Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson -

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/"

Transcrição

1 Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - Estrutura Sistema qualquer de elementos ligados, construído para suportar ou transferir forças e para resistir com segurança às cargas que nele atuam. Na análise das forças das estruturas, é necessário desmembrar a estrutura e analisar, separadamente, os diagramas de corpo livre dos elementos individuais ou da combinação dos elementos, de maneira a determinar as forças internas da estrutura. Treliça A treliça é uma estrutura de elementos relativamente delgados, ligados entre si pelas extremidades. Os elementos comumente utilizados em construções são de madeira ou barra de metal e em geral são unidos uns aos outros por meio de uma placa de reforço, na qual eles são parafusados ou soldados, com mostra a figura abaixo. Cada elemento da treliça atua como um elemento de duas forças e, consequentemente, as forças em suas extremidades devem ser direcionadas ao longo do seu próprio eixo. Se uma força tende a alongar o elemento, é chamada de força de tração (T) (figura 6.4a); enquanto, se ela tende a encurtar o elemento, é chamada de força de compressão (C) (figura 6.4b). A tesoura é uma treliça plana destinada ao suporte de uma cobertura, que também pode ser considerada como uma estrutura linear composta por barras retas ligadas por articulações. Deve se considerar algumas hipóteses básicas sobre treliças tais como: a) Os nós como articulações perfeitas; b) o peso próprio das barras encontra-se concentrado em suas extremidades (nós); c) As ações são aplicadas somente nos nós da treliça; a geometria da treliça não deve variar conforme o carregamento aplicado;

2 d) Suas barras devem ser solicitadas somente por forças normais (tração e compressão). Em geral as barras de uma treliça são finas e podem suportar pequena carga lateral. Todas as cargas são, portanto, aplicadas às juntas (nós) e não às barras. A principal característica das treliças é apresentarem pequeno peso próprio em relação a outros tipos de elementos com a mesma função estrutural. Logo, podem ser formadas, basicamente, a partir da figura mais simples entre as "indeformáveis", que é o triângulo. Tipos de Treliças 2.1 Método dos Nós Todas as cargas são aplicadas aos nós, normalmente o peso próprio é desprezado pois a carga suportada é bem maior que o peso do elemento. Para que o sistema esteja em equilíbrio a resultante das forças em cada nó deve ser nula. O método dos Nós considera as forças internas da treliça como forças externas no equilíbrio de um nó da treliça e através do diagrama de corpo livre utiliza as equações de equilíbrio para obtenção da intensidade da força.

3 Exemplo 6.1 Determine a força em cada elemento da treliça mostrado na figura abaixo e indique se os elementos estão sob tração ou compressão. A X = 500 N A Y = 500 N C Y = 500 N F CA = 500 N F BA = 500 N F CB = 701,N 2.2 Elemento de Força Nula São usados para aumentar a estabilidade da treliça durante sua construção e também para fornecer apoio caso o carregamento seja alterado. Como regra geral, se somente dois elementos formam um nó de treliça e nenhuma carga externa ou reação de apoio é aplicada ao nó, então eles devem ser elemento de força nula. Em geral, se três elementos formam um nó de treliça, no qual dois deles são colineares, o terceiro elemento é um elemento de força nula, uma vez que nenhuma força externa ou reação de apoio é aplicada no nó.

4 Exemplo - Calcule as componentes horizontais e verticais da reação e determine a força em cada elemento da treliça. E X = 600 N E Y = 200 N A Y = 600 N F AC = 750 N F AD = 450 N F DC = 250 N F DE = 200 N F CE = 600 N F CD = 450 N 6.7 Determine a força em cada elemento da treliça e indique se esses elementos estão sob tração ou compressão. A X = 3 kn A Y = 8,87 kn E Y = kn F BC = 3 kn F BA = 8 kn F AC = 1.46 kn F AF = 4.17 kn F CD = 4.17 kn F CF = 3,12 kn F EF = 0 N F ED = 13,1 kn F DF = 5,21 kn

5 Extra - Utilizando o método dos nós, determine o esforço instalado em cada uma das barras da treliça representada abaixo. F BA = 1,2 kn B X = 1,8 kn B Y = 960 N C Y = 3,36 kn F BC = 2,52 kn F CA = 3,36 kn F CD = 2,52 kn F DA = 3,48 kn Extra - Na tesoura abaixo, formada por uma treliça Howe, utilizando o método dos nós determine a força em cada elemento da treliça e identifique quais os elementos estão sob tração ou compressão. F AF = 6 kn F AB = 5,2 kn F DC = 4 kn F CB = 3,46 kn F EF = 3 kn F BF = 3 kn F BE = 2 kn F BD = kn 2.3 O Método das Seções O método das seções é utilizado para determinar as forças atuantes dentro de um corpo. Ele baseia-se no principio segundo o qual, se um corpo está em equilíbrio, então qualquer parte dele também está em equilíbrio. O método das seções também pode ser utilizado para cortar ou secionar os elementos de uma treliça completa. Se secionarmos a treliça em duas e desenhamos o diagrama de corpo livre de uma de suas partes, podemos então aplicar as equações de equilíbrio para determinar as força nos elementos da seção de corte da parte isolada.

6 Exemplo 01 Determine a força nos elementos GC, GF e BC da treliça mostrado na figura abaixo. Exemplo 02 Determine a força nos elementos AB, FB, EB e ED da treliça mostrado na figura abaixo. Exemplo 6.5 Determine a força nos elementos GE, GC e BC da treliça mostrado na figura abaixo. Indique se os elementos estão sob tração ou compressão. A X = 0 A Y = 300 N D Y = 300 N F GE = 800 N F GC = 500N F BC = 800 N

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a. Se AB tiver diâmetro de 10 mm

Leia mais

Equilíbrio de uma Partícula

Equilíbrio de uma Partícula Apostila de Resistência dos Materiais I Parte 2 Profª Eliane Alves Pereira Turma: Engenharia Civil Equilíbrio de uma Partícula Condição de Equilíbrio do Ponto Material Um ponto material encontra-se em

Leia mais

Peso do asfalto ou pavimento de concreto; Vento empurrando os lados sobre a estrutura; Forças causadas por terremotos, entre outros.

Peso do asfalto ou pavimento de concreto; Vento empurrando os lados sobre a estrutura; Forças causadas por terremotos, entre outros. Concurso de Pontes de Papel Instruções para montagem das estruturas Abaixo segue um tutorial para a montagem de um modelo de estrutura. Para o seu projeto, você deve seguir as mesmas instruções, considerando,

Leia mais

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula ENG1200 Mecânica Geral 2013.2 Lista de Exercícios 1 Equilíbrio da Partícula Questão 1 - Prova P1 2013.1 Determine o máximo valor da força P que pode ser aplicada na estrutura abaixo, sabendo que no tripé

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.

Leia mais

Equilíbrio de um corpo rígido

Equilíbrio de um corpo rígido Equilíbrio de um corpo rígido Objetivos da aula: Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito do diagrama de corpo livre para um corpo rígido. Mostrar como resolver

Leia mais

Prof. Michel Sadalla Filho

Prof. Michel Sadalla Filho MECÂNICA APLICADA Prof. Michel Sadalla Filho MOMENTO DE UMA FORÇA + EQUILÍBRIO DE UMA BARRA (No Plano XY) Referência HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson Education do Brasil, 2005,

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos FESP Faculdade de Engenharia São Paulo Avaliação: S1 Data: 16/jun/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c

Leia mais

Estruturas. Treliças planas. Treliça Simples O elemento básico de uma treliça plana é o triangulo. Três barras unidas por pinos em suas extremidades.

Estruturas. Treliças planas. Treliça Simples O elemento básico de uma treliça plana é o triangulo. Três barras unidas por pinos em suas extremidades. TRELIÇAS Estruturas Como já é sabido o equilíbrio de um único corpo rígido ou de um sistema de elementos conectados, tratado como um único corpo rígido. Inicialmente desenhamos um diagrama de corpo livre

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

Assunto: Treliças Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br 5.1 Treliças Simples: A Treliça é uma estrutura composta de elementos esbeltos unidos uns aos outros por meio de rótulas

Leia mais

EME 311 Mecânica dos Sólidos

EME 311 Mecânica dos Sólidos 3 ANÁLISE DAS TRELIÇAS EME 311 Mecânica dos Sólidos - CAPÍTULO 3 - Profa. Patricia Email: patty_lauer@unifei.edu.br IEM Instituto de Engenharia Mecânica UNIFEI Universidade Federal de Itajubá 3.2 Esforços

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Mecânica Geral. Aula 05 - Equilíbrio e Reação de Apoio

Mecânica Geral. Aula 05 - Equilíbrio e Reação de Apoio Aula 05 - Equilíbrio e Reação de Apoio 1 - Equilíbrio de um Ponto Material (Revisão) Condição de equilíbrio de um Ponto Material Y F 0 F X 0 e F 0 Exemplo 01 - Determine a tensão nos cabos AB e AD para

Leia mais

Estática do Ponto Material e do Corpo Rígido

Estática do Ponto Material e do Corpo Rígido CAPÍTULO I Estática do Ponto Material e do Corpo Rígido SEMESTRE VERÃO 2004/2005 Maria Idália Gomes 1/7 Capitulo I Estática do Ponto Material e do Corpo Rígido Este capítulo tem por objectivo a familiarização

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 3 Tensão Admissível, Fator de Segurança e rojeto de Acoplamentos Simples Tópicos Abordados Nesta Aula Tensão Admissível. Fator de Segurança. rojeto de Acoplamentos Simples. Tensão Admissível O engenheiro

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada

Leia mais

Introdução aos Sistemas Estruturais

Introdução aos Sistemas Estruturais Introdução aos Sistemas Estruturais Noções de Mecânica Estrutural Estuda o comportamento das estruturas frente aos esforços externos. Por definição estrutura é qualquer corpo sólido capaz de oferecer resistência

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação

Leia mais

Vigas. Viga simplesmente apoiada 12/3/2010

Vigas. Viga simplesmente apoiada 12/3/2010 Vigas Universidade Federal de Pelotas Curso de Engenharia Civil Introdução aos Sistemas Estruturais Prof. Estela Garcez As vigas são elementos estruturais retos, resistentes a flexão, e que não só são

Leia mais

Introdução ao Projeto de Aeronaves. Aula 34 Cálculo Estrutural da Fuselagem

Introdução ao Projeto de Aeronaves. Aula 34 Cálculo Estrutural da Fuselagem Introdução ao Projeto de Aeronaves Aula 34 Cálculo Estrutural da Fuselagem Tópicos Abordados Estrutura da Fuselagem. Projeto da Fuselagem. Estrutura da Fuselagem A fuselagem inclui a cabine de comandos,

Leia mais

Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre

Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre Aula 2 - Revisão I Parte Revisão de Conceitos Básicos da Matemática aplicada à Resistência dos Materiais I: Relações Trigonométricas, Áreas, Volumes, Limite, Derivada, Integral, Vetores. II Parte Revisão

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

EQUILÍBRIO DA PARTÍCULA

EQUILÍBRIO DA PARTÍCULA Questão 1 - As cordas A, B e C mostradas na figura a seguir têm massa desprezível e são inextensíveis. As cordas A e B estão presas no teto horizontal e se unem à corda C no ponto P. A corda C tem preso

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/21 2/21 Análise de Estruturas Os problemas considerados nas aulas anteriores envolviam o equilíbrio de um corpo rígido e todas as forças envolvidas eram externas ao corpo. Agora consideraremos problemas

Leia mais

Faculdades Oswaldo Cruz ESQ (Física I Profº Ito Lista de Torque)

Faculdades Oswaldo Cruz ESQ (Física I Profº Ito Lista de Torque) 1. Um ponto material está parado sobre uma prancha rígida horizontal, de massa desprezível, apoiada nas extremidades. O comprimento da prancha é de 3,0 m. O peso do ponto material é de 60 N e este está

Leia mais

Capítulo1 Tensão Normal

Capítulo1 Tensão Normal - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:

Leia mais

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força Aula 04 Carregamento, Vínculo e Momento de uma força 1 - INTRODUÇÃO A Mecânica é uma ciência física aplicada que trata dos estudos das forças e dos movimentos. A Mecânica descreve e prediz as condições

Leia mais

Mecânica Vetorial Para Engenheiros: Estática

Mecânica Vetorial Para Engenheiros: Estática AULA 12 Prof.: Anastácio Pinto Gonçalves ilho Introdução Para problemas que tratam do equilíbrio de estruturas feitas de várias partes unidas, as forças internas, assim como as forças externas devem ser

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 4 Treliças simples

ENG1200 Mecânica Geral Semestre Lista de Exercícios 4 Treliças simples ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 4 Treliças simples Questão 1 Prova P2 2013.1 Considere a treliça plana carregada como ilustra a figura (o apoio em A é um apoio do 2º gênero articulação

Leia mais

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Nona E 6 Análise CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA erdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Texas Tech University de Estruturas Conteúdo Introdução Definição

Leia mais

ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND

ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND ENGENHARIA CIVIL REVISÃO TRELIÇAS Reações em Estruturas Prof. Msc. HELBER HOLLAND As treliças são um tipo de estrutura usado em engenharia normalmente em projetos de pontes e edifícios. Uma treliça é uma

Leia mais

Exercícios de Resistência dos Materiais A - Área 1

Exercícios de Resistência dos Materiais A - Área 1 1) Calcular as reações de apoios da estrutura da figura para P1 = 15 kn, P2 = 10 kn; P3 = 2*P1 e q = 5kN/m H A = 30 kn; V A = 31,25 kn; V B = 3,5 kn 2) A prancha de Madeira apoiada entre dois prédios suporta

Leia mais

Lista de Exercícios-PRA - Estática R. C. Hibbeler

Lista de Exercícios-PRA - Estática R. C. Hibbeler Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Decomposição de vetores em componentes 1 - Determine a intensidade da força resultante e sua direção, medida no sentido anti-horário a partir do eixo

Leia mais

LEITURA E INTERPRETAÇÃO DE ELEMENTOS ESTRUTURAIS. Prof. Janine Gomes da Silva

LEITURA E INTERPRETAÇÃO DE ELEMENTOS ESTRUTURAIS. Prof. Janine Gomes da Silva LEITURA E INTERPRETAÇÃO DE PROJETOS ELEMENTOS ESTRUTURAIS ELEMENTOS ESTRUTURAIS - LAJES Elementos estruturais Elementos Lajes Elemento plano bidimensional Duas dimensões são da mesma ordem de grandeza

Leia mais

Lista de Exercícios - Aula 02 Aplicações das Leis de Newton

Lista de Exercícios - Aula 02 Aplicações das Leis de Newton Lista de Exercícios - Aula 02 Aplicações das Leis de Newton 1 - Equilíbrio Estático 1 - Um garoto, apoiando-se em uma bengala, encontra-se em cima de uma balança que marca 40 Kg. Se o garoto empurrar fortemente

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

LISTA EXTRA DE EXERCÍCIOS MAT /I

LISTA EXTRA DE EXERCÍCIOS MAT /I LISTA EXTRA DE EXERCÍCIOS MAT 008/I. Dados os vetores v = (0,, 3), v = (-, 0, 4) e v 3 = (, -, 0), efetuar as operações indicadas: (a) v 3-4v R.: (4,-,-6) (b) v -3v +v 3 R.: (3,0,-6). Determine: (a) x,

Leia mais

FLEXIBILIDADE E SUPORTAÇÃO

FLEXIBILIDADE E SUPORTAÇÃO FLEXIBILIDADE E SUPORTAÇÃO AULA 3-4 ANÁLISE DE TRELIÇAS DETERMINADAS ESTATICAMENTE PROF.: KAIO DUTRA Tipos Comuns de Treliças Uma treliça é uma estrutura de membros delgados unidos em suas extremidades.

Leia mais

Universidade Federal de Juiz de Fora. Faculdade de Engenharia. Manual de Orientações Básicas

Universidade Federal de Juiz de Fora. Faculdade de Engenharia. Manual de Orientações Básicas Universidade Federal de Juiz de Fora Faculdade de Engenharia Manual de Orientações Básicas Tema do concurso A tarefa proposta é a construção e o teste de carga de uma ponte treliçada, utilizando papel-cartão

Leia mais

Aula 06 Introdução e Equilíbrio de um corpo deformável

Aula 06 Introdução e Equilíbrio de um corpo deformável Aula 06 Introdução e Equilíbrio de um corpo deformável Prof. Wanderson S. Paris, M.Eng. prof@cronosquality.com.br Resistência dos Materiais Definição: É um ramo da mecânica que estuda as relações entre

Leia mais

NBR 10126/87 CORTE TOTAL LONGITUDINAL E TRANSVERSAL

NBR 10126/87 CORTE TOTAL LONGITUDINAL E TRANSVERSAL NBR 10126/87 CORTE TOTAL LONGITUDINAL E TRANSVERSAL Podemos definir corte como sendo a representação gráfica no desenho da característica do elemento, através de linhas, símbolos, notas e valor numérico

Leia mais

FÍSICA - 1 o ANO MÓDULO 10 EQUILÍBRIO DE CORPOS EXTENSOS

FÍSICA - 1 o ANO MÓDULO 10 EQUILÍBRIO DE CORPOS EXTENSOS FÍSICA - 1 o ANO MÓDULO 10 EQUILÍBRIO DE CORPOS EXTENSOS F d M 0 F = Fd O + - A C α B Q F at T N α P B P Q F at T T sen α N A T cos α α B P B PQ Como pode cair no enem? Desde muito cedo, bem antes do início

Leia mais

Definição Empuxo Equação Peso aparente Flutuação

Definição Empuxo Equação Peso aparente Flutuação Definição Empuxo Equação Peso aparente Flutuação Definição de Empuxo Quando um corpo está total ou parcialmente imerso em um fluido em equilíbrio, este exerce sobre o corpo uma força, denominada EMPUXO,

Leia mais

TRELIÇAS ISOSTÁTICAS

TRELIÇAS ISOSTÁTICAS 86 TRELIÇAS ISOSTÁTICAS I. DEFINIÇÃO: Treliça ideal é um sistema reticulado indeformável cujas barras possuem todas as suas extremidades rotuladas e cujas cargas estão aplicadas nestas rótulas. Obs 1 :

Leia mais

PROTENSÃO AULA 2 PONTES DE CONCRETO ARMADO

PROTENSÃO AULA 2 PONTES DE CONCRETO ARMADO PROTENSÃO AULA 2 PONTES DE CONCRETO ARMADO PONTE - DEFINIÇÃO Construção destinada a estabelecer a continuidade de uma via de qualquer natureza. Nos casos mais comuns, e que serão tratados neste texto,

Leia mais

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

EQUILÍBRIO DO CORPO RÍGIDO EXERCÍCIOS

EQUILÍBRIO DO CORPO RÍGIDO EXERCÍCIOS EQUILÍBRIO DO CORPO RÍGIDO EXERCÍCIOS 1. O esquadro metálico BD tem um apoio fixo em C e liga-se a um cabo em B. Para o carregamento representado, determine (a) a força de tração no cabo, (b) a reação

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.

Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais. 125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)

Leia mais

Resposta: F AB = 1738,7 N F AC = 1272,8 N

Resposta: F AB = 1738,7 N F AC = 1272,8 N Trabalho 1 (Cap. 1 a Cap. 4) Mecânica Aplicada - Estática Prof. André Luis Christoforo, e-mail: christoforoal@yahoo.com.br Departamento de Engenharia Civil - DECiv/UFSCar Cap. 1 Vetores de Força 1) A força

Leia mais

GAAL: Exercícios 1, umas soluções

GAAL: Exercícios 1, umas soluções GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos

Leia mais

Mecânica Vetorial Para Engenheiros: Estática

Mecânica Vetorial Para Engenheiros: Estática Prof.: Anastácio Pinto Gonçalves ilho Definição de Uma Treliça Uma treliça consiste em elementos retos unidos por nós. Nenhum elemento é contínuo através de um nó. A maioria das estruturas reais é feita

Leia mais

SISTEMAS EQUIVALENTES DE FORÇAS EXERCÍCIOS

SISTEMAS EQUIVALENTES DE FORÇAS EXERCÍCIOS SISTEMAS EQUIVALENTES DE FORÇAS EXERCÍCIOS 1. Uma força P é aplicada ao pedal do freio em A. Sabendo que P = 450 N e = 30, determine o momento de P em relação a B. 2. Uma força P de 400 N é aplicada ao

Leia mais

Exercícios Aulas Práticas 2004/2005

Exercícios Aulas Práticas 2004/2005 Exercícios Aulas Práticas 2004/2005 Manuel Teixeira Brás César Mário Nuno Moreira Matos Valente 1/17 2/17 Tema: Corpos Rígidos: Sistemas Equivalentes de Forças 7 - Uma força de 150 N é aplicada à alavanca

Leia mais

Lista de Exercícios (Profº Ito) Componentes da Resultante

Lista de Exercícios (Profº Ito) Componentes da Resultante 1. Um balão de ar quente está sujeito às forças representadas na figura a seguir. Qual é a intensidade, a direção e o sentido da resultante dessas forças? c) qual o valor do módulo das tensões nas cordas

Leia mais

Formato: utilizar o editor de equações do word, fonte arial 12. Não serão aceitas resoluções em outro formato.

Formato: utilizar o editor de equações do word, fonte arial 12. Não serão aceitas resoluções em outro formato. APOSTILA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS, 1a UNIDADE Prof. Felix Silva Barreto Data de entrega: Até às 23:59 do dia 19/07/2016. Não serão aceitas resoluções enviadas após este horário. Enviar para

Leia mais

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste. Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha

Leia mais

MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS

MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS 1 MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS 1. (Ufrj) Dois blocos de massa igual a 4kg e 2kg, respectivamente, estão presos entre si por um fio inextensível e de massa desprezível. Deseja-se

Leia mais

LISTA DE EXERCÍCIOS DE FÍSICA

LISTA DE EXERCÍCIOS DE FÍSICA LISTA DE EXERCÍCIOS DE FÍSICA / /2012 ALUNO: N.º TURMA 01. Em um jogo de basebol, o rebatedor aplica uma força de contato do taco com a bola. Com a tecnologia atual, é possível medir a força média aplicada

Leia mais

Física Professor Fernando 2ª série / 1º trimestre

Física Professor Fernando 2ª série / 1º trimestre Física Professor Fernando 2ª série / 1º trimestre Questão 01) Em um parque de diversão, Carlos e Isabela brincam em uma gangorra que dispõe de dois lugares possíveis de se sentar nas suas extremidades.

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 1 Tensão

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 1 Tensão Capítulo 1 Tensão 1.1 - Introdução Resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das forças internas que

Leia mais

PROJETO DE UMA GRUA DE PALITOS PARA AUXILIAR O APRENDIZADO PRÁTICO EM ESTÁTICA MECÂNICA

PROJETO DE UMA GRUA DE PALITOS PARA AUXILIAR O APRENDIZADO PRÁTICO EM ESTÁTICA MECÂNICA PROJETO DE UMA GRUA DE PALITOS PARA AUXILIAR O APRENDIZADO PRÁTICO EM ESTÁTICA MECÂNICA Camila do Nascimento Gomes camilaspring@hotmail.com Samuel Nicodemos Bezerra da Cruz samuelnicodemos@gmail.com Roberto

Leia mais

Capítulo 4 Cisalhamento

Capítulo 4 Cisalhamento Capítulo 4 Cisalhamento 4.1 Revisão V dm dx 4.2 A fórmula do cisalhamento A fórmula do cisalhamento é usada para encontrar a tensão de cisalhamento na seção transversal. VQ It onde Q yda y' A' A' Q= momento

Leia mais

AÇÕES E SEGURANÇA NAS ESTRUTURAS ESTADOS LIMITES COMBINAÇÃO DE ESFORÇOS

AÇÕES E SEGURANÇA NAS ESTRUTURAS ESTADOS LIMITES COMBINAÇÃO DE ESFORÇOS AÇÕES E SEGURANÇA NAS ESTRUTURAS ESTADOS LIMITES COMBINAÇÃO DE ESORÇOS ESTADOS LIMITES Definição: são situações a partir das quais a estrutura apresenta desempenho inadequado às finalidades da construção;

Leia mais

NDMAT Núcleo de Desenvolvimentos Matemáticos

NDMAT Núcleo de Desenvolvimentos Matemáticos 01) (UFPE) Uma ponte deve ser construída sobre um rio, unindo os pontos e B, como ilustrado na figura abaixo. Para calcular o comprimento B, escolhe-se um ponto C, na mesma margem em que B está, e medem-se

Leia mais

Controle do Professor

Controle do Professor Controle do Professor Compensou as faltas CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA VETORIAL E INTRODUÇÃO À ÁLGEBRA LINEAR SÉRIE: 2º ANO TRABALHO DE COMPENSAÇÃO DE FALTAS DOS ALUNOS

Leia mais

PRINCIPAIS TIPOS DE FUNDAÇÕES

PRINCIPAIS TIPOS DE FUNDAÇÕES PRINCIPAIS TIPOS DE FUNDAÇÕES CLASSIFICAÇÃO DAS FUNDAÇÕES -fundações superficiais (diretas, rasas); e - fundações profundas. D D 2B ou D 3m - fundação superficial D>2B e D >3m - fundação profunda B FUNDAÇÕES

Leia mais

GEOMETRIA: ÂNGULOS E TRIÂNGULOS

GEOMETRIA: ÂNGULOS E TRIÂNGULOS Atividade: Ângulos e Triângulos (ECA 03 Atividade para 16/03/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: ÂNGULOS E TRIÂNGULOS ATENÇÃO: Estimados alunos,

Leia mais

Unidade: Equilíbrio de Corpos Rígidos

Unidade: Equilíbrio de Corpos Rígidos Unidade: Equilíbrio de Corpos Rígidos Mecânica Geral Caros alunos, neste arquivo de apresentação, você encontrará um resumo dos tópicos estudados na Unidade IV. Use-o como guia para complementar o estudo

Leia mais

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada

Leia mais

Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5.

Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5. 25.(TRT-18/FCC/2013) Uma barra de aço especial, de seção circular com extremidades rosqueadas é utilizada como tirante em uma estrutura metálica. O aço apresenta f y = 242 MPa e f u = 396 MPa. Dados: Coeficientes

Leia mais

Lista de Exercícios - Aula 01

Lista de Exercícios - Aula 01 Lista de Exercícios - Aula 01 Lei dos Cossenos e Senos 5 (R. C Hibbeler Mecânica - Estática exemplo 2.1 p.16). O parafuso tipo gancho da figura está sujeito a duas forças F 1 e F 2. Determine a intensidade

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema

Leia mais

I Unidade I Lista de Exercícios https://sites.google.com/site/professorcelsohenrique/home/mecanica-geral

I Unidade I Lista de Exercícios https://sites.google.com/site/professorcelsohenrique/home/mecanica-geral FAMEC Faculdade Metropolitana de Camaçari Engenharia Ambiental / Engenharia de Controle e Automação / Eng Produção enharia de Disciplina: Mecânica Geral I Unidade Docente: Celso Henrique I Lista de Exercícios

Leia mais

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva

Leia mais

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B.

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B. Prof. Renato SESI Carrão Física 1º. ano 2011 Lista de exercícios 1 (Aulas 13 a 24) *** Formulário *** v = Δx/Δt Δx = x f x i Δt = t f t i a = Δv/Δt Δv = v f v i F R = m.a g = 10 m/s 2 P = m.g F at = μ.n

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA 3.6. OBRAS DE CONTENÇÃO Sempre que a movimentação de terra implicar em riscos de perda de estabilidade do solo, há a necessidade da execução de estruturas ou obras de contenção para segurança da própria

Leia mais

Aula 02: Probabilidade

Aula 02: Probabilidade ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 02: Probabilidade população probabilidade (dedução) inferência estatística stica (indução) amostra Definições

Leia mais

Aços Longos. Treliças Nervuradas Belgo

Aços Longos. Treliças Nervuradas Belgo Aços Longos Treliças Nervuradas Belgo Treliças Nervuradas As Treliças Nervuradas Belgo utilizam aço Belgo 60 Nervurado (CA 60) em todos os fios que as compõem: uma garantia de procedência e qualidade.

Leia mais

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo

Leia mais

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015 MAT 112 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015 LISTA 1 1. Ache a soma dos vetores indicados na figura, nos casos: 2. Ache a soma dos vetores indicados em cada caso, sabendo-se que (a) ABCDEFGH

Leia mais

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição) 11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.

Leia mais

EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS

EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS ROTEIRO DE CÁLCULO I - DADOS Ponte rodoviária. classe 45 (NBR-7188) Planta, corte e vista longitudinal (Anexo) Fôrma da superestrutura e da

Leia mais

Mecânica Geral II Notas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori

Mecânica Geral II Notas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori Mecânica Geral II otas de AULA 6 - Teoria Prof. Dr. Cláudio S. Sartori Forças em vigas e em cabos Introdução Analisaremos dois tipos de forças internas em dois tipos de estruturas em engenharia:. Vigas.

Leia mais

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2

LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 I) TRANSFORMAÇÃO DE TENSÕES 1) Uma única força horizontal P de intensidade de 670N é aplicada à extremidade D da alavanca ABD. Sabendo que a parte AB da

Leia mais

Capítulo 1 Carga axial

Capítulo 1 Carga axial Capítulo 1 Carga axial 1.1 - Revisão Definição de deformação e de tensão: L Da Lei de Hooke: P A P 1 P E E A E EA Barra homogênea BC, de comprimento L e seção uniforme de área A, submetida a uma força

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

Capítulo 2 - Determinantes

Capítulo 2 - Determinantes Capítulo 2 - Determinantes Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 19 DeMat-ESTiG Sumário

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA LISTA DE EXERCÍCIOS DE REVISÃO ESPELHOS PLANOS PROF.: DUDUNEGÃO

COLÉGIO RESSURREIÇÃO NOSSA SENHORA LISTA DE EXERCÍCIOS DE REVISÃO ESPELHOS PLANOS PROF.: DUDUNEGÃO COLÉGIO RESSURREIÇÃO NOSSA SENHORA LISTA DE EXERCÍCIOS DE REVISÃO ESPELHOS PLANOS PROF.: DUDUNEGÃO 01. Duas cargas puntiformes encontram-se no vácuo a uma distância de 10cm uma da outra. As cargas valem

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2004 1 Considere as matrizes A, B, C, D e E com respectivas ordens,

Leia mais

Esta edição do Diário Oficial contém:

Esta edição do Diário Oficial contém: PREFEITURA MUNICIPAL DE ARAMARI - BA - ANO 02 - Nº 100 Quinta-Feira, 05 de Setembro de 2013 Esta edição do Diário Oficial contém: EDITAL DE CONCURSO PÚBLICO 001/2013. CERTIFICADO EMITIDO POR AC CERTISIGN

Leia mais

RESISTÊNCIA DE MATERIAIS II

RESISTÊNCIA DE MATERIAIS II RESISTÊNCIA DE MATERIAIS II - 2014-2015 PROBLEMAS DE CORTE Problema 1 (problema 50(b) da colectânea) Considere a viga em consola submetida a uma carga concentrada e constituída por duas peças de madeira,

Leia mais

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas - 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.

Leia mais

Introdução ao Projeto de Aeronaves. Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo

Introdução ao Projeto de Aeronaves. Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo Introdução ao Projeto de Aeronaves Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo Tópicos Abordados Diagrama v-n de Manobra. Desempenho em Curva. Envelope de Vôo e Teto Absoluto Teórico.

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais