étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA"

Transcrição

1 étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO

2 Decomposição em valor singular 2

3 Introdução A decomposição em valores singulares (singular-value decomposition, SVD) é um dos resultados mais importantes em Algebra Linear, tanto computacional quanto teórica. A SVD é a base dos métodos mais precisos para resolução de problemas de mínimos quadrados, para determinação do posto de matrizes, do espaço-imagem e do espaço nulo de matrizes, e da solução de vários problemas envolvendo normas euclidianas. 3

4 Introdução polinômio Valor próprio = aulovalores 4

5 Introdução O SVD (Singular Value Decomposition) é um outro método para a fatorar matrizes. Esta é a decomposição mais confiável, mas isto pode requerer mais tempo. A SVD decompõe a matriz num produto dos fatores de outras três matrizes: A= USV, onde U e V são matrizes ortogonais (M M T =I) e S é diagonal. Os valores da matriz diagonal são chamados de valores singulares e por isso a decomposição recebe este nome. O número de valores singulares diferentes de zero é igual ao rank (posto) da matriz. A função svd do MATLAB executa esta fatoração. A decomposição em valores singulares vale tanto para matrizes quadradas quanto retangulares. A matriz pode ter elementos reais ou complexos. 5

6 Decomposição em Valores singulares Tem-se que toda a matriz A, m n, é fatorável na forma: Chamada Decomposição em valores singulares da matriz A, sendo: V uma matriz ortogonal n n, construída a partir de um conjunto ortonormal de auto-vetores da matriz A t A, {v 1, v 2,..., v n } U uma matriz ortogonal m m, cujos elementos são determinados por:

7 Decomposição em Valores singulares Se A tem r valores singulares não nulos, Σ é uma matriz da forma: A matriz A, m n, com r valores singulares não nulos, pode ser escrita na forma: em que u i são colunas de U, ditos vetores singulares à esquerda, e v i são colunas de V, ditos vetores singulares à direita.

8 Decomposição em Valores singulares Exemplo: Seja a matriz Onde: Auto-valores: 1 = 4 e 2 = 1 Auto-vetores: V 1 = [0 1] t e V 2 = [1 0] t Valores Singulares: 1 = 2 e 2 = 1 8

9 Decomposição em Valores singulares A matriz é V é a matriz ortogonal nxn, portanto do tipo A T A, no caso presente, 2x2. Para construir V basta encontrar o conjunto de vetores fruto de A T A: 9

10 Decomposição em Valores singulares U é uma matriz m x m dada por: Tendo A r valores singulares não nulos, dever encontrar r colunas da matriz U: 10

11 Decomposição em Valores singulares 11

12 Decomposição em Valores singulares Processo de Ortogonalização de Gram-Schmidt Dado um espaço vetorial euclidiano V e uma base qualquer B= {v 1, v 2,..., v n } desse espaço, é possível, a partir dessa base determinar uma base ortogonal de V. Supondo que v 1, v 2,..., v n não são ortogonais e fazendo w 1 = v 1 pode-se determinar w 2 = v 2 αw 1 ortogonal a w 1 : Espaço euclidiano é um espaço vetorial real de dimensão finita munido de um produto interno. 12

13 Decomposição em Valores singulares Para se obter uma base ortogonal, basta normalizar cada w i. Assim obtem-se uma base B = {u 1, u 2,..., u n } que é ortogonal obtida a partir de B= {v 1, v 2,..., v n }.

14 Decomposição em Valores singulares Pode-se ainda decompor A na forma: 14

15 Aplicações de SVD são inúmeras as aplicações de SVD, dentre as quais se destacam: Cálculo da pseudo-inversa de uma matriz Análise de Componentes Principais (PCA) Redução de dimensão e compressão de dados 15

16 Aplicações de SVD 16

17 Aplicações de SVD 17

18 Aplicações de SVD Aproximando A por 20 i 1 s u v (usando só os 20 maiores valores singulares) i i T i 18

19 Referencias Bibliográficas 1. Aderito Luis Martins Araujo, Analise Numerica Engenharias Mecânica e de Materiais. 2. Frederico Ferreira Campos Filho, Algoritmos Numéricos. 3. Numerical respiceis 19

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO

Leia mais

étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

étodos uméricos INTEGRAÇÃO NUMÉRICA (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos INTEGRAÇÃO NUMÉRICA (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos INTEGRAÇÃO NUMÉRICA (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL

Leia mais

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno

étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA

Leia mais

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA

Leia mais

em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14

em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14 Capítulo 7 Decomposição em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14 Motivação A determinação da característica de uma

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

Resolução de Sistemas Lineares Prof. Isaias Lima 04/03/2015

Resolução de Sistemas Lineares Prof. Isaias Lima 04/03/2015 Resolução de Sistemas Lineares Prof. Isaias Lima 04/03/2015 A situação mais comum envolve uma matriz quadrada de coeficientes A e um vetor coluna b no segundo membro da equação. 1) Matriz A não singular

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação)

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Matrizes - Parte II. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Matrizes - Parte II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

1 Determinantes, traços e o teorema espectral para operadores arbitrários

1 Determinantes, traços e o teorema espectral para operadores arbitrários Álgebra Linear e Aplicações - Lista para Segunda Prova Nestas notas, X, Y,... são espaços vetoriais sobre o mesmo corpo F {R, C}. Você pode supor que todos os espaços têm dimensão finita. (x, y) = (x,

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 4: Programação Linear Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

MATLAB para H-Álgebra Linear II

MATLAB para H-Álgebra Linear II MATLAB para H-Álgebra Linear II Melissa Weber Mendonça 1 1 Universidade Federal de Santa Catarina 2011.2 M. Weber Mendonça (UFSC) MATLAB para H-Álgebra Linear II 2011.2 1 / 15 Lembrando... 1 3 ( ) 4 A

Leia mais

Minicurso sobre Deconvolução em Imagens

Minicurso sobre Deconvolução em Imagens Primeiro Encontro VII Encontro de Ciência e Tecnologia FGA/UnB Campus Gama - FGA Universidade de Brasília 18 de Novembro de 2015 Parte I Introdução Motivação Porque diabos estamos aqui para estudar mais

Leia mais

Resolução das Questões Discursivas

Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 04/2014 Sistemas de Equações Lineares Parte 2 FATORAÇÃO LU Cálculo Numérico 3/37 FATORAÇÃO LU Uma fatoração LU de uma dada

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS*

OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* FABIANA BARBOSA DA SILVA, ALINE MOTA DE MESQUITA ASSIS, JOSÉ EDER SALVADOR DE VASCONCELOS Resumo: o objetivo deste artigo é apresentar

Leia mais

Álgebra Linear I - Aula 21

Álgebra Linear I - Aula 21 Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4

Leia mais

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 PROGRAMA 1. Sistemas de equações lineares e matrizes 1.1 Sistemas 1.2 Matrizes 1.3 Determinantes 2. Espaços vectoriais (ou espaços lineares) 2.1 Espaços e subespaços

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO ANEXO 1 - Plano de Ensino MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre letivo 2016 02 1. Identificação Código 1.1 Disciplina: Modelos Matemáticos

Leia mais

PLANO DE ENSINO e APRENDIZAGEM Álgebra Linear

PLANO DE ENSINO e APRENDIZAGEM Álgebra Linear UNIVERSIDADE FEDERAL DO PARÁ PLANO NACIONAL DE FORMAÇÃO DE PROFESSORES DA EDUCAÇÃO BÁSICA PARFOR CURSO DE LICENCIATURA EM MATEMÁTICA PLANO DE ENSINO e APRENDIZAGEM Álgebra Linear I IDENTIFICAÇÃO 1.1. Disciplina:

Leia mais

Álgebra Linear I - Aula 5. Roteiro

Álgebra Linear I - Aula 5. Roteiro 1. Produto vetorial. 2. Aplicações. 3. Produto misto. Álgebra Linear I - Aula 5 1 Produto vetorial Roteiro Definição: Dados vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3 definimos o produto

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE MATEMÁTICA DISCIPLINA

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE MATEMÁTICA DISCIPLINA MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE MATEMÁTICA DISCIPLINA CÓDIGO DENOMINAÇÃO CRÉDITOS CARGA HORÁRIA Tot. T P L Tot. T

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

decomposição de Cholesky.

decomposição de Cholesky. Decomposição LU e Cholesky Prof Doherty Andrade - DMA-UEM Sumário 1 Introdução 1 2 Método de Eliminação de Gauss 1 3 Decomposição LU 2 4 O método de Cholesky 5 5 O Algoritmo para a decomposição Cholesky

Leia mais

Baseado no Capítulo 2 do livro: Material preparado pelo

Baseado no Capítulo 2 do livro: Material preparado pelo Baseado no Capítulo 2 do livro:.. h,.. h 2. (28) h &,. Material preparado pelo.. é ç : @. Departamento de Ciências Exatas / ESALQ USP Fevereiro de 22 Í N D I C E 2.. Matrizes e vetores... 2 2... Matrizes,

Leia mais

Visão Computacional CPS754

Visão Computacional CPS754 Visão Computacional CPS754 aula 12 - matriz fundamental Antonio Oliveira Ricardo Marroquim 1 / 1 visão computacional tópicos métodos numéricos para computar F 2 / 1 básico equação básica lembrando da condição

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

3 a Lista para auto-avaliação (com um exercício resolvido)

3 a Lista para auto-avaliação (com um exercício resolvido) Álgebra Linear Cursos: Engenharia Civil, Engenharia de Minas, Engenharia do Território 1 ō ano/1 ō Semestre 21/211 3 a Lista para auto-avaliação (com um exercício resolvido) 1. Indique a característica

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

Lista de exercícios 9 Mudanças de Bases

Lista de exercícios 9 Mudanças de Bases Universidade Federal do Paraná 2 semestre 2016 Algebra Linear Olivier Brahic Lista de exercícios 9 Mudanças de Bases Observação: no livro do Leon [1] o autor chama de matriz de transição de B 1 para B

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Aula 10 Matrizes e Determinantes Matrizes e Determinantes se originaram no final do século XVIII, na Alemanha e no Japão, com o intuito de ajudar na solução de sistemas lineares baseados em tabelas formadas

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

SISTEMAS REALIMENTADOS

SISTEMAS REALIMENTADOS SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Representação no Espaço de Estados É apropriada para sistemas que possuem várias entradas e várias

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17

Leia mais

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes: Universidade Federal do Paraná 2 semestre 2016. Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS Aplicações: estudo de vibrações, dinâmica populacional, estudos referentes à Genética,

Leia mais

AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO

AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO Patrícia Eduarda de Lima 1, Luciane de Fátima Rodrigues de Souza 2* 1 Departamento de Exatas, Faculdades Integradas Regionais

Leia mais

Processo de ortogonalização de Gram-Schmidt. Mudança de Base. Doherty Andrade. DMA - F67 - Sala 205

Processo de ortogonalização de Gram-Schmidt. Mudança de Base. Doherty Andrade. DMA - F67 - Sala 205 DMA - F67 - Sala 205 e-mail:doherty@uem.br Em muitas situações trabalhar com uma base particular de V 3 pode simplificar o trabalho. Dado uma base β = { u 1, u 2, u 3 } e outra base β = { w 1, w 2, w 3

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

Exercício 1: Matriz identidade. Exercício 3: Exercício 2: Exemplo: Igualdade entre matrizes 13/05/2017. Obtenha a matriz, em que.

Exercício 1: Matriz identidade. Exercício 3: Exercício 2: Exemplo: Igualdade entre matrizes 13/05/2017. Obtenha a matriz, em que. Conceito de matriz Matrizes Matrizes são tabelas retangulares utilizadas para organizar dados numéricos. Nas matrizes, cada número é chamado de elemento da matriz, as filas horizontais são chamadas linhas

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa

Leia mais

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral: Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,

Leia mais

MATLAB para H-Álgebra Linear II

MATLAB para H-Álgebra Linear II MATLAB para H-Álgebra Linear II Melissa Weber Mendonça 1 1 Universidade Federal de Santa Catarina 2011.2 M. Weber Mendonça (UFSC) MATLAB para H-Álgebra Linear II 2011.2 1 / 15 Lembrando... >> v = [1 2

Leia mais

Roteiros e Exercícios - Álgebra Linear v1.0

Roteiros e Exercícios - Álgebra Linear v1.0 Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará

Leia mais

Resolução de sistemas de equações não-lineares: Método de Newton

Resolução de sistemas de equações não-lineares: Método de Newton Resolução de sistemas de equações não-lineares: Método de Newton Marina Andretta/Franklina Toledo ICMC-USP 24 de setembro de 202 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais

MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga MATRIZES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Definição: chama-se matriz de ordem m por n a um quadro de m xn elementos dispostos em m linhas e n colunas. a a a a a a a a

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Noções de Álgebra Linear

Noções de Álgebra Linear Noções de Álgebra Linear 1. Espaços vetoriais lineares 1.1. Coordenadas 2. Operadores lineares 3. Subespaços fundamentais 4. Espaços normados 5. Espaços métricos 6. Espaços de Banach 7. Espaços de Hilbert

Leia mais

n. 4 DETERMINANTES: SARRUS E LAPLACE

n. 4 DETERMINANTES: SARRUS E LAPLACE n. 4 DETERMINANTES: SARRUS E LAPLACE A toda matriz quadrada está associado um número ao qual damos o nome de determinante. Determinante é uma função matricial que associa a cada matriz quadrada um escalar,

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Lucia Catabriga Algoritmos Numéricos II Computação Científica Universidade Federal do Espírito Santo de junho de 24 Resumo Este texto tem por objetivo introduzir os conceitos

Leia mais

UFPB PRG X ENCONTRO DE INICIAÇÃO À DOCÊNCIA

UFPB PRG X ENCONTRO DE INICIAÇÃO À DOCÊNCIA 4CCENDMMT0 MÉTODO DOS MÍNIMOS QUADRADOS Vivyane Coelho Caires (), Hélio Pires de Almeida (3) Centro de Ciências Exatas e da Natureza/Departamento de Matemática/MONITORIA Resumo: Geralmente aplicações de

Leia mais

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional

Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

Planificação anual- 8.º ano 2014/2015

Planificação anual- 8.º ano 2014/2015 Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização

Leia mais

Cadeias de Markov no ensino básico.

Cadeias de Markov no ensino básico. Cadeias de Markov no ensino básico Rodrigo Sychocki da Silva Porto Alegre, 3 de Dezembro de 200 Cadeias de Markov no ensino básico Rodrigo Sychocki da Silva* Maria Paula Gonçalves Fachin** Resumo Neste

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17.

Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17. 1 2011-02-08 13:00 2h Capítulo 1 Aritmética computacional 1.1 Erros absolutos e relativos 1.2 O polinómio de Taylor Resolução do exercício 1.3 2 2011-02-08 15:00 1h30m As aulas laboratoriais só começam

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Álgebra Linear I - Aula 19

Álgebra Linear I - Aula 19 Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a

Leia mais

Departamento de Matemática e Ciências Experimentais PROJECTO CURRICULAR DE MATEMÁTICA - 8º ANO /2015

Departamento de Matemática e Ciências Experimentais PROJECTO CURRICULAR DE MATEMÁTICA - 8º ANO /2015 ESCOLA EB 23 LUÍS DE CAMÕES Departamento de Matemática e Ciências Experimentais PROJECTO CURRICULAR DE MATEMÁTICA - 8º ANO - 2014/2015 Domínio: Números e operações Subdomínio 1. Relacionar números racionais

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller ÁLGEBRA LINEAR Combinação Linear, Subespaços Gerados, Dependência e Prof. Susie C. Keller Combinação Linear Sejam os vetores v 1, v 2,..., v n do espaço vetorial V e os escalares a 1, a 2,..., a n. Qualquer

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz

Leia mais

AJUSTAMENTO PARAMÉTRICO POR MÍNIMOS QUADRADOS COM ANÁLISE NA ESTABILIDADE DA SOLUÇÃO

AJUSTAMENTO PARAMÉTRICO POR MÍNIMOS QUADRADOS COM ANÁLISE NA ESTABILIDADE DA SOLUÇÃO 4 AJUSTAMENTO PARAMÉTRICO POR MÍNIMOS QUADRADOS COM ANÁLISE NA ESTABILIDADE DA SOLUÇÃO Silvio Jacks dos Anjos Garnés 1 Raimundo José Borges de Sampaio Quintino Dalmolin 1 CESUP-Centro de Ensino Superior

Leia mais

Calendarização da Componente Letiva Ano Letivo 2016/2017

Calendarização da Componente Letiva Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS ANDRÉ SOARES (150952) Calendarização da Componente Letiva Ano Letivo 2016/2017 8º Ano Matemática Períodos 1º Período 2º Período 3º Período Número de aulas previstas (45 minutos)

Leia mais

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Econometria. Operações básicas de vetores. Operações básicas de vetores. Operações básicas de vetores. Independência de vetores

Econometria. Operações básicas de vetores. Operações básicas de vetores. Operações básicas de vetores. Independência de vetores Operações básicas de vetores Econometria Adição Suponha dois vetores x e y com n componentes cada: 1. Alguns tópicos importantes de Álgebra Linear Danielle Carusi Machado - Econometria II Operações básicas

Leia mais

Prof. MSc. David Roza José 1/26

Prof. MSc. David Roza José 1/26 1/26 Inversão de Matrizes Objetivos: Saber determinar a inversa de uma matriz de maneira eficiente, baseada na fatoração LU; Compreender como a inversa de uma matriz pode ser utilizada para analisar características

Leia mais

PLANO DE ENSINO. Componente Curricular: Cálculo Numérico Turma: EMC /2

PLANO DE ENSINO. Componente Curricular: Cálculo Numérico Turma: EMC /2 PLANO DE ENSINO Componente Curricular: Cálculo Numérico Turma: EC - 2013/2 Carga Horária: 60 horas semestrais Créditos: 4 Professores: arcus Vinicius achado Carneiro Ricardo Antonello Período: 2015/1 EENTA:

Leia mais

αx + 2y + (α + 1)z + 2αw = β 1. [40 pontos] Discuta o sistema em função dos parâmetros α, β e γ.

αx + 2y + (α + 1)z + 2αw = β 1. [40 pontos] Discuta o sistema em função dos parâmetros α, β e γ. Católica Lisbon School of Business and Economics UCP MATEMÁTICA I MINI-TESTE 1 - versão A Duração: 90 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

RESUMO. sísmica empilhada. SEMBLANCE

RESUMO. sísmica empilhada. SEMBLANCE Determinação Automática das Velocidades de Empilhamento Para Obtenção da Seção Sísmica Zero- Offset Marcelo Santana de Souza* e Milton J. Porsani, CPGG/UFBA e INCT-GP/CNPq RESUMO A análise de velocidades

Leia mais