(071)247-405 Fax 245-764 Mat 224 - Probabilidade II - 2002.2

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

Princípios de Modelagem Matemática Aula 09

Princípios de Modelagem Matemática Aula 09 Princípios de Modelagem Matemática Aula 09 Prof. José Geraldo DFM CEFET/MG 12 de maio de 2014 1 Modelos estatísticos e estimação de parâmetros A verificação de um modelo matemático demanda a realização

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 09/2014 Probabilidade Espaços Amostrais e Eventos Probabilidade e Estatística 3/41 Experimentos Aleatórios Experimento

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)

1 Introdução. 2 Variáveis Aleatórias Discretas (VAD) Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

Distribuições de Probabilidade Conjuntas

Distribuições de Probabilidade Conjuntas Distribuições de Probabilidade Conjuntas 1. Duas variáveis aleatórias discretas Exemplo 1. No desenvolvimento de um novo receptor para transmissão digital de informação, cada bit é classificado como aceitável,

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade.

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade. PROBABILIDADE CAPÍTULO 4 PROBABILIDADE UFRGS A Teoria das s estuda os fenômenos aleatórios. Fenômeno Aleatório: são os fenômenos cujo resultado não pode ser previsto exatamente. Se o fenômeno se repetir,

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável

Leia mais

Conceitos Básicos, Básicos,Básicos de Probabilidade

Conceitos Básicos, Básicos,Básicos de Probabilidade Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar

Leia mais

Adilson Cunha Rusteiko

Adilson Cunha Rusteiko Janeiro, 2015 Estatística , A Estatística Estatística: É a parte da matemática aplicada que fornece métodos para coleta, organização, descrição, análise e interpretação

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Introdução à Probabilidade - parte III

Introdução à Probabilidade - parte III Introdução à Probabilidade - parte III Erica Castilho Rodrigues 02 de Outubro de 2012 Eventos Independentes 3 Eventos Independentes Independência Em alguns casos podemos ter que P(A B) = P(A). O conhecimento

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

Momentos de uma variável aleatória

Momentos de uma variável aleatória Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

1 Distribuição de Bernoulli

1 Distribuição de Bernoulli Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Apresentação

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Probabilidade - aula II

Probabilidade - aula II 2012/02 1 Interpretações de Probabilidade 2 3 Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular probabilidades

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

TEORIA DAS PROBABILIDADES. Figura 1: Gráfico de pontos. Figura 3: Polígono de frequências.

TEORIA DAS PROBABILIDADES. Figura 1: Gráfico de pontos. Figura 3: Polígono de frequências. TEORIA DAS PROBABILIDADES Figura 1: Gráfico de pontos. Figura 3: Polígono de frequências. Figura 4: Função de distribuição de probabilidades sobre o histograma. A teoria das probabilidades estuda os modelos

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Conceitos básicos de teoria da probabilidade

Conceitos básicos de teoria da probabilidade Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km, Tel: +5 4007, Fax: +5 400, Maputo Cursos de Licenciatura em Ensino de Matemática e de

Leia mais

2. Probabilidade. Aula 3

2. Probabilidade. Aula 3 Aula 3 2. Probabilidade 2-1 Espaços de amostragem e eventos 2-1.1 Experimentos randômicos 2-1.2 Espaços de amostragem 2-1.3 Eventos 2-2 Interpretações de probabilidade 2-2.1 Introdução 2-2.2 Axiomas de

Leia mais

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira

Revisão estatística e probabilidade. Prof. Anderson Almeida Ferreira Revisão estatística e probabilidade Prof. Anderson Almeida Ferreira População População é o conjunto de elementos (indivíduos, objetos, etc.) que formam o universo de nosso estudo e que são passíveis de

Leia mais

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf Parte 7 Processos Estocásticos Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Processos Estocásticos 2 Classicação

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

Variável Aleatória Poisson. Número de erros de impressão em uma

Variável Aleatória Poisson. Número de erros de impressão em uma EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância Variáveis Contínuas 10/13 1 / 1 Esperança Definição 2.1:(Valor Esperado

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Notas de Probabilidades e Estatística

Notas de Probabilidades e Estatística Notas de Probabilidades e Estatística Giovani Loiola da Silva Dep. Matemática - IST Setembro, 2008 Estas notas visam apoiar as aulas teóricas da disciplina Probabilidades e Estatística. Agradecimentos:

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015

MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito Lista 4 - Probabilidade - CASA Exercício 1. (2 pontos) Para cada um dos experimentos abaixo, descreva o espaço amostral e apresente

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais