// O angulo interno ao canto C e entao obtido utilizando-se a // definicao de produto escalar: A.B = A B cos(theta)

Tamanho: px
Começar a partir da página:

Download "// O angulo interno ao canto C e entao obtido utilizando-se a // definicao de produto escalar: A.B = A B cos(theta)"

Transcrição

1 1 Apendice Solução do Problema 1.2 usando o SCILAB No código a seguir definimos os cantos do triângulo através dos vetores A, B, e C. A partir desses vetores obtemos os vetores que definem os lados do triângulo, i.é, AB, CA e CB // Solucao do Problema 1.2 // Definimos os pontos A, B e C A=[4 1 2]; B=[1-1 0]; C=[5-3 -4]; // O vetor CA e definido por CA=A-C; // O vetor CB e definido por CB=B-C; // O angulo interno ao canto C e entao obtido utilizando-se a // definicao de produto escalar: A.B = A B cos(theta) THETA=acos(CA*CB /(norm(ca)*norm(cb)))*180/%pi // O vetor AB e definido por AB=B-A; // Para determinarmos se o triangulo e retangulo ou nao basta verificarmos // se dois dos vetores que definem os lados sao perpendiculares. Nesse caso // o produto escalar desses dois vetores sera igual a zero. // Verificando a ortogonalidade entre AB e CA AB*CA // Verificando a ortogonalidade entre AB e CB AB*CB // Fim do Problema 1.2

2 2 Definição da função ProdVet para obter produtos vetoriais No SCILAB o produto vetorial não é pré definido. A seguir apresentamos uma função que executa essa operação. Essa funcao sera utilizada nos códigos que executem produtos vetoriais, por exemplo, o Problema 1.3 a seguir. function [p] = ProdVet(u,v) // Calcula o produto vetorial de dois vetores u e v. // Os vetores u e v podem ser vetores linha ou coluna, mas // cada um deles deve ser tri-dimensional. [nu,mu] = size(u); [nv,mv] = size(v); if nu*mu <> 3 nv*mv <> 3 then error( Os vetores devem ser tri-dimensionais ) abort; end A1 = [ u(2), u(3); v(2), v(3)]; A2 = [ u(3), u(1); v(3), v(1)]; A3 = [ u(1), u(2); v(1), v(2)]; px = det(a1); py = det(a2); pz = det(a3); p = [px, py, pz] // Fim da funcao Solução do Problema 1.5 usando o SCILAB Esse código utiliza a função que executa a operação de produto vetorial definida acima. // Solucao do Problema 1.5 u=[6/7-3/7 2/7] v=[2/7 6/7 3/7] w=[-3/7-2/7 6/7] // Verificando se sao unitarios: norm(u), norm(v), norm(w) // Carregamos a funcao ProdVet para calculo de produtos vetoriais (ver

3 3 // funcao definida acima getf("cross") // Verificando se sao ortogonais e formam uma base direita. // Sabemos que da definicao de base ortogonal direita temos que // (u x v).w = (v x w).u = (w x u).v =1 ProdVet(u,v)*w ProdVet(v,w)*u ProdVet(w,u)*v // // A transformacao de coordenada e obtida por // u i.u j.u k.u i // v = i.v j.v k.v j // w i.w j.w k.w k // // A base antiga e dada pelos unitarios i, j e k, definidos como i=[1 0 0]; j=[0 1 0]; k=[0 0 1]; // Assim obtemos a matriz transformacao T=[i*u j*u k*u ; i*v j*v k*v ; i*w j*w k*w ] // Definimos os vetores a, b e c a=[0 3 2] b=[-1 4-3] c=[2-2 -2] // Os vetores na base nova sao dados por a=t*a b=t*b c=t*c // Fim do Problema 1.5

4 4 Solução do Exemplo 2.13 usando o SCILAB Para exemplificarmos a utilização do SCILAB na solução de um problema de treliça vamos resolver, novamente, o exemplo 2.13 do texto. A idéia é resolvermos um sistema linear de equações. Sabemos que a treliça em questão, é plana e simples. Portanto, a condição de que a soma das forças atuando em cada nó tem que ser nula nos fornece 2 equações. O desenho abaixo ajuda-nos a entender o processo. A treliça é composta por 7 elementos, portanto, temos 7 forças a serem determinadas (as forças que atuam em cada elemento). No desenho elas são designadas por f a (forças no elemento a) até f g. Necessitamos 7 equações linearmente independentes. Os nós C, D e E nos fornecem 2 equações cada, e como sabemos que o apoio B é móvel na direção horizontal, esse nó nos fornece 1 equação, totalizando as 7 de que necessitamos. A a f a fb N D f d d f d f a 4 f c b c f c E f e e g f b f f f f 300 N f e C f g f f g 200 N B f 100 N D a f d f c (a) (b) O nó D fornece as seguintes equações: f a cos θ + f c cos θ + f d = 0 f a sen θ f c sen θ 100 = 0 Do nó C temos: f d f e cos θ + f g cos θ = 0 f e sen θ f g sen θ = 0 Do nó E, temos: f b f c cos θ + f e cos θ + f f = 0 f c sen θ + f e sen θ 300 = 0 E, finalmente o nó B, nos fornece a última equação necessária: f f f g cos θ = 0

5 5 Essas equações podem ser agrupadas para fornecer o seguinte sistema cos θ 0 cos θ sen θ 0 sen θ cos θ 0 cos θ sen θ 0 sen θ 0 1 cos θ 0 cos θ sen θ 0 sen θ cos θ f a f b f c f d f e f f f g = A solução desse sistema fornece o valor das forças (f a...f g ) que atuam em cada elemento. Observe que se o resultado for positivo, então a força tem o sentido indicado na Figura acima (ou seja, será uma força de tração sobre a barra, caso contrário, se o resultado for negativo, então o sentido que atribuimos na Figura está ao contrário do que é, e a força será, então, de compressão. // Resolveremos o seguinte sistema A. F = B onde a A e a // matriz que contem as direcoes das forcas, F e a matriz // unidimencional das forcas e B representa a carga sobre a trelica // Define-se o numero de elementos n=7; // Define-se as matrizes A(n,n) e B(n,1) com todos os elementos iguais // a zero A = zeros(n,n); B = zeros(n,1); // Angulo que define a inclinacao de alguns dos elementos da trelica angulo = atan(4/3); c=cos(angulo); s=sin(angulo); // Definicao das matrizes do sistema // Matriz A (elementos diferentes de zero) A(1,1) = -c; A(1,3) = c; A(1,4) = 1; A(2,1) = -s; A(2,3) = -s; A(3,4) = -1; A(3,5) = -c;

6 6 A(3,7) = c; A(4,5) = -s; A(4,7) = -s; A(5,2) = -1; A(5,3) = -c; A(5,5) = c; A(5,6) = 1; A(6,3) = s; A(6,5) = s; A(7,6) = -1; A(7,7) = -c; // Matriz B (elementos diferentes de zero) B(2,1) = 100; B(3,1) = -200; B(6,1) = 300; // matriz A A // matriz B B // Determinacao das forcas nos elementos (F = inversa{a} * B) F = inv(a)*b Solução do Problema 2.18 usando o SCILAB Como segundo exemplo de solução numérica de uma treliça simples, vamos resolver a treliça do Problema O método é identico ao utilizado no exemplo anterior. No caso da treliça do Problema 2.18 temos 13 elementos, o que significa 13 forças a serem determinadas. Cada um dos nós, representado na Figura abaixo pelas letras B, C, D, F, G e H, fornece 2 equações de equilíbrio. No caso do nó E, sabemos que a soma das componentes na horizontal tem que ser igual a zero. Portanto, temos as 13 equações necessárias à solução do problema. O código SCILAB é dado a seguir. A execução desse código fornece como resposta: f a = 10.0 kn f b = 5.83 kn f c = 5.83 kn

7 7 f d = 10.0 kn f e = 8.00 kn f f = 8.00 kn f g = 8.00 kn f h = 8.00 kn f i = 0.00 kn f j = 4.17 kn f k = 5.00 kn f l = 4.17 kn f m = 0.00 kn 2 kn 5 kn b G c 5 kn A H a i h B j k 3 m 1,5 m 1,5 m C f D F d 2 m 2m 2 m 2 m g l m e E // Ver a solucao do problema anterior para entender as // definicoes n=13; A = zeros(n,n); B = zeros(n,1); angulo = atan(3/4); c=cos(angulo); s=sin(angulo); A(1,1) = -c; A(1,2) = c; A(1,10) = c; A(2,1) = -s;

8 8 A(2,2) = s; A(2,9) = -1; A(2,10) = -s; A(3,2) = -c; A(3,3) = c; A(4,2) = -s; A(4,3) = -s; A(4,11) = -1; A(5,3) = -c; A(5,4) = c; A(5,12) = -c; A(6,3) = s; A(6,4) = -s; A(6,12) = -s; A(6,13) = -1; A(7,7) = 1; A(7,8) = -1; A(8,9) = 1; A(9,6) = 1; A(9,7) = -1; A(9,10) = -c; A(9,12) = c; A(10,10) = s; A(10,11) = 1; A(10,12) = s; A(11,5) = 1; A(11,6) = -1; A(12,13) = 1; A(13,4) = -c; A(13,5) = -1; B(2,1) = 5; B(4,1) = 2; B(6,1) = 5; // matriz A A // matriz B B F=inv(A)*B

9 9 Solução do Exemplo 3.9 usando o SCILAB O código a seguir foi escrito para resolver o exemplo 3.9 e desenhar o gráfico da velocidade do pistão e velocidade angular do braço 2 como função do ângulo do braço 1. // define-se um vetor contendo o valor do angulo theta, com // valor inicial igual a "arccos(-.6)", que e o angulo utilizado // no Exemplo 3.9. Os valores sao incrementados de radianos // (rotacao no sentido horario) ate realizar 2 voltas completas. theta=[acos(-.6):-.01:-4*%pi+acos(-.6)] ; // determina-se o tamanho do vetor theta s=size(theta); // define-se matrizes de dimensoes tamanho de theta X 3 // r1 e o vetor que localiza o ponto "A", r2 e o vetor que // localiza "B" com relacao a "A", v e a velocidade de "A" e // vb uma matriz de dimensao tamanho de theta X 2 que ser a obtida // como solucao do problema, onde vb(:,1) e a velocidade linear do // ponto "B" e vb(:,2) a velocidade angular do braco 2. r1 = zeros(s(1,1),3); r2 = zeros(s(1,1),3); v = zeros(s(1,1),3); vb = zeros(s(1,1),2); // Calcula-se as componentes do vetor r1 em funcao do angulo theta r1(:,1)=5*cos(theta); r1(:,2)=5*sin(theta); // Calcula-se as componentes do vetor r2 em funcao do angulo theta r2(:,1)=sqrt(13^2 - r1(:,2)^2); r2(:,2)=r1(:,2); getf("cross"); // A velocidade angular do braco 1 e igual a -10 rad/s na direcao // horaria w=[0 0-10];

10 10 // Calcula-se a velocidade linear do ponto "A" (va= omega X r1). // Em seguida monta-se o sistema que nos dara a velocidade angular // do braco 2 e a velocidade do ponto "B", impondo-se a condicao // de que a componente vertical ("y") dessa velocidade e igual a // zero (ver exemplo 3.9 do texto). for i = 1:s(1,1) v(i,:) = ProdVet(w,r1(i,:)); A=[1 -r2(i,2); 0 -r2(i,1)]; B=[v(i,1); v(i,2)]; vb(i,:)=(inv(a)*b) ; end // grafico de vb e da velocidade angular do braco 2. xbasc() plot2d(-theta,[vb(:,1) vb(:,2)*10],[1,2],"111",.. leg="vb@omega x 10",rect=[-2.5,-60,10.5,60])

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Álgebra Linear I Solução da 5ª Lista de Exercícios

Álgebra Linear I Solução da 5ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Engenharia de Produção Curso de Graduação em Engenharia Ambiental e Sanitária

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Equações paramétricas da Reta

Equações paramétricas da Reta 39 6.Retas e Planos Equações de Retas e Planos Equações da Reta Vamos supor que uma reta r é paralela a um vetor V = a, b, c) não nulo e que passa por um ponto P = x, y, z ). Um ponto P = x, pertence a

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R 2 Conceitos Básicos Neste capítulo são apresentados alguns conceitos importantes e necessários para o desenvolvimento do trabalho. São apresentadas as definições de campo vetorial, fluxo e linhas de fluxo.

Leia mais

Matriz de Sensibilidade Modal

Matriz de Sensibilidade Modal Introdução ao Controle Automático de Aeronaves Matriz de Sensibilidade Modal Leonardo Tôrres torres@cpdeeufmgbr Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep Eng Eletrônica EEUFMG

Leia mais

1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar.

1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar. Fundação Universidade Federal do Vale do São Francisco - UNIVASF Colegiado de Engenharia de Produção - CPROD Prof. Felipe Wergete a Lista de Exercícios de Álgebra Linear - 202.. Mostre que o conjunto R

Leia mais

Geometria Diferencial de Curvas Espaciais

Geometria Diferencial de Curvas Espaciais Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de

Leia mais

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Códigos de bloco Prof. Diego da Silva de Medeiros São José, maio de 2012 Codificação

Leia mais

1.10 Sistemas de coordenadas cartesianas

1.10 Sistemas de coordenadas cartesianas 7 0 Sistemas de coordenadas cartesianas Definição : Um sistema de coordenadas cartesianas no espaço é um v v conjunto formado por um ponto e uma base { } v3 Indicamos um sistema de coordenadas cartesianas

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Resolução Comentada Fuvest - 1ª fase 2014

Resolução Comentada Fuvest - 1ª fase 2014 Resolução Comentada Fuvest - 1ª fase 2014 01 - Em uma competição de salto em distância, um atleta de 70kg tem, imediatamente antes do salto, uma velocidade na direção horizontal de módulo 10m/s. Ao saltar,

Leia mais

Lados de um triângulo retângulo. MA092 Geometria plana e analítica. Mudando o ângulo. Trabalhando no plano Cartesiano

Lados de um triângulo retângulo. MA092 Geometria plana e analítica. Mudando o ângulo. Trabalhando no plano Cartesiano Lados de um triângulo retângulo MA092 Geometria plana e analítica. Catetos de um triângulo retângulo em função da hipotenusa e do ângulo θ: sen(θ) = y z y = z sen(θ) Francisco A. M. Gomes cos(θ) = x z

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/

Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Estrutura Sistema qualquer de elementos ligados, construído para suportar ou transferir

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

Cinemática Bidimensional

Cinemática Bidimensional Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações

Leia mais

Prova de Fundamentos de Bancos de Dados 1 a Prova

Prova de Fundamentos de Bancos de Dados 1 a Prova Prova de Fundamentos de Bancos de Dados 1 a Prova Prof. Carlos A. Heuser Abril de 2009 Prova sem consulta duas horas de duração 1. (Peso 2 Deseja-se projetar um banco de dados para o sítio de uma prefeitura.

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

GEOMETRIA ANALÍTICA II

GEOMETRIA ANALÍTICA II Conteúdo 1 O PLANO 3 1.1 Equação Geral do Plano............................ 3 1.2 Determinação de um Plano........................... 7 1.3 Equação Paramétrica do Plano........................ 11 1.4 Ângulo

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

Lista 1: Processo Estocástico I

Lista 1: Processo Estocástico I IFBA/Introdução aos Processos Estocásticos/ Prof. Fabrício Simões 1 Lista 1: Processo Estocástico I 1. Esboce o espaço amostral do processo estocástico x(t) = acos(ωt + θ), em que ω e θ constantes e a

Leia mais

Considere um sistema ortogonal com os eixos x, y e z. Esses eixos tomados dois a dois determinam planos.

Considere um sistema ortogonal com os eixos x, y e z. Esses eixos tomados dois a dois determinam planos. 59 No texto que segue abordamos algumas possibilidades de construção de formas tridimensionais no GeoGebra Para isso, discutimos inicialmente rotação com vetores em R 3 para, em seguida, obtermos suas

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

Mecânica Geral Básica

Mecânica Geral Básica Mecânica Geral Básica Conceitos Básicos Prof. Nelson Luiz Reyes Marques Unidades - o sistema métrico O sistema internacional de unidades (SI) o sistema MKS Baseado em potências de 10 de unidades de base

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014 1 2 Questão 1 Um dado é feito com pontos colocados nas faces de um cubo, em correspondência com os números de 1 a 6, de tal maneira que somados os pontos que ficam em cada par de faces opostas é sempre

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s. Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES

Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES 2014 1 a QUESTÃO Valor: 1,00 a) (0,30) Defina gramáticas livre de contexto. b) (0,30) Crie uma gramática

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A = Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 7.01.011 11.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sua folha de respostas,

Leia mais

Álgebra Linear - Exercícios (Determinantes)

Álgebra Linear - Exercícios (Determinantes) Álgebra Linear - Exercícios (Determinantes) Índice 1 Teoria dos Determinantes 3 11 Propriedades 3 12 CálculodeDeterminantes 6 13 DeterminanteseRegularidade 8 14 TeoremadeLaplace 11 15 Miscelânea 16 2 1

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

FÍSICA EXPERIMENTAL 3001

FÍSICA EXPERIMENTAL 3001 FÍSICA EXPERIMENTAL 3001 EXPERIÊNCIA 1 CIRCUITO RLC EM CORRENTE ALTERNADA 1. OBJETIOS 1.1. Objetivo Geral Apresentar aos acadêmicos um circuito elétrico ressonante, o qual apresenta um máximo de corrente

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Álgebra Linear Computacional

Álgebra Linear Computacional Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco. PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br Sistemas de Equações Lineares Espaços

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

SÓ ABRA QUANDO AUTORIZADO.

SÓ ABRA QUANDO AUTORIZADO. UNIVERSIDADE FEDERAL DE MINAS GERAIS FÍSICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Provas contém seis questões, constituídas de itens e subitens,

Leia mais

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23, Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)

Leia mais

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160 Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três

Leia mais

UNIDADE II UNIDADE II O Plano: Sistema de Coordenadas Cartesianas

UNIDADE II UNIDADE II O Plano: Sistema de Coordenadas Cartesianas UNIDADE II UNIDADE II O Plano: Sistema de Coordenadas Cartesianas O Sistema de Coordenadas Cartesianas, mais conhecido como Plano Cartesiano, foi criado por René Descartes com o objetivo de localizar pontos.

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos

Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos 1º) Para o circuito abaixo, calcular a tensão sobre R3. a) O Teorema de Thévenin estabelece que qualquer circuito linear visto de

Leia mais

TRABALHO DE TOPOGRAFIA LEVANTAMENTO TAQUEOMÉTRICO

TRABALHO DE TOPOGRAFIA LEVANTAMENTO TAQUEOMÉTRICO TRABALHO DE TOPOGRAFIA LEVANTAMENTO TAQUEOMÉTRICO 1. Poligonal Fechada: A poligonal fechada é caracterizada por ter o último vértice coincidindo com o vértice inicial, formando, desta forma, um POLÍGONO.

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]

Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015] Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR

LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR LISTA DE EXERCÍCIOS DE GEOMETRIA ANALÍTICA PRODUTO DE VETORES PRODUTO ESCALAR 9) Sendo u = ( ) e v = ( ). Calcular: a) u v b) (u v ) c)(u + v ) d) (u v ) e) (u - v )(u + v ) a) 9 b)8 c)9 d)66 e) f) 8 )Sendo

Leia mais

. (A verificação é imediata.)

. (A verificação é imediata.) 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza

Leia mais

10. CPU (Central Processor Unit)... 10 2 10.1 Conjunto das instruções... 10 2 10.2 Estrutura interna... 10 4 10.3 Formato das instruções...

10. CPU (Central Processor Unit)... 10 2 10.1 Conjunto das instruções... 10 2 10.2 Estrutura interna... 10 4 10.3 Formato das instruções... 10. CPU (Central Processor Unit)... 10 2 10.1 Conjunto das instruções... 10 2 10.2 Estrutura interna... 10 4 10.3 Formato das instruções... 10 4 10. CPU (CENTRAL PROCESSOR UNIT) Como vimos no capítulo

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Aula 4 Gráficos e Distribuição de Frequências

Aula 4 Gráficos e Distribuição de Frequências 1 REDES Aula 4 Gráficos e Distribuição de Frequências Professor Luciano Nóbrega Gráficos A representação gráfica fornece uma visão mais rápida que a observação direta de dados numéricos ou de tabelas.

Leia mais

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de

Leia mais

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller ÁLGEBRA LINEAR Transformações Lineares Prof. Susie C. Keller É um tipo especial de função (aplicação), onde o domínio e o contradomínio são espaços vetoriais. Tanto a variável independente quanto a variável

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

ATIVIDADES PRÁTICAS SUPERVISIONADAS

ATIVIDADES PRÁTICAS SUPERVISIONADAS ATIVIDADES PRÁTICAS SUPERVISIONADAS ª Série Cálculo Numérico Engenharia Civil A atividade prática supervisionada (ATPS) é um procedimento metodológico de ensino-aprendizagem desenvolvido por meio de um

Leia mais

Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016.

Prof. Neckel FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL POSIÇÃO. Sistema de Coordenadas Nome do sistema Unidade do sistema 22/02/2016. FÍSICA 1 PROVA 1 TEMA 2 PARTE 1 PROF. NECKEL Cinemática 1D POSIÇÃO Sistema de Coordenadas Nome do sistema Unidade do sistema Reta numérica real com origem Crescimento para direita, decrescimento para esquerda

Leia mais

Semana 7 Resolução de Sistemas Lineares

Semana 7 Resolução de Sistemas Lineares 1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam

Leia mais

RESUMO ABSTRACT. Vamos supor que uma caixa-preta, representada por uma relação de entrada e saída. f :!! 7!

RESUMO ABSTRACT. Vamos supor que uma caixa-preta, representada por uma relação de entrada e saída. f :!! 7! REALIZAÇÃO CANÔNICA DA SEQÜÊNCIA DE FIBONACCI Paulo Franca Bandel (IC) 1 & Marcos Antonio Botelho Labmat Laboratório de Matemática Experimental Departamento de Matemática Instituto Tecnológico de Aeronáutica

Leia mais

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues.

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. Lista 12: Equilíbrio do Corpo Rígido NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii.

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

3.2.7. Diagrama de Impedâncias e Matriz de Admitância de um Sistema Elétrico

3.2.7. Diagrama de Impedâncias e Matriz de Admitância de um Sistema Elétrico Sistemas Elétricos de Potência 3.2.7. Diagrama de Impedâncias e Matriz de Admitância de um Sistema Elétrico Professor: Dr. Raphael Augusto de Souza Benedito E-mail:raphaelbenedito@utfpr.edu.br disponível

Leia mais

Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 2015

Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 2015 Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 015 Introdução Antes de apresentar a lista, introduzirei alguns problemas já vistos em sala de aula para orientar e facilitar a

Leia mais

Nesta aula vamos rever operações com frações,

Nesta aula vamos rever operações com frações, A UA UL LA Operações com frações Introdução Nesta aula vamos rever operações com frações, verificando a validade das propriedades operatórias dos números racionais. Veremos também o cálculo de expressões

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

ASPECTOS CONSTRUTIVOS DE ROBÔS

ASPECTOS CONSTRUTIVOS DE ROBÔS ASPECTOS CONSTRUTIVOS DE ROBÔS Tipos de robôs Classificação de robôs Definições importantes: O arranjo das hastes e juntas em um braço manipulador tem um importante efeito nos graus de liberdade da ferramenta

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de

Leia mais

Função Seno. Gráfico da Função Seno

Função Seno. Gráfico da Função Seno Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,

Leia mais