Conjuntos. Determine quantas pessoas responderam a essa pesquisa. a) 200 b) 250 c) 320 d) 370 e) 530

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Conjuntos. Determine quantas pessoas responderam a essa pesquisa. a) 200 b) 250 c) 320 d) 370 e) 530"

Transcrição

1 Conjuntos 1. (Espcex (Aman) 2014) Uma determinada empresa de biscoitos realizou uma pesquisa sobre a preferência de seus consumidores em relação a seus três produtos: biscoitos cream cracker, wafer e recheados. Os resultados indicaram que: - 65 pessoas compram cream crackers pessoas compram wafers pessoas compram biscoitos recheados pessoas compram wafers, cream crackers e recheados pessoas compram cream crackers e recheados pessoas compram cream crackers e wafers pessoas compram wafers e recheados pessoas não compram biscoitos dessa empresa. Determine quantas pessoas responderam a essa pesquisa. a) 200 b) 250 c) 320 d) 370 e) (Pucrs 2013) O número de alunos matriculados nas disciplinas Álgebra A, Cálculo II e Geometria Analítica é 120. Constatou-se que 6 deles cursam simultaneamente Cálculo II e Geometria Analítica e que 40 cursam somente Geometria Analítica. Os alunos matriculados em Álgebra A não cursam Cálculo II nem Geometria Analítica. Sabendo que a turma de Cálculo II tem 60 alunos, então o número de estudantes em Álgebra A é a) 8 b) 14 c) 20 d) 26 e) (Uepg 2013) Uma prova continha dois problemas: 30 alunos acertaram somente um problema, 22 alunos acertaram o segundo problema, 10 alunos acertaram os dois problemas e 17 alunos erraram o primeiro problema. Nesse contexto, assinale o que for correto. 01) 10 alunos erraram os dois problemas. 02) 20 alunos erraram o segundo problema. 04) 18 alunos acertaram somente o primeiro problema. 08) 45 alunos fizeram a prova. Página 1 de 13

2 4. (Ufsj 2013) O diagrama que representa o conjunto A B C C B A é a) b) c) d) 5. (Uepg 2013) Dados os conjuntos abaixo, assinale o que for correto A x 4 x 0 B x 1 x 3 01) 0 A B 02) 04) 0,1, 2, 3 A B 3 A B 08) 1, 2 B A 16) 1 A B 6. (Ufsj 2013) Dados três conjuntos A, B e C, não vazios, com A B sempre CORRETO afirmar que a) B C b) A B C c) B C d) A B C e A C, então, é 7. (Cefet MG 2013) Em uma enquete realizada com pessoas de idade superior a 30 anos, pesquisou-se as que estavam casadas ou não, se tinham ou não filhos. Constatou-se que 45 pessoas não eram casadas, 49 não tinham filhos, e 99 estavam casadas e com filhos. Sabendo-se que 180 pessoas responderam a essa enquete, o número das que se declararam não casadas e sem filhos foi de a) 13. b) 23. c) 27. d) 32. e) (Uern 2012) Num grupo de 87 pessoas, 51 possuem automóvel, 42 possuem moto e 5 pessoas não possuem nenhum dos dois veículos. O número de pessoas desse grupo que possuem automóvel e moto é a) 4. b) 11. c) 17. d) Página 2 de 13

3 9. (G1 - ifce 2012) Sendo N o conjunto dos inteiros positivos, considere os seguintes conjuntos: 12 x A x N; N e B x N; N. x 3 É verdade que a) A possui mais elementos que B. b) A e B não possuem elementos em comum. c) A é um subconjunto de B. d) B é um subconjunto de A. e) A e B possuem exatamente três elementos em comum. 10. (Insper 2012) Dizemos que um conjunto numérico C é fechado pela operação se, e somente se, para todo, tem-se ( ). A partir dessa definição, avalie as afirmações seguintes. I. O conjunto A 0,1 c 1, c 2 C c 1 c 2 é fechado pela multiplicação. II. O conjunto B de todos os números naturais que são quadrados perfeitos é fechado pela multiplicação. III. O conjunto é fechado pela adição. C 1,2,3,4,5,6 Está(ão) corretas(s) a) apenas a afirmação I. b) apenas as afirmações I e II. c) apenas as afirmações I e III. d) apenas as afirmações II e III. e) as três afirmações. 11. (Uepa 2012) Uma ONG Antidrogas realizou uma pesquisa sobre o uso de drogas em uma cidade com 200 mil habitantes adultos. Os resultados mostraram que 11% dos entrevistados que vivem na cidade pesquisada são dependentes de álcool, 9% são dependentes de tabaco, 5% são dependentes de cocaína, 4% são dependentes de álcool e tabaco, 3% são dependentes de tabaco e cocaína, 2% são dependentes de álcool e cocaína e 1% dependente das três drogas mencionadas na pesquisa. O número de habitantes que não usa nenhum tipo de droga mencionada na pesquisa é: a) b) c) d) e) (Ufsj 2012) Assinale a alternativa que indica quantos são os números inteiros de 1 a , que NÃO são divisíveis por 2, por 3 e nem por 5. a) b) c) d) (G1 - ifsp 2012) Em um restaurante de uma empresa fez-se uma pesquisa para saber qual a sobremesa preferida dos funcionários: pudim ou gelatina. Cada funcionário poderia indicar que gosta das duas sobremesas, de apenas uma, ou de nenhuma das duas. Do total de pesquisados, 21 declararam que gostam de pudim, 29 gostam de gelatina, 10 gostam dessas duas sobremesas e 12 não gostam de nenhuma dessas duas sobremesas. Pode-se então afirmar que o número de pesquisados foi a) 52. b) 62. c) 72. d) 82. e) 92. C Página 3 de 13

4 14. (Ufsj 2012) Na figura, R é um retângulo, T é um triângulo e H é um hexágono. Então, é CORRETO afirmar que a região destacada em cinza é dada por a) H T R b) T H c) (R T) (T H) d) (R T) 15. (G1 - ifsp 2012) Em uma determinada empresa, os trabalhadores devem se especializar em pelo menos uma língua estrangeira, francês ou inglês. Em uma turma de 76 trabalhadores, têm-se: 49 que optaram somente pela língua inglesa; 12 que optaram em se especializar nas duas línguas estrangeiras. O número de trabalhadores que optaram por se especializar em língua francesa foi a) 15. b) 27. c) 39. d) 44. e) (G1 - ifpe 2012) Alberto e Daniel são amigos e colecionadores de selos. Eles começaram a colecionar selos ao mesmo tempo. Alberto já está com 32 selos, enquanto Daniel tem 17. Sabendo que eles têm 8 selos em comum, quantos selos diferentes eles têm juntos? a) 41 b) 42 c) 45 d) 48 e) (Udesc 2012) Uma das últimas febres da internet são os sites de compras coletivas, que fazem a intermediação entre anunciantes e consumidor final, oferecendo cupons com grande percentual de descontos na compra de produtos e/ou serviços. O gestor de um destes sites, preocupado em acompanhar essa tendência e ao mesmo tempo oferecer novas opções para seus clientes, tabulou os dados referentes aos negócios realizados por sua empresa durante o ano de De posse desses dados, ele (gestor) percebeu que em seu site foram ofertados cupons apenas nas seguintes categorias: Gastronomia, Entretenimento e Saúde & Beleza. Além disso, considerando apenas os cinco mil clientes cadastrados que efetuaram a compra de pelo menos uma oferta do seu site, o gestor notou que 52% destes adquiriram cupons do segmento Gastronomia, enquanto 46% aderiram a ofertas de Saúde & Beleza e 44% compraram itens relacionados a Entretenimento. O gestor notou também que apenas 300 clientes compraram cupons dos três segmentos disponíveis, enquanto que 800 clientes adquiriram ofertas de Gastronomia e Entretenimento e 700 compraram itens de Gastronomia e Saúde & Beleza. Então a soma do número de clientes deste site que comprou ofertas relacionadas, exatamente, a um dos três segmentos disponíveis, é: a) 3800 b) 2600 c) 3200 d) 2200 e) Página 4 de 13

5 18. (G1 - cftmg 2012) Dados os conjuntos numéricos A, B, C e D, a região sombreada do diagrama corresponde a a) C D. b) C D. c) (A B) (C D). d) (A B) (C D). 19. (G1 - utfpr 2012) Numa cidade existem três shoppings: X, Y e Z. Foi feita uma entrevista com as pessoas para saber sobre o hábito delas frequentarem esses shoppings e obteve-se o seguinte resultado, disposto na tabela abaixo: Shopping Pessoas X 220 Y 226 Z 226 X e Y 120 X e Z 130 Y e Z 110 X, Y e Z 70 Nenhum dos três 100 Quantas pessoas entrevistadas não frequentam o shopping X? a) 552. b) 276. c) 262. d) 130. e) (G1 - ifal 2012) Considerando-se os conjuntos A = {1, 2, 4, 5, 7} e B = {0, 1, 2, 3, 4, 5, 7, 8}, assinale a alternativa correta. a) B A, logo A B B. b) A B A, pois A B. c) A B. d) 8 B. e) A B B, pois A B. Página 5 de 13

6 Gabarito: Resposta da questão 1: Com os dados do problema, temos os seguintes diagramas: Portanto, o número de pessoas que responderam a pesquisa será dado por: N = = 250. Resposta da questão 2: [C] Sejam X, Y e Z, respectivamente, o conjunto dos alunos que cursam Álgebra A, o conjunto dos alunos que cursam Cálculo II e o conjunto dos alunos que cursam Geometria Analítica. Sabemos que n(y) 60, n(y Z) 6, n(x Y) 0, n(x Z) e n(z (X Y)) 40. Logo n(x Y Z) 0 e, portanto, n(z) 46, pois n(z (X Y)) n(z) n(x Z) n(y Z) n(x Y Z). Desse modo, como n(x Y Z) 120, pelo Princípio da Inclusão-Exclusão, vem n(x Y Z) n(x) n(y) n(z) n(x Y) n(x Z) n(y Z) n(x Y Z) 120 n(x) n(x) Página 6 de 13

7 Resposta da questão 3: = 14. Considerando P 1 o conjunto dos alunos que a acertaram o problema 1 e P 2 o conjunto dos alunos que acertaram o problema 2, temos: [01] Falsa, pois 5 alunos erraram os dois problemas. [02] Verdadeira, pois = 23 erraram o problema 2, com certeza 20 acertaram. [04] Verdadeira, = 18. [08] Verdadeira, = 45. Resposta da questão 4: Resposta da questão 5: = 13. [01] (Verdadeiro), pois 0 A e 0 B. [02] (Falsa), pois 3 A e 3 B. [04] (Verdadeira), pois e [08] (Verdadeiro), pois {1,2} B e {1,2} A. [16] (Falsa), pois 1 A. 3A 3 B. Página 7 de 13

8 Resposta da questão 6: Se x A e A B e A C x B e x C x (B C) A (B C). Resposta da questão 7: [A] Pessoas casadas: = 135 Pessoas casadas sem filho: = 36 Pessoas não casadas e sem filho: = 13 Resposta da questão 8: Considere o diagrama, em que A é o conjunto das pessoas que possuem automóvel, e M conjunto das pessoas que possuem moto. é o Seja x o número de pessoas que possuem automóvel e moto. Como 51 pessoas possuem automóvel, segue que 51 x pessoas possuem apenas automóvel. Além disso, sabendo que 42 pessoas possuem moto, temos que 42 x pessoas possuem apenas moto. Portanto, dado que 5 pessoas não possuem nenhum dos dois veículos e que o grupo tem 87 pessoas, segue que 51 x x 42 x x 87 Resposta da questão 9: [E] x 11. Conjunto A: Divisores naturais de 12: {2,3,4,6,12}. Conjunto B: Múltiplos naturais de 3: {0,3,6,9,12,...}. A B={3, 6, 12}. Portanto, A e B possuem exatamente três elementos em comum. Resposta da questão 10: I. Verdadeira, pois 1.0 = 0.1 = 0 A II. Verdadeira, pois a 2. b 2 = (a.b) 2 B (para a e b naturais) III. Falso, pois = 11 C. Página 8 de 13

9 Resposta da questão 11: [E] Considere a figura. Como o total de habitantes adultos corresponde a 100% segue que do número de pessoas entrevistadas, 11% 3% 2% 1% x 100% x 83%, com x sendo o percentual dos entrevistados que não usam nenhuma das três drogas. Portanto, o resultado pedido é 83 83% Resposta da questão 12: Sejam A o conjunto dos múltiplos de 2, B o conjunto dos múltiplos de 3 e C o conjunto dos múltiplos de 5. Queremos calcular o número de elementos do conjunto A B C. Sabendo que A B é o conjunto dos múltiplos de 6, A C é o conjunto dos múltiplos de 5, é o conjunto dos múltiplos de 15 e A B C é o conjunto dos múltiplos de 30, vem B C n(a B C) n(a) n(b) n(c) n(a B) n(a C) n(b C) n(a B C) Portanto, segue que o resultado pedido é dado por n(a B C) Página 9 de 13

10 Resposta da questão 13: [A] De acordo com o problema, podemos elaborar os seguintes diagramas: Portanto o número de pesquisados é: = 52. Resposta da questão 14: [C] Resposta da questão 15: Número de trabalhadores que optaram apenas pela Língua francesa: x = = 15. Portanto, o número de trabalhadores que optaram por se especializar em língua francesa foi de: x + 12 = = Página 10 de 13

11 Resposta da questão 16: [A] n(a) = 32 (número de selos de Alberto) n(b) = 17(número de selos de Daniel) n(a B) n(a) n(b) n(a B) n(a B) n(a B) 41 Eles têm juntos 41 selos diferentes. Resposta da questão 17: [C] Considere o diagrama. 0, Temos que clientes adquiriram cupons de Gastronomia, adquiriram cupons de Saúde & Beleza e 0, , Sabendo que 300 clientes compraram cupons dos três segmentos disponíveis e 800 clientes adquiriram ofertas de Gastronomia e Entretenimento, segue que clientes compraram cupons apenas dos segmentos Gastronomia e Entretenimento Analogamente, clientes compraram cupons apenas dos segmentos Gastronomia e Saúde & Beleza. Logo, o número de clientes que compraram apenas cupons de gastronomia é dado por Assim, obtemos o sistema 2600 ( ) x y z x y z 2400 x y x y 1600 x z x z 1400 x 600 y z 800 Portanto, o número de clientes que compraram exatamente um cupom é dado por y z Página 11 de 13

12 Resposta da questão 18: [D] Resposta da questão 19: [C] De acordo com o problema, podemos elaborar os seguintes diagramas: Pessoas que não frequentam o shopping X : = Página 12 de 13

13 Resposta da questão 20: [E] Construindo os diagramas de Venn- Euler, temos: A B B, pois A B. Página 13 de 13

a) C D. b) C D. c) (A B) (C D). d) (A B) (C D).

a) C D. b) C D. c) (A B) (C D). d) (A B) (C D). Conjuntos e Conjuntos Numéricos Exercícios 1. Uma pesquisa de mercado foi realizada, para verificar a preferência sobre três produtos, A, B e C. 1.00 pessoas foram entrevistadas. Os resultados foram os

Leia mais

DISCURSIVAS SÉRIE AULA AULA 02

DISCURSIVAS SÉRIE AULA AULA 02 A MATEMÁTICA V MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 02 1) (FAVA 2012) Considere os conjuntos A, B e C, representados ao lado, e sabendo que n( B ) 24 n( A B ) 4 n( B C ) 16 n( A C ) 11 n( B C

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS

PROF. LUIZ CARLOS MOREIRA SANTOS 1 - CONCEITO PROF. LUIZ CARLOS MOREIRA SANTOS CONJUNTOS Conjunto proporciona a idéia de coleção, admitindo-se coleção de apenas um elemento (conjunto unitário) e coleção sem nenhum elemento (conjunto vazio).

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau Exercícios de Matemática para Concurso Público Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau. (G - utfpr 05) A soma de dois números é 64, se um é o triplo do outro

Leia mais

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto Todas as questões encontram-se comentadas na videoaula do canal maismatemática, disponível para visualização gratuita no seguinte link: https://www.youtube.com/watch?v=tlsqgpe7td8 NÍVEL BÁSICO 1. (G1 -

Leia mais

iq2 - Análise de uma tabela cruzada simples

iq2 - Análise de uma tabela cruzada simples Pré-requisitos: Lista de variáveis Dados na base da pesquisa iq2 - Análise de uma tabela cruzada simples A análise de um cruzamento simples (isto é, envolvendo duas variáveis fechadas, onde há escolha

Leia mais

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos

ESCOLA ESTADUAL DE ENSINO MÉDIO RAUL PILLA COMPONENTE CURRICULAR: Matemática PROFESSORA: Maria Inês Castilho. Conjuntos ESCOL ESTDUL DE ENSINO MÉDIO UL PILL COMPONENTE CUICUL: Matemática POFESSO: Maria Inês Castilho Noções básicas: Conjuntos 1º NOS DO ENSINO MÉDIO Um conjunto é uma coleção qualquer de objetos, de dados,

Leia mais

01. Considere as seguintes proposições:

01. Considere as seguintes proposições: 01. Considere as seguintes proposições: p: O restaurante está fechado. q: O computador está ligado. A sentença O restaurante não está fechado e o computador não está ligado assume valor lógico verdadeiro

Leia mais

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013.

P.A. 2. 2. (Uece 2015) Para qual valor do número inteiro positivo n a igualdade. 1 3 5 2n 1 2014 é satisfeita? a) 2016. b) 2015. c) 2014. d) 2013. P.A. 1. (Pucpr 015) Um consumidor, ao adquirir um automóvel, assumiu um empréstimo no valor total de R$ 4.000,00 (já somados juros e encargos). Esse valor foi pago em 0 parcelas, formando uma progressão

Leia mais

Operações com Conjuntos

Operações com Conjuntos Colégio Adventista Portão EIEFM MATEMÁTICA Operações com Conjuntos 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2013 Aluno(a): Número: Turma: Operações

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau Inequação do Primeiro Grau 1. (Unicamp 015) Seja a um número real positivo e considere as funções afins f(x) ax 3a e g(x) 9 x, definidas para todo número real x. a) Encontre o número de soluções inteiras

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos

Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos Unidade Curricular Matemática Aplicada Prof. Angelo Gonçalves da Luz Teoria dos Conjuntos 1) O tipo float está contido dentro de quais conjuntos? (Mais de uma alternativa pode ser marcada como correta).

Leia mais

MATEMÁTICA. Prof. Sabará CONJUNTOS NUMÉRICOS TEORIA DOS CONJUNTOS. Símbolos. : pertence : existe. : não pertence : não existe

MATEMÁTICA. Prof. Sabará CONJUNTOS NUMÉRICOS TEORIA DOS CONJUNTOS. Símbolos. : pertence : existe. : não pertence : não existe MATEMÁTICA Prof. Sabará CONJUNTOS NUMÉRICOS Símbolos TEORIA DOS CONJUNTOS : pertence : existe : não pertence : não existe : está contido : para todo (ou qualquer que seja) 1 : não está contido : conjunto

Leia mais

EXERCÍCIOS. 2. Faça um algoritmo que receba dois números e ao final mostre a soma, subtração, multiplicação e a divisão dos números lidos.

EXERCÍCIOS. 2. Faça um algoritmo que receba dois números e ao final mostre a soma, subtração, multiplicação e a divisão dos números lidos. EXERCÍCIOS 1. Faça um algoritmo que receba dois números e exiba o resultado da sua soma. 2. Faça um algoritmo que receba dois números e ao final mostre a soma, subtração, multiplicação e a divisão dos

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada Exercícios de Matemática para Concurso Público Média Aritmética (simples) Média Ponderada 1. (Uema 201) Em um seletivo para contratação de estagiários, foram aplicadas duas provas: uma de Conhecimentos

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Resolução de Problemas

Resolução de Problemas Resolução de Problemas 1. (Uerj) Com o intuito de separar o lixo para fins de reciclagem, uma instituição colocou em suas dependências cinco lixeiras, de acordo com o tipo de resíduo a que se destinam:

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

QUESTÃO 2: A respeito do diagrama de caso de uso apresentado, assinale a alternativa correta.

QUESTÃO 2: A respeito do diagrama de caso de uso apresentado, assinale a alternativa correta. CURSO DE TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS TURMA 2008/1 4º PERÍODO 7º MÓDULO AVALIAÇÃO A4 DATA 22/10/2009 ENGENHARIA DE SOFTWARE 2009/2 GABARITO COMENTADO QUESTÃO 1: Podemos definir UML

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 006 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO FUNDAMENTAL CONFERÊNCIA: Chefe da Subcomissão de Matemática Chefe da COC Dir Ens CPOR / CMBH 006 PÁGINA:

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

Lista de Exercícios 03b Repetição. 63) Escreva um programa que receba números do usuário enquanto eles forem positivos e

Lista de Exercícios 03b Repetição. 63) Escreva um programa que receba números do usuário enquanto eles forem positivos e Lista de Exercícios 03b Repetição 61) Escreva um programa que receba números do usuário e imprima o triplo de cada número. O programa deve encerrar quando o número 999 for digitado. 62) Escreva um programa

Leia mais

Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens

Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens APRESENTAÇÃO Olá, prezados concursandos! Sejam bem-vindos à resolução de questões de Raciocínio Lógico preparatório para o INSS. Mais uma vez, agradeço ao convite do prof. Francisco Júnior pela oportunidade

Leia mais

LEMA: Você estuda para passar e tomar posse, nós estudamos para prever as questões que irão aparecer.

LEMA: Você estuda para passar e tomar posse, nós estudamos para prever as questões que irão aparecer. Comentários da Prova de (Nível Médio): BSRH 23 de fevereiro Professores Francisco e Sandro Questão 11 Nível Médio (TARD) 23 de fevereiro de 21. Considere a sequência de figuras. 1 2 3 A figura dessa sequência

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Para divulgar a venda de um galpão retangular

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova do ISS-Cuiabá Neste artigo, farei a análise das questões de cobradas na prova do ISS-Cuiabá, pois é uma de minhas

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos. Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na

Leia mais

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF - 2012 - Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x

Leia mais

Lista de Exercícios 03b Algoritmos Repetição

Lista de Exercícios 03b Algoritmos Repetição Lista de Exercícios 03b Algoritmos Repetição (enquanto... faça:... fim-enquanto) (faça:... enquanto) 61) Escreva um algoritmo em PORTUGOL que receba números do usuário e imprima o triplo de cada número.

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

PA Progressão Aritmética

PA Progressão Aritmética PA Progressão Aritmética 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a) 3,0 m. b),0

Leia mais

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009.

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009. PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Oi Amigos, Como estou recebendo muitos pedidos da resolução da prova a PRF-2009. Elaborei os comentários das questões. Observe que foram

Leia mais

MATEMÁTICA LISTA 1 - CONJUNTOS PROBLEMAS

MATEMÁTICA LISTA 1 - CONJUNTOS PROBLEMAS MATEMÁTICA Prof. Sabará LISTA 1 - CONJUNTOS PROBLEMAS 1. Numa pesquisa sobre preferência de detergentes realiada numa população de 100 pessoas, constatou-se que 62 consomem o produto A; 47 consomem o produto

Leia mais

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 1. Com um automóvel que faz uma média de consumo de 12 km por litro, um motorista A gasta em uma viagem R$ 143,00 em combustível, abastecendo ao preço de R$ 2,60

Leia mais

Revisão ENEM. Conjuntos

Revisão ENEM. Conjuntos Revisão ENEM Conjuntos CONJUNTO DOS NÚMEROS NATURAIS N Números naturais são aqueles utilizados na contagem dos elementos de um conjunto. N = {0,1,2,3,...} N* = {1,2,3,4,...} CONJUNTO DOS NÚMEROS INTEIROS

Leia mais

Progressão Aritmética

Progressão Aritmética Progressão Aritmética 1. (G1 - cftrj 14) Disponha os números 1,,, 4,, 6, 7, 8 e 9 nas casas do tabuleiro abaixo de modo que: o número 9 ocupe a casa central, os números da primeira linha sejam todos ímpares

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 09 CONJUNTOS

MATEMÁTICA - 1 o ANO MÓDULO 09 CONJUNTOS MATEMÁTICA - 1 o ANO MÓDULO 09 CONJUNTOS A 3 7 1 5 9 A B A B A B A B A B A B A B A B A B A B A B A B A B A - B A B A - B A B A - B Como pode cair no enem (UERJ) Em um posto de saúde de uma comunidade carente,

Leia mais

LÓGICA DE PROGRAMAÇÃO. Vitor Valerio de Souza Campos

LÓGICA DE PROGRAMAÇÃO. Vitor Valerio de Souza Campos LÓGICA DE PROGRAMAÇÃO Vitor Valerio de Souza Campos Exemplos de algoritmos Faça um algoritmo para mostrar o resultado da multiplicação de dois números. Algoritmo em descrição narrativa Passo 1 Receber

Leia mais

Pesquisa de. Dia dos Namorados

Pesquisa de. Dia dos Namorados ASSESSORIA ECONÔMICA Pesquisa de Dia dos Namorados 2013 Pesquisa realizada pelo Instituto Fecomércio de Pesquisa - IFEP Relatório elaborado pela Assessoria Econômica Fecomércio-RS PESQUISA DIA DOS NAMORADOS

Leia mais

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. 1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:

Leia mais

PROBLEMAS COM DIAGRAMAS

PROBLEMAS COM DIAGRAMAS PROBLEMAS COM DIAGRAMAS 1) (FISCAL DO TRABALHO 2010 ESAF) Em um grupo de pessoas, há 20 mulheres e 30 homens, sendo que 20 pessoas estão usando óculos e 36 pessoas estão usando calça jeans. Sabe-se que,

Leia mais

SISTEMAS LINEARES CONCEITOS

SISTEMAS LINEARES CONCEITOS SISTEMAS LINEARES CONCEITOS Observemos a equação. Podemos perceber que ela possui duas incógnitas que são representadas pelas letras x e y. Podemos também notar que se e, a igualdade se torna verdadeira,

Leia mais

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 1ª SÉRIE ENSINO MÉDIO

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 1ª SÉRIE ENSINO MÉDIO Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/015 1ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 3 4 5 6 7 8 9 10 11

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE

Leia mais

MATEMÁTICA PRINCÍPIOS

MATEMÁTICA PRINCÍPIOS MTEMÁTI PRINÍPIOS PÍTULO NÚMEROS oneões Podemos imaginar um campo de futebol no qual desejamos ir de uma trave à outra. Pode-se seguir este raciocínio: Na caminhada, em determinado momento, estaremos na

Leia mais

9 Como o aluno (pré)adolescente vê o livro didático de inglês

9 Como o aluno (pré)adolescente vê o livro didático de inglês Cap. 9 Como o aluno (pré)adolescente vê o livro didático de inglês 92 9 Como o aluno (pré)adolescente vê o livro didático de inglês Nesta parte do trabalho, analisarei alguns resultados da análise dos

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Determine, em graus kelvins, o módulo da variação entre a maior e a menor temperatura da escala apresentada.

Determine, em graus kelvins, o módulo da variação entre a maior e a menor temperatura da escala apresentada. TERMOMETRIA ESCALAS TERMOMÉTRICAS 1. (Uerj 2015) No mapa abaixo, está representada a variação média da temperatura dos oceanos em um determinado mês do ano. Ao lado, encontra-se a escala, em graus Celsius,

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema: 1. Considere que, em uma empresa, 50% dos empregados possuam nível médio de escolaridade e 5%, nível superior. Guardadas essas proporções, se 80 empregados dessa empresa possuem nível médio de escolaridade,

Leia mais

RESUMO TEÓRICO. Operações Elementares não alteram a solução de um sistema e fazem parte dos processos de busca de tal solução.

RESUMO TEÓRICO. Operações Elementares não alteram a solução de um sistema e fazem parte dos processos de busca de tal solução. RESUMO TEÓRICO IDÉIAS DOS CONCEITOS: Sistemas Lineares como composição de várias equações lineares, que devem ser satisfeitas simultaneamente. De um modo geral, tais equações modelam restrições encontradas

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

LISTA DE EXERCÍCIOS. CONTEÚDO: LÓGICA E TEORIA DOS CONJUNTOS PROFESSORES: João Mendes e Alexandrino

LISTA DE EXERCÍCIOS. CONTEÚDO: LÓGICA E TEORIA DOS CONJUNTOS PROFESSORES: João Mendes e Alexandrino CONTEÚDO: LÓGICA E TEORIA DOS CONJUNTOS PROFESSORES: João Mendes e Alexandrino LISTA DE EXERCÍCIOS 01. Roberto, Sérgio, Carlos, Joselias e Aldo estão trabalhando em um projeto, onde cada um exerce uma

Leia mais

De acordo a Termodinâmica considere as seguintes afirmações.

De acordo a Termodinâmica considere as seguintes afirmações. Questão 01 - (UFPel RS/2009) De acordo a Termodinâmica considere as seguintes afirmações. I. A equação de estado de um gás ideal, pv = nrt, determina que a pressão, o volume, a massa e a temperatura podem

Leia mais

Satisfação dos consumidores: estudo de caso em um supermercado de Bambuí/MG

Satisfação dos consumidores: estudo de caso em um supermercado de Bambuí/MG Satisfação dos consumidores: estudo de caso em um supermercado de Bambuí/MG Ana Clara Rosado Silva (1) ; Daiane Oliveira Borges (2) ; Tatiana Morais Leite (3) ; Vanessa Oliveira Couto (4) ; Patrícia Carvalho

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

EXERCÍCIOS IV SÉRIES DE PAGAMENTOS IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais

EXERCÍCIOS IV SÉRIES DE PAGAMENTOS IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais e mensais de $ 1.000,00 cada uma, dentro do conceito de termos vencidos, sabendo-se que

Leia mais

Múltiplos e Divisores- MMC e MDC

Múltiplos e Divisores- MMC e MDC Múltiplos e Divisores- MMC e MDC Múltiplo de um número inteiro é o resultado desse número multiplicado por qualquer número inteiro. Definição: Para qualquer número a є Z, b є Z*, e c є Z, c é múltiplo

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

Função Mudar de unidade estatística

Função Mudar de unidade estatística Função Mudar de unidade estatística Frequentemente, certas pesquisas contêm informações correspondentes a níveis estatísticos diferentes. No Sphinx (Survey ou Léxica), a partir do menu Gestão, opção Mudar

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES. Resolverei neste ponto a prova de Matemática Financeira da SEFAZ/RJ 2010 FGV.

CURSO ON-LINE PROFESSOR GUILHERME NEVES. Resolverei neste ponto a prova de Matemática Financeira da SEFAZ/RJ 2010 FGV. Olá pessoal! Resolverei neste ponto a prova de Matemática Financeira da SEFAZ/RJ 2010 FGV. Sem mais delongas, vamos às questões. 19. (SEFAZ-RJ 2010/FGV) A empresa Bonneli recebeu, pelo valor de R$ 18.000,00,

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Técnicas de Resolução de Problemas - 1 a Parte

Técnicas de Resolução de Problemas - 1 a Parte Curso Preparatório - PROFMAT 2014 Germán Ignacio Gomero Ferrer gigferrer@uesc.br 12 de Agosto de 2013 Raciocínio lógico Problema 25 (Acesso 2011) Numa cidade existe uma pessoa X que sempre mente terças,

Leia mais

1. Sistemas de numeração

1. Sistemas de numeração 1. Sistemas de numeração Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo seria organizar,

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

Lista de Exercícios 03 Algoritmos e Scilab Estrutura de Repetição 1) Escreva um algoritmo em Scilab que imprima todos os números inteiros de 0 a 50.

Lista de Exercícios 03 Algoritmos e Scilab Estrutura de Repetição 1) Escreva um algoritmo em Scilab que imprima todos os números inteiros de 0 a 50. Lista de Exercícios 03 Algoritmos e Scilab Estrutura de Repetição 1) Escreva um algoritmo em Scilab que imprima todos os números inteiros de 0 a 50. 2) Escreva um algoritmo em Scilab que imprima todos

Leia mais

Lista de Exercícios 03 Algoritmos e Scilab Estrutura de Repetição 1) Escreva um algoritmo em Scilab que imprima todos os números inteiros de 0 a 50.

Lista de Exercícios 03 Algoritmos e Scilab Estrutura de Repetição 1) Escreva um algoritmo em Scilab que imprima todos os números inteiros de 0 a 50. Lista de Exercícios 03 Algoritmos e Scilab Estrutura de Repetição 1) Escreva um algoritmo em Scilab que imprima todos os números inteiros de 0 a 50. 2) Escreva um algoritmo em Scilab que imprima todos

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK) 000 IT_023672 As balanças podem ser utilizadas para medir a massa dos alimentos nos supermercados. A reta numérica na figura seguinte representa os valores, em quilograma, de uma balança. 0 1 2 3 A partir

Leia mais

Prof. Bart. Matemática - Racicínio Lógico

Prof. Bart. Matemática - Racicínio Lógico Prof. Bart Matemática - Racicínio Lógico 01. De acordo com o relatório estatístico de 2006, um setor de certa empresa expediu em agosto um total de 1.347 documentos. Se a soma dos documentos expedidos

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:

Leia mais

RECUPERAÇÃO PARALELA UNIDADE II LISTA DE EXERCÍCIOS

RECUPERAÇÃO PARALELA UNIDADE II LISTA DE EXERCÍCIOS Aluno(a) Turma N o Série 5 a Ensino Fundamental Data / / 06 Matéria Matemática Professora Ynez RECUPERAÇÃO PARALELA UNIDADE II LISTA DE EXERCÍCIOS 01. Observe o quadro ao lado e responda: 75 67 83 105

Leia mais

Os gráficos estão na vida

Os gráficos estão na vida Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada

Leia mais

3. Tipos de Dados, Constantes e Variáveis.

3. Tipos de Dados, Constantes e Variáveis. 3. Tipos de Dados, Constantes e Variáveis. O computador realiza a sua tarefa trabalhando as informações contidas em sua memória, essas podem ser classificadas em dois tipos básicos: as instruções e os

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA)

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA) RESOLUÇÃO DA a AVALIAÇÃO DE MATEMÁTICA COLÉGIO ANCHIETA-BA - UNIDADE II-013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 01. (UEPB) Dados os conjuntos A = {1,

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Benjamim Destinatários: alunos dos 7. o e 8. o anos de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático. Todos

Leia mais

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem Exercícios de Matemática para Concurso Público Razão e proporção Porcentagem 1. (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 030, segundo o Plano Nacional

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova ATRFB 2009 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova ATRFB 2009 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 31- A afirmação: João não chegou ou Maria está atrasada equivale logicamente a: a) Se João não chegou, Maria está atrasada. b) João chegou e Maria não está atrasada. c) Se

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Professor Manuel MATEMÁTICA FINANCEIRA 01. (UNEB-2008) O proprietário de um imóvel contratou uma imobiliária para vendê-lo, pagando-lhe 5% do valor obtido na transação. Se a imobiliária recebeu R$ 5.600,00,

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

Neste artigo comentarei 06 (seis) questões da ESAF, para que vocês, que estão estudando para a Receita Federal, façam uma rápida revisão!!

Neste artigo comentarei 06 (seis) questões da ESAF, para que vocês, que estão estudando para a Receita Federal, façam uma rápida revisão!! Olá concurseiros (as)! Neste artigo comentarei 06 (seis) questões da ESAF, para que vocês, que estão estudando para a Receita Federal, façam uma rápida revisão!! Vamos lá!!! 01. (ESAF Analista da Receita

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais