Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial"

Transcrição

1 Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº / Professor Paulo Pinto O uso generalizado de câmaras digitais, telemóveis com a possibilidade de gravação de imagens cada vez com maior resolução, exige uma maior capacidade de armazenamento. Um método chave para reduzir essa exigência é conhecido como compressão de imagem. Este projeto irá explicar esse mesmo método, descrevendo um processo para tal, chamado A Transformação de Haar Wavelet. O que é uma imagem? Uma imagem é um conjunto de pontos discretos chamados de píxeis. O método de compressão de imagens JPEG vê qualquer imagem como uma matriz m x n em que cada entrada da matriz determina a cor de um pixel na imagem. Cada entrada, no entanto, é representada por um dado número de bits. Se cada pixel fosse representado apenas por um bit, apenas duas cores diferentes poderiam aparecer, uma vez que um computador, funcionando com o sistema binário, poderia usar o valor 0 ou 1. Se dois bits fossem usados para representar cada pixel, duas cores poderiam ser representadas (2 x 2 = 4). E por aí em diante. Em suma, o número de cores possíveis de serem representadas é dada pela expressão 2 n, em que o n representa o número de bits por pixel. As imagens mais comuns são as de 8 bits por pixel (um byte) ou 24 bits por pixel (três bytes). Três tipos diferentes de imagens bitmap são, geralmente, usadas. O primeiro tipo são imagens de intensidade (na escala de cinzentos), onde cada entrada da matriz corresponde a um valor entre 0 e 1, em que o 0 corresponde ao branco

2 puro e 1 ao preto completo. A seguir temos as imagens de 256 cores, onde cada entrada da matriz corresponde a um número entre 0 e 255 que, por sua vez, corresponde a uma cor distinta. Neste, cada pixel requer 8 bits, ou 1 byte de memória. No terceiro tipo de imagem são usadas três matrizes: uma para a escala de vermelho, outra para a escala de verde e a terceira para a escala de azul. Este tipo é também conhecido como RGB (Red, Green, Blue). O processo de compressão de imagens utilizado pela JPEG é denominada pela Transformação Discreta do Cosseno. No entanto existem outros processos de compressão de imagens, entre os quais a Transformação Discreta de Wavelet, que tem muitas mais aplicações na vida real. A primeira Transformação Discreta de Wavelet foi inventada pelo Matemático Húngaro Alfréd Haar e, por isso mesmo, denomina-se de Transformação Haar Wavelet que irá ser apresentada neste projeto. Quando recuperadas da Internet, as imagens digitais demoram uma quantidade considerável de tempo para serem descarregadas e fazem uso de uma grande quantidade de espaço. A transformação Haar Wavelet combateu essa tendência comprimindo, então, as imagens digitais de forma a que ocupassem menos espaço quando armazenadas e transmitidas. A ideia principal por detrás deste método de compressão é a de tratar a imagem digital como um conjunto de números i.e., uma matriz. Cada imagem, como descrito anteriormente, corresponde a um conjunto de píxeis. A matriz correspondente a uma certa imagem contém um número inteiro para cada pixel. A técnica de compressão JPEG divide uma imagem em blocos 8x8, e cada bloco contém uma matriz. Esta técnica utiliza ferramentas de Álgebra Linear para maximizar a compressão e manter um nível elevado e detalhe.

3 Transformação de vetores usando Haar Wavelets Antes de exemplificar a transformação de matrizes, é necessário verificar como é feita a transformação de vetores (linhas de matrizes). Utilizando, por exemplo, o vetor: v = [ ] que é uma linha da matriz 8x8 da imagem. No geral, se o vetor tem 2 k elementos, então o processo de transformação, precedente da compressão, realiza-se em k passos. No caso acima, em 3 passos, uma vez que 8=2 3.

4 Tem de se efetuar as seguintes operações nas entradas do vetor v: - Dividir as entradas de v em quatro pares: (420, 680), (448, 708), (1260, 1410), (1600, 1600). - Calcular a média de cada par: Os valores formarão as primeiras quatro entradas do novo vetor v1. - Subtrair cada um dos valores calculados nas médias à primeira entrada de cada par e daí resultam os seguintes números: -130, -130, -75, 0, que formarão as quatro últimas entradas do vetor v1. - Formação do novo vetor: v1 = [ ].

5 É preciso notar que o vetor v1 pode ser obtido a partir do vetor v, multiplicando este à direita pela seguinte matriz: Os primeiros quatro coeficientes de v1 são chamados de coeficientes de aproximação e as últimas quatro entradas são chamadas de coeficientes de detalhe. O próximo passo é voltar a agrupar as entradas do vetor v1, mas desta vez só se agrupa as primeiras quatro entradas, formando dois grupos com dois elementos cada. Desta operação resulta estas duas entradas: 564 e 1470 do novo vetor v2. Estes são os novos coeficientes de aproximação. O terceiro e o quarto elemento de v2 são obtidos pela subtração das médias 564 e 1470 aos primeiros elementos de cada par correspondente. Isto resulta nos novos coeficientes de detalhe: -14 e As últimas quatro entradas de v2 são os coeficientes de detalhe de v1, e assim tem-se: v2 = [ ], o segundo vetor da transformação, que por sua vez pode ser obtido do vetor v1 pela multiplicação à direita pela matriz:

6 O último passo consiste, mais uma vez, em calcular a média das primeiras duas entradas do vetor v2 e, como anteriormente, subtrair o resultado à primeira entrada do par. Isto resulta no seguinte vetor: v3 = [ ] Como anteriormente, o vetor v3 pode ser obtido por de v1, multiplicando v2 à direita pela matriz:

7 Como consequência, v3 resulta imediatamente de v através da seguinte expressão: Seja: v3 = v x W1 x W2 x W3 Observações: - As colunas da matriz W1 formam uma base ortogonal de R 8. Como consequência, W1 é invertível. O mesmo acontece com a matriz W2 e W3. - Como produto de matrizes invertíveis, W é também invertível e as suas colunas formam uma base ortogonal de R 8. A inversa de W é dada pela expressão: Supondo que a matriz A é a matriz que corresponde a uma certa imagem, a transformação de Haar processa-se realizando as operações anteriormente descritas em cada uma das linhas da matriz A, e depois repetindo as mesmas operações nas colunas da matriz resultante. A matriz transformada é AW. A transformação das colunas de AW é obtida através da multiplicação deaw pela matriz W T, a transposta de W, à esquerda. Em suma, a transformação de Haar

8 modifica a matriz A e calcula a matriz W T AW. Nomeando esta nova matriz de S, temos então: Usando as propriedades da matriz inversa, pode-se obter de novo a matriz original, através da expressão: Isto permite-nos ver a imagem original. Exemplo: Supondo que uma imagem 8x8 é representada pela matriz:

9 Ao transformarmos as linhas da matriz A obtemos: Transformando, por fim, as colunas da matriz L, é obtida a seguinte matriz:

10 O objetivo de proceder à transformação de Haar wavelet é que entradas da matriz original que contêm pequenas variações acabarão com o valor zero na matriz transformada. A matriz é considerada esparsa se tiver uma grande quantidade de entradas iguais a zero. Este tipo de matriz demora muito menos espaço no seu armazenamento. Uma vez que não se pode esperar que todas as matrizes tenham a maior parte das suas entradas iguais a zero, decidiu-se definir uma valor conhecido por vizinhança, ε, e assim, todas as entradas da matriz que tenham valor inferior a ε passam a ter o valor de 0. Se ε for zero, nenhum dos elementos da matriz é modificado. Sempre que pretendemos descarregar uma imagem da Internet, o computador de origem usa a matriz transformada de Haar na sua memória. Primeiramente envia os valores dos coeficientes de aproximação e os de detalhe maiores e, só mais tarde, os coeficientes de detalhe com valores inferiores. Assim, o computador recebe a informação, começa o processo de reconstrução progressivamente até ao maior detalhe, até que a imagem original seja completamente reconstruída. Álgebra Linear consegue tornar o processo de compressão muito mais rápido e muito mais eficiente. Em primeiro lugar é necessário referir que uma matriz A nxn, diz-se ortogonal se as suas colunas formam uma base ortonormada de R n, isto é, as colunas de A são ortogonais duas a duas e o comprimento de cada vetor coluna é igual a 1. Da mesma forma que A é ortogonal se a sua inversa é igual à sua transposta. Esta última propriedade faz com que a imagem seja recuperada através da equação: que torna o processo mais rápido.

11 Uma outra propriedade bastante importante referente às matrizes ortogonais é a da preservação da sua norma. Por outras palavras, se v é um vetor de R n e A uma matriz ortogonal, então Av = v, pois: Além disso, o ângulo é preservado quando é feita a transformação através de matrizes ortogonais. Relembrando que o coseno de um ângulo entre dois vetores u e v é dado por: então, se A é uma matriz ortogonal, ψ o ângulo entre os dois vetores Au e Av, temos:

12 Uma vez que a norma e o ângulo é preservado, há uma muito menor distorção produzida na reconstrução da imagem quando é usada uma matriz ortogonal. W é o produto de três outras matrizes e, por isso mesmo, podemos normalizar W, normalizando cada uma das outras três matrizes. A versão normalizada de W será: Podemos notar também, que a matriz W não é mais do que uma matriz mudança de base de R 8. Por outras palavras, as colunas de W formam uma nova base de R 8. Por isso mesmo, quando multiplicamos um vetor v, escrito nas coordenadas da base canónica de R 8, por W, obtêm-se as coordenadas de v na nova base. Algumas coordenadas vão ser negligenciadas no processo de transformação da matriz numa matriz esparsa, o que fará com que o processamento e transmissão da imagem se dê muito mais rapidamente.

Transformada de Discreta de Co senos DCT

Transformada de Discreta de Co senos DCT Transformada de Discreta de Co senos DCT O primeiro passo, na maioria dos sistemas de compressão de imagens e vídeo, é identificar a presença de redundância espacial (semelhança entre um pixel e os pixels

Leia mais

Mídias Discretas. Introdução à Ciência da Informação

Mídias Discretas. Introdução à Ciência da Informação Mídias Discretas Introdução à Ciência da Informação Mídias Discretas Mídias discretas (estáticas) Texto Gráficos e Imagens Estáticas Caracteres são convertidos para uma representação com um número fixo

Leia mais

Imagem e Gráficos. vetorial ou raster?

Imagem e Gráficos. vetorial ou raster? http://computacaografica.ic.uff.br/conteudocap1.html Imagem e Gráficos vetorial ou raster? UFF Computação Visual tem pelo menos 3 grades divisões: CG ou SI, AI e PI Diferença entre as áreas relacionadas

Leia mais

Processamento de Imagem. Compressão de Imagens Professora Sheila Cáceres

Processamento de Imagem. Compressão de Imagens Professora Sheila Cáceres Processamento de Imagem Compressão de Imagens Professora Sheila Cáceres Porque comprimir? Técnicas de compressão surgiram para reduzir o espaço requerido para armazenamento e o tempo necessário para transmissão

Leia mais

Expansão/Redução de imagens no domínio das frequências

Expansão/Redução de imagens no domínio das frequências Faculdade de Engenharia da Universidade do Porto LEEC 5ºAno/1ºSemestre Televisão Digital 2006/2007 Trabalho 1: Expansão/Redução de imagens no domínio das frequências Grupo 8: Pedro Cunha (ee00047@fe.up.pt)

Leia mais

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado

Leia mais

Motivação Por que estudar?

Motivação Por que estudar? Aula 04 Imagens Diogo Pinheiro Fernandes Pedrosa Universidade Federal Rural do Semiárido Departamento de Ciências Exatas e Naturais Curso de Ciência da Computação Motivação Por que estudar? Imagens digitais

Leia mais

Processamento Digital de Imagem

Processamento Digital de Imagem Processamento Digital de Imagem Transformadas Ronaldo de Freitas Zampolo Laboratório de Processamento de Sinais LaPS Instituto de Tecnologia ITEC Universidade Federal do Pará UFPA Setembro de 2009 RFZampolo

Leia mais

Binário Decimal

Binário Decimal Sistema Binário Existem duas maneiras de representar uma informação eletrônica: analogicamente ou digitalmente. Uma música qualquer, por exemplo, gravada em uma fita K-7 é uma forma analógica de gravação.

Leia mais

INTRODUÇÃO AO DESENVOLVIMENTO WEB. PROFª. M.Sc. JULIANA H Q BENACCHIO

INTRODUÇÃO AO DESENVOLVIMENTO WEB. PROFª. M.Sc. JULIANA H Q BENACCHIO INTRODUÇÃO AO DESENVOLVIMENTO WEB PROFª. M.Sc. JULIANA H Q BENACCHIO Utilização de Cores em HTML Cores primárias Cores secundárias 2 Utilização de Cores em HTML Os comprimentos de onda vermelho, amarelo

Leia mais

Parte 1 Questões Teóricas

Parte 1 Questões Teóricas Universidade de Brasília (UnB) Faculdade de Tecnologia (FT) Departamento de Engenharia Elétrica (ENE) Disciplina: Processamento de Imagens Profa.: Mylène C.Q. de Farias Semestre: 2014.2 LISTA 04 Entrega:

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

11 a EDIÇÃO SISTEMAS DIGITAIS

11 a EDIÇÃO SISTEMAS DIGITAIS RONALD J. TOCCI NEAL S. WIDMER GREGORY L. MOSS 11 a EDIÇÃO SISTEMAS DIGITAIS princípios e aplicações Capítulo 2 Sistemas de numeração e códigos 43 TERMOS IMPORTANTES bit de paridade byte codificação em

Leia mais

Mudanças de Coordenadas em Sistemas de Cores

Mudanças de Coordenadas em Sistemas de Cores Mudanças de Coordenadas em Sistemas de Cores Bruno Teixeira Moreira e Emídio Augusto Arantes Macedo Ciência da Computação 1 o. Período Professor: Rodney Josué Biezuner Disciplina: Geometria Analítica e

Leia mais

Compressão de Imagens. Lilian Nogueira de Faria (Bolsista)...DPI/INPE Leila Maria Garcia Fonseca (Coordenadora)...DPI/INPE

Compressão de Imagens. Lilian Nogueira de Faria (Bolsista)...DPI/INPE Leila Maria Garcia Fonseca (Coordenadora)...DPI/INPE Compressão de Imagens Lilian Nogueira de Faria (Bolsista)...DPI/INPE Leila Maria Garcia Fonseca (Coordenadora)...DPI/INPE Imagens digitais necessitam de grande quantidade de espaço para armazenamento e

Leia mais

Cores em Imagens e Vídeo

Cores em Imagens e Vídeo Aula 05 Cores em Imagens e Vídeo Diogo Pinheiro Fernandes Pedrosa Universidade Federal Rural do Semiárido Departamento de Ciências Exatas e Naturais Ciência da Computação Ciência das Cores A cor é fundamentada

Leia mais

Operações com números binários

Operações com números binários Operações com números binários Operações com sistemas de numeração Da mesma forma que se opera com os números decimais (somar, subtrair, multiplicar e dividir) é possível fazer essas mesmas operações com

Leia mais

Introdução ao Processamento de Imagens Digitais Aula 01

Introdução ao Processamento de Imagens Digitais Aula 01 Introdução ao Processamento de Imagens Digitais Aula 01 Douglas Farias Cordeiro Universidade Federal de Goiás 06 de julho de 2015 Mini-currículo Professor do curso Gestão da Informação Formação: Graduação

Leia mais

Lógica Matemática Elementos de Lógica Digital. Sistema de numeração 09/08/2016 1

Lógica Matemática Elementos de Lógica Digital. Sistema de numeração 09/08/2016 1 Sistema de numeração 09/08/2016 1 Você já pensou sobre: Sistema de numeração a) O modo como surgiram os números? b) Como foram as primeiras formas de contagem? c) Como os números foram criados, ou, será

Leia mais

Aplicações Informáticas B 12º Ano

Aplicações Informáticas B 12º Ano Aplicações Informáticas B 12º Ano Prof. Adelina Maia 2013/2014 AIB_U4A 1 Bases sobre a teoria da cor aplicada aos sistemas digitais (red / Green / blue) Modelo CMYK (cyan / magenta / yellow + Black) Modelo

Leia mais

Compressão de Imagens Usando Wavelets: Uma Solução WEB para a Codificação EZW Utilizando JAVA. Utilizando JAVA. TCC - Monografia

Compressão de Imagens Usando Wavelets: Uma Solução WEB para a Codificação EZW Utilizando JAVA. Utilizando JAVA. TCC - Monografia Compressão de Imagens Usando Wavelets: Uma Solução WEB para a Codificação EZW Utilizando JAVA TCC - Monografia Wanderson Câmara dos Santos Orientador : Prof. Dr. Luiz Felipe de Queiroz Silveira 1 Departamento

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Aula 10 Matrizes e Determinantes Matrizes e Determinantes se originaram no final do século XVIII, na Alemanha e no Japão, com o intuito de ajudar na solução de sistemas lineares baseados em tabelas formadas

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. mai/0 São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto

Leia mais

António Costa. Paulo Roma Cavalcanti

António Costa. Paulo Roma Cavalcanti Introdução à Computação Gráfica Preâmbulo Adaptação: Autoria: João Paulo Pereira António Costa Claudio Esperança Paulo Roma Cavalcanti Computação Gráfica Modelos Matemáticos Análise (reconhecimento de

Leia mais

Processamento Digital de Imagens. Cor

Processamento Digital de Imagens. Cor Processamento Digital de Imagens Cor Em uma descrição física a cor está associada ao seu comprimento de onda. Ao se analisar o espectro eletromagnético na região do visível, os menores comprimentos de

Leia mais

Computação Gráfica - 12

Computação Gráfica - 12 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 12 jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav Realismo

Leia mais

Processamento Digital de Imagens

Processamento Digital de Imagens Ciência da Computação Processamento Digital de Imagens Prof. Sergio Ribeiro Tópicos Introdução Espectro Eletromagnético Aquisição e Digitalização de Imagens Efeitos da Digitalização Digitalização Sensoriamento

Leia mais

Computação Gráfica Aula 0. Alexandre de Barros Barreto - Ms

Computação Gráfica Aula 0. Alexandre de Barros Barreto - Ms Computação Gráfica Aula 0 Alexandre de Barros Barreto - Ms Objetivo da Disciplina Apresentar a computação gráfica, enquanto conjunto de aplicações matemáticas, como ferramenta de representação de dados

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 23 de novembro de 2016 Compressão de imagens engloba técnicas

Leia mais

Unidade III. Sistemas Numéricos e o Computador

Unidade III. Sistemas Numéricos e o Computador III.1 - O Sistema Decimal - Base: 10 - Dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Unidade III Sistemas Numéricos e o Computador Raimundo G. Nóbrega Filho - UFPB - CCEN - DI Notas de aula da disciplina Introdução

Leia mais

Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores

Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores Teoria dos Sinais e dos Sistemas O procedimento de Gram-Schmidt: definição, exemplos e aplicações Artur Ferreira {arturj@isel.pt}

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

DESENVOLVIMENTO DE PROGRAMA ANÁLISE DE TRELIÇAS ESPACIAIS

DESENVOLVIMENTO DE PROGRAMA ANÁLISE DE TRELIÇAS ESPACIAIS TRABALHO FINAL DA DISCIPLINA CE2 Estabilidade das Construções II DESENVOLVIMENTO DE PROGRAMA ANÁLISE DE TRELIÇAS ESPACIAIS Prof. Dr. Alfonso Pappalardo Jr. Prof. Douglas Pereira Agnelo São Paulo 2014 SUMÁRIO

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física

Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide 1 Slide 1 Sobre Modelos para SLIT s Introdução

Leia mais

Representação de Arranjos

Representação de Arranjos Representação de Arranjos Algoritmos e Estruturas de Dados I Embora os arranjos multidimensionais sejam fornecidos como um objeto de dados padrão na maioria das linguagens de programação em alto nível,

Leia mais

Processamento Digital de Imagens

Processamento Digital de Imagens Processamento Digital de Imagens Conceitos Básicos CPGCG/UFPR Prof. Dr. Jorge Centeno Realidade e imagem Uma imagem é a representação pictórica de um aspecto da realidade. Uma imagem não é idêntica à cena

Leia mais

Universidade Federal de Sergipe Departamento de Matemática. Imagem* Profª. Maria Andrade. *Parte desta apresentação foi do Prof. Thales Vieira.

Universidade Federal de Sergipe Departamento de Matemática. Imagem* Profª. Maria Andrade. *Parte desta apresentação foi do Prof. Thales Vieira. Universidade Federal de Sergipe Departamento de Matemática Imagem* Profª. Maria Andrade *Parte desta apresentação foi do Prof. Thales Vieira. 2016 O que é uma imagem digital? Imagem no universo físico

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica O método das frações parciais usa o conhecimento de diversos pares de transformada Z básicos e as propriedades da transformada Z para obtenção da transformada Z inversa das funções de interesse Admite-se

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Definição Compressão de Imagem Formas de diminuir a área de armazenamento dos dados, reduzindo a quantidade de bits

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira Universidade Federal de Alagoas Instituto de Matemática Imagem Prof. Thales Vieira 2011 O que é uma imagem digital? Imagem no universo físico Imagem no universo matemático Representação de uma imagem Codificação

Leia mais

Lista de Exercícios Sistemas de Numeração

Lista de Exercícios Sistemas de Numeração Lista de Exercícios Sistemas de Numeração 1- (Questão 52 BNDES Profissional Básico Análise de Sistemas - Suporte ano 2010) Um administrador de sistemas, ao analisar o conteúdo de um arquivo binário, percebeu

Leia mais

Eletrônica Digital. Instituto Federal de Santa Catarina Campus São José. Área de Telecomunicações. Sistema de Numeração

Eletrônica Digital. Instituto Federal de Santa Catarina Campus São José. Área de Telecomunicações. Sistema de Numeração Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações Curso Técnico Integrado em Telecomunicações Eletrônica Digital Sistema de Numeração INTRODUÇÃO Eletrônica digital trabalha com

Leia mais

Protótipo de software para inserção e extração de mensagens em arquivo raster através de esteganografia

Protótipo de software para inserção e extração de mensagens em arquivo raster através de esteganografia Centro de Ciências Exatas e Naturais Departamento de Sistemas e Computação Bacharelado em Ciências da Computação Protótipo de software para inserção e extração de mensagens em arquivo raster através de

Leia mais

Modelo RGB - Aplicações

Modelo RGB - Aplicações Modelo RGB - Aplicações As aplicações do modelo RGB estão associadas à emissão de luz por equipamentos como monitores de computador e ecrãs de televisão. O monitor CRT é essencialmente um tubo de raios

Leia mais

Introdução à Informática

Introdução à Informática Introdução à Informática Sistemas Numéricos Ageu Pacheco e Alexandre Meslin Objetivo da Aula: Partindo da base, ver como operações aritméticas são efetuadas em outras bases; em especial a 2. Adição na

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Representação de Números de Ponto Flutuante Aritmética

Leia mais

Otimização da Paleta de Cores

Otimização da Paleta de Cores Otimização da Paleta de Cores Resumo O objetivo deste artigo é apresentar a técnica de otimização da paleta de cores utilizada no MSX Viewer 5 para encontrar a melhor paleta de cores do MSX 2 e do v9990,

Leia mais

Padrões de Compressão de Imagens

Padrões de Compressão de Imagens Aula 10 Padrões de Compressão de Imagens Diogo Pinheiro Fernades Pedrosa diogopedrosa@ufersa.edu.br http://www2.ufersa.edu.br/portal/professor/diogopedrosa Universidade Federal Rural do Semiárido Departamento

Leia mais

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Engenharia de Sistemas e Computação Rio de Janeiro, RJ Brasil RECONHECIMENTO

Leia mais

Lista de exercícios 9 Mudanças de Bases

Lista de exercícios 9 Mudanças de Bases Universidade Federal do Paraná 2 semestre 2016 Algebra Linear Olivier Brahic Lista de exercícios 9 Mudanças de Bases Observação: no livro do Leon [1] o autor chama de matriz de transição de B 1 para B

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Tópicos em Programação Linear e Inteira Prof. Dr.Ricardo Ribeiro dos Santos ricr.santos@gmail.com Universidade Católica Dom Bosco UCDB Engenharia de Computação Revisão: Tópicos de

Leia mais

Imagem bitmap. Gráfico vetorial. gráficos vetoriais

Imagem bitmap. Gráfico vetorial. gráficos vetoriais Sobre imagens bitmap e gráficos vetoriais Os elementos gráficos de um computador podem ser divididos em duas categorias principais -- bitmap e vetor. Imagem bitmap Gráfico vetorial Imagens bitmap são ideais

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

A Fotogrametria Digital

A Fotogrametria Digital A Fotogrametria Digital Fotogrametria Digital O que é a fotogrametria Digital? A Fotogrametria Digital é a parte da fotogrametria que trata dos aspectos geométricos do uso de fotografias, com a finalidade

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

Códigos de bloco. Luis Henrique Assumpção Lolis. 1 de novembro de Luis Henrique Assumpção Lolis Códigos de bloco 1

Códigos de bloco. Luis Henrique Assumpção Lolis. 1 de novembro de Luis Henrique Assumpção Lolis Códigos de bloco 1 Códigos de bloco Luis Henrique Assumpção Lolis 1 de novembro de 2013 Luis Henrique Assumpção Lolis Códigos de bloco 1 Conteúdo 1 Códigos de bloco lineares 2 Códigos sistemáticos 3 Síndrome 4 Distância

Leia mais

Pesquisa Operacional. Prof. José Luiz

Pesquisa Operacional. Prof. José Luiz Pesquisa Operacional Prof. José Luiz Resolver um problema de Programação Linear significa basicamente resolver sistemas de equações lineares; Esse procedimento, apesar de correto, é bastante trabalhoso,

Leia mais

Imagem Digital. Claudio Carvilhe

Imagem Digital. Claudio Carvilhe Imagem Digital Claudio Carvilhe Imagem Digital Roteiro Introdução. Pixel. Resolução espacial. Cor. Processamento de imagens. Introdução Informação Visual: Imagem vista na tela. Informação Descritiva: Modelo

Leia mais

Estudando com o MATLAB

Estudando com o MATLAB Estudando com o MATLAB Curso de Extensão Docentes: > Fabiano Araujo Soares > Marcelino M. de Andrade Monitor: >Luan Felipe Aula 4: Aplicações - Parte II 1ª Parte - Estatística Aula 4-1ª Parte: Estatística

Leia mais

Ficha de Exercícios nº 3

Ficha de Exercícios nº 3 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação

Leia mais

Fundamentos Matemáticos de Computação Gráfica

Fundamentos Matemáticos de Computação Gráfica Fundamentos Matemáticos de Computação Gráfica Fundamentos Matemáticos de CG Vetores e Pontos Matrizes Transformações Geométricas Referências: Mathematics for Computer Graphics Applications. M. E. Mortenson.

Leia mais

Influência do Tamanho do Bloco na DCT

Influência do Tamanho do Bloco na DCT LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES TELEVISÃO DIGITAL 2005/06 Influência do Tamanho do Bloco na DCT Autores: Carlos Graf Nuno Lima Grupo 4 Novembro de 2005 ÍNDICE 1. INTRODUÇÃO...

Leia mais

Sistemas de numeração: Decimal, Binário, Octal e Hexadecimal

Sistemas de numeração: Decimal, Binário, Octal e Hexadecimal Sistemas de numeração: Decimal, Binário, Octal e Hexadecimal Pedro Pinto 03 Jan 2013 Na semana passada um leitor lançou-me o desafio para escrever uns artigos sobre os sistema de representação numérica

Leia mais

Formatos Imagem. Licenciatura em Engenharia Informática e de Computadores Computação Gráfica. Apontamentos CG Edward Angel, Sec. 8.

Formatos Imagem. Licenciatura em Engenharia Informática e de Computadores Computação Gráfica. Apontamentos CG Edward Angel, Sec. 8. Licenciatura em Engenharia Informática e de Computadores Computação Gráfica Formatos Imagem Apontamentos CG Edward Angel, Sec. 8.2 Siglas DIB: Device Independent Bitmap windows BMP: Windows Bitmap GIF:

Leia mais

a) sistema de cores aditivo b) sistema de cores subtrativo Figura 1. Sistemas de cores.

a) sistema de cores aditivo b) sistema de cores subtrativo Figura 1. Sistemas de cores. RGB to Gray Resumo Este artigo tem como objetivo mostrar como converter uma imagem colorida para tons de cinza no MSX 2. 1- Introdução Uma imagem digital é composta de 3 componentes de cores primárias

Leia mais

Conceitos de vetores. Decomposição de vetores

Conceitos de vetores. Decomposição de vetores Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas

Leia mais

Universidade de Pernambuco Escola Politécnica de Pernambuco

Universidade de Pernambuco Escola Politécnica de Pernambuco Universidade de Pernambuco Escola Politécnica de Pernambuco TV Analógica e Digital Introdução Codificação de Canal Prof. Márcio Lima E-mail:marcio.lima@poli.br Introdução Visão Geral Introdução Motivação

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Aplicação da decomposição de números em fatores primos para determinar o máximo divisor comum Exemplo: Determinar m. d. c. (60,36) 60 = 3 5 e 36 = 3 Qual é o maior número pelo qual podemos dividir 60 e

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

. Repare que ao multiplicar os vetores (-1,1) e

. Repare que ao multiplicar os vetores (-1,1) e Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

Arquitetura de computadores BASE NUMÉRICAS

Arquitetura de computadores BASE NUMÉRICAS Arquitetura de computadores BASE NUMÉRICAS Base Numérica A base numérica é um conjunto de símbolos (algarismos) usados para representar uma certa quantidade ou número. Notação Posicional Esta notação representa

Leia mais

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Códigos de bloco Prof. Diego da Silva de Medeiros São José, maio de 2012 Codificação

Leia mais

REPRESENTAÇÃO DE NÚMEROS EM BINÁRIO E HEXADECIMAL

REPRESENTAÇÃO DE NÚMEROS EM BINÁRIO E HEXADECIMAL ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP REPRESENTAÇÃO DE NÚMEROS EM BINÁRIO E HEXADECIMAL 1. Hexadecimal [A1] Hexadecimal é o sistema

Leia mais

Quais as diferenças entre pixels e vetores?

Quais as diferenças entre pixels e vetores? Quais as diferenças entre pixels e vetores? Conheça um pouco destes elementos utilizados para compor imagens presentes no cotidiano dos designers e usuários Em toda criação de imagem, o designer deve sempre

Leia mais

UNIMINAS. 101.. Só é necessário o armazenamento de: Sinal da mantissa: - (menos). Valor da mantissa: 00110101. Sinal do expoente: -(na realidade, háh

UNIMINAS. 101.. Só é necessário o armazenamento de: Sinal da mantissa: - (menos). Valor da mantissa: 00110101. Sinal do expoente: -(na realidade, háh Representação em Ponto Flutuante Utiliza-se a representação científica normalizada: 2500 = 2,5 x 10 3 0,00009 = 9,0 x 10-5. Mantissa: 1 =< M < 2. Na realidade, trabalha-se na base 2: -1,00110101 x 2-1012

Leia mais

Satélites Artificiais da Terra

Satélites Artificiais da Terra Satélites Artificiais da Terra Os valores numéricos correspondem aos níveis radiométricos registados pelo sensor em cada uma das bandas espectrais. Satélites Artificiais da Terra As imagens de satélite

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

n. 2 MATRIZ INVERSA (I = matriz unidade ou matriz identidade de ordem n / matriz canônica do R n ).

n. 2 MATRIZ INVERSA (I = matriz unidade ou matriz identidade de ordem n / matriz canônica do R n ). n. 2 MATRIZ INVERSA Modo : utilizando a matriz identidade Seja A uma matriz quadrada de ordem n. Dizemos que A é matriz invertível se existir uma matriz B tal que A. B = B. A = I. (I = matriz unidade ou

Leia mais

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES Prof. Dr. Daniel Caetano 2013-1 Objetivos Apresentar o funcionamento do computador Apresentar a função da memória e dos dispositivos

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

Corel Draw. Editoração Gráfica. Professor: Jarbas Araújo CENTRO EDUCACIONAL RADIER.

Corel Draw. Editoração Gráfica. Professor: Jarbas Araújo CENTRO EDUCACIONAL RADIER. Corel Draw Editoração Gráfica Professor: Jarbas Araújo professorjarbasaraujo@gmail.com CENTRO EDUCACIONAL RADIER Padrões CMYK ou RGB? Isso causa uma enorme confusão na cabeça de clientes, e pessoas leigas

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Capítulo 4 Séries de Fourier

Capítulo 4 Séries de Fourier Capítulo 4 Séries de Fourier Dizemos que representamos uma função real ela se expressa na série em série de Fourier quando os coeficientes são chamados de coeficientes de Fourier. Claro, a série de Fourier

Leia mais

As imagens. As imagens. Representação digital de imagens. As imagens Wilson de Pádua Paula Filho 1

As imagens. As imagens. Representação digital de imagens. As imagens Wilson de Pádua Paula Filho 1 As As As Dispositivos gráficos Resolução espacial de : pixel - unidade de imagem, usada para medir resolução gráfica; visão humana - cerca de 3000 x 3000 pixels; fotografia - até 8000 x 8000 pixels. 2001

Leia mais

Reconhecimento facial. uma aplicação prática do reconhecimento de padrões

Reconhecimento facial. uma aplicação prática do reconhecimento de padrões Reconhecimento facial uma aplicação prática do reconhecimento de padrões Márcio Koch, junho 2014 Pauta Apresentação Visão computacional Reconhecimento de padrões Analise de Componentes Principais Reconhecimento

Leia mais

Compressão com perdas

Compressão com perdas Compressão com perdas Codificação por transformadas e o padrão JPEG Anderson L Menezes Leonardo G Tampelini Maxiwell S Garcia Introdução Um método é dito com perdas (lossy data) quando a informação obtida

Leia mais

UFSM-CTISM. Comunicação de Dados Aula-17

UFSM-CTISM. Comunicação de Dados Aula-17 UFSM-CTISM Comunicação de Dados Aula-17 Professor: Andrei Piccinini Legg Santa Maria, 2012 Definição: Um código de Hamming adiciona um bloco de paridade a um bloco de dados, de forma a que, caso ocorram

Leia mais

Padrões e Tipos de Dados de Mídia. Imagem

Padrões e Tipos de Dados de Mídia. Imagem Padrões e Tipos de Dados de Mídia. Imagem CONFERENCIA 3 Ing. Yamila Díaz Suárez Revisão de tarefa Realizar um resumo sobre a gestão eletrónica de documentos. Pesquisar quais ferramentas existem. Contéudo

Leia mais

Considerando as cores como luz, a cor branca resulta da sobreposição de todas as cores, enquanto o preto é a ausência de luz. Uma luz branca pode ser

Considerando as cores como luz, a cor branca resulta da sobreposição de todas as cores, enquanto o preto é a ausência de luz. Uma luz branca pode ser Noções de cores Cor é como o olho dos seres vivos animais interpreta a reemissão da luz vinda de um objeto que foi emitida por uma fonte luminosa por meio de ondas eletromagnéticas; Corresponde à parte

Leia mais

MATRIZES. Conceitos e Operações

MATRIZES. Conceitos e Operações MATRIZES Conceitos e Operações As matrizes são tabelas de números reais utilizadas em quase todos os ramos da ciência e da engenharia. Várias operações realizadas por computadores são através de matrizes.

Leia mais

Propriedades da Imagem Amostragem & Quantização (Quantificação) Histograma Imagem Colorida x Imagem Monocromática. Propriedades da Imagem

Propriedades da Imagem Amostragem & Quantização (Quantificação) Histograma Imagem Colorida x Imagem Monocromática. Propriedades da Imagem Proc. Imagem Prof. Júlio C. Klafke [1] TÓPICOS DESENVOLVIDOS NESTE MÓDULO PROCESSAMENTO DE IMAGEM #02 Propriedades da Imagem Amostragem & Quantização (Quantificação) Histograma Imagem Colorida x Imagem

Leia mais

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

Programa Princípios Gerais Forças, vetores e operações vetoriais

Programa Princípios Gerais Forças, vetores e operações vetoriais Programa Princípios Gerais Forças, vetores e operações vetoriais Representação gráfica de vetores Graficamente, um vetor é representado por uma flecha: a intensidade é o comprimento da flecha; a direção

Leia mais