Resolução dos Exercícios de Resistência dos Materiais. Lista 1 (Lei de Hooke)

Tamanho: px
Começar a partir da página:

Download "Resolução dos Exercícios de Resistência dos Materiais. Lista 1 (Lei de Hooke)"

Transcrição

1 Resolução dos Exercícios de Resistência dos Materiais Lista 1 (Lei de Hooke) O texto que se segue trata se da resolução da primeira lista de exercícios do professor Marcio Antonio Ramalho. Outras listas resolvidas podem ser encontradas no site Leandro Lima Rasmussen 10/2/2009

2 Solução do Exercício 1) A variação total do comprimento da barra pode ser dado pela soma do encurtamento ocorrido na parte BC com o alongamento da parte CD. Calculando: Equação a ser utilizada: Para a parte BC, temos: Para a parte CD, temos: Concluindo, a variação total é a soma das duas variações acima: Solução do Exercício 2) Primeiro, devemos calcular as solicitações nas barras EC e FC. Devido à simetria do problema -além, claro, da compatibilidade no ponto C-, podemos facilmente deduzir que ambas as forças devem ser iguais em valor numérico. Vamos, então, equacionar a condição de equilíbrio da estrutura, para que possamos encontrar o valor dessas forças: Força Normal em EC = Força Normal em FC = R= kn Agora que já são conhecidas as forças internas das barras EC e FC, podemos calcular o deslocamento do ponto B, dado pelo deslocamento da barra CB somado da componente vertical do alongamento de uma das duas barras que a segura -tanto faz qual das barras será escolhida, já que o deslocamento vertical de ambas serão iguais-. Variação vertical de comprimento da barra CF = Deslocamento de b

3 Solução do Exercício 3) Inicialmente, a treliça deve ser resolvida por meio dos métodos da estática. Utilizando o aplicativo Ftools, chegamos no seguinte resultado: Como é notado, as barras 13 e 32 são as que apresentam as maiores forças normais. Então, devemos dimensionar as barras baseando-se no valor destas. Sabendo que a tensão máxima permitida é de 15 kn/cm 2, torna-se possível calcular a área mínima da seção pela equação da tensão: Para finalizar, calcula-se o deslocamento do ponto 1. Tal deslocamento pode ser dado considerando somente o alongamento da barra 12. Os outros alongamentos não precisam ser considerados, já que todos devem ser iguais devido à compatibilidade no apoio móvel. Equação a ser utilizadas: ΔL = Solução do Exercício 4) De cara, sabemos que as forças de reação nos engastes são de natureza normal e iguais em módulo, já que não existe nenhuma outra força sendo aplicada sobre a estrutura. Então, toda a estrutura sofrerá o efeito de uma mesma solicitação normal. Dessa forma, o diagrama de Normal será apenas uma reta contínua. Porém, para calcularmos o valor numérico desta força, devemos considerar a compatibilidade no ponto C, montando o equacionamento de seu deslocamento. Esse equacionamento, igualado a 0, nos fornecerá as reações procuradas. Equações a serem utilizadas: Dilatação por variação térmica / Variação de comprimento / Resolvendo para R / R= kn Para finalizar, fica faltando somente calcular as tensões em cada uma das barras:

4 Solução do Exercício 5) Para dimensionarmos a barra, devemos conhecer as tensões internas oriundas das forças aplicadas. Começaremos desenhando o diagrama de normal da estrutura: Sendo R as forças de reação nos engastamentos. Então, para se calcular R, devemos resolvê-lo através do equacionamento de compatibilidade no ponto de contato da estrutura com o engastamento à direita, sendo o mesmo igualado a 0 -é importante denotar, aqui, que também seria obtido o mesmo resultado caso tivesse sido usado o outro engastamento da esquerda-. ATENÇÃO: O valor do módulo de elasticidade e da área da seção pouco importam. Pois, se tratando de constantes, podem ser eliminadas com um pouco de operação algébrica. Disso, chegamos que R = kn Finalizando, podemos notar que as seções mais solicitadas serão aquelas entre as forças aplicadas de 40 kn. Então, vamos utilizá-las para calcular a área mínima da barra. 40K =σmáx$amín = 15$Amín Conclusão: Área Mínima = cm 2 Solução do Exercício 6) Este exercício é bem semelhante ao anterior. Novamente, esquematizemos o diagrama de normal da estrutura: E calculemos R por meio da equação compatibilidade no ponto do engastamento à direita igualado a 0. Disso, obtemos R = 8 kn Agora, a tensão de cada segmento da estrutura pode ser calculado pelo quociente da força normal pela respectiva área da mesma.

5 Solução do Exercício 7) Letra a) Letra b) Utilizando os métodos da estática, resolve-se o diagrama de normal da estrutura: A variação total de comprimento da chapa pode ser dada pela soma das variações de comprimento de cada segmento da estrutura separadamente. Olhando para o diagrama de normal, vemos que são 3 segmentos que apresentam esforço normal que seguem a lógica da equação de uma reta. Dessa forma, podemos aplicar a integral em cada uma delas separadamente, resultando na soma de 3 variações de comprimento. Solução do Exercício 8) Inicialmente, não são conhecidos os valores das reações nos apoios. Então, o diagrama de normal inicial fica como: Entretanto, tais valores podem ser encontrados ao resolvermos o equacionamento da compatibilidade no ponto C. Antes, apliquemos uma regra de 3 para encontrar o valor de x: E, depois, calculemos a soma das variações de comprimento -substituindo as integrais por cálculo de áreas de triângulos- que deve ser igual a 0. Com os valores das reações determinados, podemos voltar e finalizar o diagrama de normal: A equação do deslocamento do ponto D pode ser resolvida tanto pelo alongamento da metado superior do corpo quanto pelo encurtamento da metade inferior, já que ambas as variações devem ser iguais em módulo devido à compatibilidade.

6 Solução do Exercício 9) Antes de mais nada, esquematizemos o diagrama de normal da estrutura: Dele, podemos facilmente calcular o alongamento da barra: Equação a ser utilizada: Deste alongamento, vamos calcular o deslocamento vertical pedido por meio da trigonometria. Primeiro, usamos a lei dos senos para calcular o ângulo que será formado no ponto B para, depois, calcularmos o deslocamento vertical por meio da multiplicação da barra alongada pelo seno deste mesmo ângulo calculado. ATENÇÃO: Certamente, este cálculo final deve apresentar outras formas de ser resolvido. Mas, todas elas devem levar ao mesmo resultado. Deslocamento vertical da extremidade C = Solução do Exercício 10) É de notar que o esforço normal de 500N aplicado irá ser dividido entre os cabos de aço e o pilar de concreto. O que não sabemos, ainda, é exatamente o quanto de força que vai para cada um. No sentido de calcularmos tais forças, devemos calcular a compatibilidade de ambos os materiais, sabendo que eles devem apresentar a mesma variação de comprimento. Equação a ser utilizada: Letras a) e b) A tensão no aço e no concreto podem ser, agora, determinados através do valor da força de compressão que atuam neles divididos pelas suas respectivas áreas. Letra c) O deslocamento vertical do ponto B pode ser dado pela variação de comprimento de qualquer um dos 2 materiais - isso porque, ambos devem ser iguais devido à compatibilidade-. Escolhendo o concreto, obtemos: Deslocamento do ponto B cm para baixo.

7 Solução do Exercício 11) Por ser um exercício hiperestático, devemos recorrer às condições de compatiblidade para podermos encontrar os esforços nas barras. Percebe-se que o deslocamento vertical de todas as barras devem ser iguais, então usaremos esta condição para resolver os esforços. Pela simetria do problema, temos que a força normal na barra inclinada, da esquerda, deve ser igual à da barra inclinada da direita. Com os métodos da estática, podemos tirar já a primeira equação que nos ajudará a encontrar os valores das forças normais: Dessa equação, podemos retirar uma relação entre as forças das barras inclinadas e a do meio: Entretanto, temos ainda 1 equação com 2 incógnitas. A segunda equação, a qual resolverá o problema, poderá ser obtida pela compatiblidade do ponto de contato entre todas as barras. Dessa forma, a variação de comprimento da barra do meio deve ser igual à variação vertical de comprimento de uma das barras inclinadas. Substituindo FMeio e resolvendo para FInclinadas, obteremos: FInclinadas = kn Dessa forma: FMeio = kn Para encerrar o exercício, basta calcular o deslocamento do ponto B por meio da equação da variação de comprimento vertical de qualquer barra (já que serão todas iguais). Utilizando a da barra do meio, chega-se no seguinte resultado: Deslocamento do ponto B = cm para baixo.

8 Solução do Exercício 12) O segredo deste exercício está em perceber que nenhuma barra se rompe. O que ocorre é que, depois de um certo valor de tensão normal, a barra entra em um estado permanente de escoamento, mas, ainda, resistindo ao esforço que vinha sendo aplicado antes. Basta visualizar o gráfico abaixo para tal comportamento ficar claro: Agora, damos início a construção do grafico pedido. Sabendo que o gráfico será composto por 3 retas, temos que uma vai até onde a primeira barra entra em estado de escoamento, a segunda também e a terceira será a de uma reta horizontal, mostrando um estado permanente de escoamento em todo o sistema. Da estática, temos: Nesta equação, FBVert será substituído por 20 kn. Já que, se trata da força máxima que a barra vertical aguenta antes de escoar. Com isso, chegaremos em uma relação entre F e FBInclinada, sendo os valores numéricos de cada um podendo ser encontrados após a montagem do equacionamento de compatibilidade no apoio móvel. Substituindo FBInclinada pela primeira relação obtida acima, tem-se: Encontrado F, podemos encontrar o deslocamento vertical do ponto a partir do gráfico: Estes resultados nos permitem desenhar a primeira reta do gráfico: A segunda reta deve ser desenhada seguindo passos semelhantes aos feitos acima. Do gráfico, a força máxima que a barra inclinada resiste antes de escoar é de 40 kn. Porém, F será maior que isso, já que a barra vertical continua a resistir 20 kn. Portanto, façamos o seguinte equacionamento para encontrar o valor de F que levará a barra inclinada ao seu estado crítico:

9 Para o desenho da reta, fica faltando calcular o deslocamento vertical do ponto de apoio, o qual pode ser obtido pelo gráfico e pelo deslocamento vertical da barra inclinada: cm para baixo Neste instante, já podemos finalizar o desenho do gráfico. Como já temos a segunda reta, a última se tratará de uma horizontal em relação ao eixo x:

Leandro Lima Rasmussen

Leandro Lima Rasmussen Resolução da lista 5 de exercícios de Resistência dos Materiais Exercício 1) Leandro Lima Rasmussen Para começar, calcula-se o CG, os momentos de inércia Iz e Iy e o raio de giração da seção. Instalando

Leia mais

PROVA COMENTADA. Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:

PROVA COMENTADA. Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes: ? Momento fletor Diagrama de Corpo Livre Reação redundante escolhida Reação vertical no ponto A: Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:

Leia mais

Assim, é possível dizer que as deformações e os deslocamentos são linearmente dependentes dos esforços que atuam nas estruturas.

Assim, é possível dizer que as deformações e os deslocamentos são linearmente dependentes dos esforços que atuam nas estruturas. Princípio da Superposição Sabe-se que dentro do regime elástico a tensão e a deformação são linearmente dependentes. Isto é, a deformação e a tensão são proporcionais. Sabe-se, ainda, que as tensões no

Leia mais

Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática.

Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática. Módulo 4 - Resolução de estruturas uma vez hiperestáticas externamente e com todas as suas barras solicitadas por momento fletor, sem a presença de torção, através do Processo dos Esforços. O Processo

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL RESISTÊNCIA À FLEXÃO RESISTÊNCIA À FLEXÃO. Claudemir Claudino Semestre

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL RESISTÊNCIA À FLEXÃO RESISTÊNCIA À FLEXÃO. Claudemir Claudino Semestre CONTROLE DE QUALIDADE INDUSTRIAL Claudemir Claudino 2014 1 Semestre TIPOS DE APOIOS Introdução: Agora vamos estudar o dimensionamento de estruturas sujeitas a esforços de flexão, considerando-se para tal

Leia mais

Capítulo 5 Carga Axial

Capítulo 5 Carga Axial Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Determinar a tensão normal e as deformações em elementos

Leia mais

Uniderp Engenharia Civil Resistência dos Materiais Exame Modelo

Uniderp Engenharia Civil Resistência dos Materiais Exame Modelo C=3,9 cm Uniderp Engenharia Civil Resistência dos Materiais Exame Modelo 1) treliça é feita de três elementos acoplados por pinos tendo as áreas das seções transversais: B = 9,7 cm, = 5, cm e C = 3,9 cm.

Leia mais

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula: Assinale a(s) avaliação(ões) que perdeu: A1 A2

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem a qual poderemos ter dificuldades em apreender os conceitos básicos e

Leia mais

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm² CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação

Leia mais

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine

Leia mais

ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND

ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND ENGENHARIA CIVIL REVISÃO TRELIÇAS Reações em Estruturas Prof. Msc. HELBER HOLLAND As treliças são um tipo de estrutura usado em engenharia normalmente em projetos de pontes e edifícios. Uma treliça é uma

Leia mais

FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.

FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. FESP Faculdade de Engenharia São Paulo Avaliação: A2 Data: 15/set/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Duração: 85 minutos Nome: Matrícula

Leia mais

equipe26 pef2602 estruturas na arquitetura II: sistemas reticulados

equipe26 pef2602 estruturas na arquitetura II: sistemas reticulados pef2602 estruturas na arquitetura II: sistemas reticulados exercício02 outubro/2009 equipe26 flaviobragaia 5915333 gisellemendonça 5915566 leonardoklis 5915653 natáliatanaka 5914721 steladadalt 5972081

Leia mais

MECÂNICA GERAL 1 Marcel Merlin dos Santos

MECÂNICA GERAL 1 Marcel Merlin dos Santos MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Equações de equilíbrio Diagrama de corpo livre Equilíbrio de estruturas bidimensionais Exercícios Prova da aula 1 EQUAÇÕES DE EQUILÍBRIO Para que

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2018-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

Unidade: Equilíbrio de Corpos Rígidos

Unidade: Equilíbrio de Corpos Rígidos Unidade: Equilíbrio de Corpos Rígidos Mecânica Geral Caros alunos, neste arquivo de apresentação, você encontrará um resumo dos tópicos estudados na Unidade IV. Use-o como guia para complementar o estudo

Leia mais

Exercício 2. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados

Exercício 2. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados Universidade de São Paulo Faculdade de Arquitetura e Urbanismo Exercício 2 PEF 2602 - Estruturas na Arquitetura Sistemas Reticulados Equipe 09 Felipe Tinel 5914801 Gabriela Haddad 5914714 Lais de Oliveira

Leia mais

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada

Leia mais

CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II

CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 2 Tensão e deformação: Carregamento axial Conteúdo Tensão e Deformação: Carregamento Axial Deformação Normal

Leia mais

RESISTÊNCIA DOS MATERIAIS ANÁLISE DE TRELIÇAS

RESISTÊNCIA DOS MATERIAIS ANÁLISE DE TRELIÇAS RESISTÊNCIA DOS MATERIAIS ANÁLISE DE TRELIÇAS Prof. JOSÉ LUIZ F. de ARRUDA SERRA 1. Generalidades Análise de treliças Uma treliça simples pode ser definida como um sistema de barras, situadas em um mesmo

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar e capacitar paa a resolução de problemas estaticamente indeterminados na torção Compreender as limitações

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2014-2 Objetivos Conceituar e capacitar para a resolução de problemas estaticamente indeterminados na torção Compreender as limitações

Leia mais

Geometria Analítica I

Geometria Analítica I Geom. Analítica I Respostas do Módulo I - Aula 15 1 Geometria Analítica I 17/03/2011 Respostas dos Exercícios do Módulo I - Aula 15 Aula 15 1. Este exercício se resume a escrever a equação em uma das formas

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal. Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo

Leia mais

Equipe X - EXERCÍCIO 3

Equipe X - EXERCÍCIO 3 Equipe X - EXERCÍCIO 3 Figura 1: guindaste 1) Resolução da treliça Consideramos o peso P do carro igual a : P = 10+nn/4 como somos o grupo 3 P = 10 +3/4 P = 10,75kN Como o problema é composto por um sistema

Leia mais

para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por:

para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por: Lista de torção livre Circular Fechada - Valério SA. - 2015 1 1) a. Determinar a dimensão a de modo a se ter a mesma tensão de cisalhamento máxima nos trechos B-C e C-D. b. Com tal dimensão pede-se a máxima

Leia mais

Aula 3 Equilíbrio de uma partícula

Aula 3 Equilíbrio de uma partícula Aula 3 Equilíbrio de uma partícula slide 1 Condição de equilíbrio de uma partícula Para manter o equilíbrio, é necessário satisfazer a primeira lei do movimento de Newton: onde ΣF é a soma vetorial de

Leia mais

Exercício 4. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados

Exercício 4. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados Universidade de São Paulo Faculdade de Arquitetura e Urbanismo Exercício 4 PEF 2602 - Estruturas na Arquitetura Sistemas Reticulados Grupo 09 Felipe Tinel 5914801 Gabriela Haddad 5914714 Lais de Oliveira

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.

Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 02

RESISTÊNCIA DOS MATERIAIS AULAS 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais

Leia mais

plano da figura seguinte. A rótula r expressa que não háh

plano da figura seguinte. A rótula r expressa que não háh Método das Forças Sistema Principal Consideremos o pórtico p plano da figura seguinte. A rótula r em D expressa que não háh transmissão de momento fletor da barra CD para a extremidade D das barras BD

Leia mais

23.(UNIFESPA/UFPA/2016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros.

23.(UNIFESPA/UFPA/2016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros. .(UNIFESPA/UFPA/016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros. Figura 5 Viga de madeira de seção composta pregada. Dimensões em centímetros.

Leia mais

MECÂNICA GERAL 1. Marcel Merlin dos Santos

MECÂNICA GERAL 1. Marcel Merlin dos Santos MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Revisão de álgebra vetorial Lei dos cossenos Lei dos senos Exercícios Componentes cartesianas de uma força Exercícios Equilíbrio de uma partícula

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1 Lista de Exercícios para Prova 1 1 - Para as estruturas hiperestáticas abaixo, determine um SISTEMA PRINCIPAL válido. No SISTEMA PRINCIPAL escolhido, determine os gráficos de momento fletor e as reações

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada

Leia mais

pef2602 estruturas na arquitetura II: sistemas reticulados flaviobragaia gisellemendonça leonardoklis natáliatanaka steladadalt equipe26

pef2602 estruturas na arquitetura II: sistemas reticulados flaviobragaia gisellemendonça leonardoklis natáliatanaka steladadalt equipe26 pef2602 estruturas na arquitetura II: sistemas reticulados exercício01 setembro/2009 flaviobragaia gisellemendonça leonardoklis equipe26 natáliatanaka steladadalt 1 viga isostática equações de equilíbrio

Leia mais

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste. Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha

Leia mais

1- Os dois cabos suportam uma luminária de 80 kg. Determinar seus diâmetros requeridos se o esforço de tração admissível para o alumínio for

1- Os dois cabos suportam uma luminária de 80 kg. Determinar seus diâmetros requeridos se o esforço de tração admissível para o alumínio for nhanguera-uniderp Engenharia Civil Resistência dos Materiais 1- Os dois cabos suportam uma luminária de 80 kg. Determinar seus diâmetros requeridos se o esforço de tração issível para o alumínio for =

Leia mais

TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO

TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: victor.silva@progeto.com.br victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE

Leia mais

Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP

Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 015. 1. A barra rígida AC representa um muro de contenção de terra. Ela está apoiada em A e conectada ao tirante flexível BD em D. Esse tirante possui comprimento de 4 metros e módulo

Leia mais

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.06 1 Análise Estrutural Antonio Dias 2017 Objetivos do capítulo Mostrar como determinar as forças nos membros

Leia mais

Capítulo 4 Diagramas de esforços em pórticos planos

Capítulo 4 Diagramas de esforços em pórticos planos Diagramas de esforços em pórticos planos Professora Elaine Toscano Capítulo 4 Diagramas de esforços em pórticos planos 4.1 Pórticos planos Este capítulo será dedicado ao estudo dos quadros ou pórticos

Leia mais

Aula 6 Análise estrutural Treliças

Aula 6 Análise estrutural Treliças Aula 6 Análise estrutural Treliças slide 1 Treliças simples Treliça é uma estrutura de membros esbeltos conectados entre si em suas extremidades. Os membros normalmente usados em construções consistem

Leia mais

MAC de outubro de 2009

MAC de outubro de 2009 MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE 3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE

Leia mais

RELAÇÕES TRIGONOMÈTRICAS

RELAÇÕES TRIGONOMÈTRICAS TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

MATEMÁTICA PARA TÉCNICOS

MATEMÁTICA PARA TÉCNICOS PETROBRAS INDICADA PARA TODOS CARGOS TÉCNICOS MATEMÁTICA PARA TÉCNICOS QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 ÍNDICE DE QUESTÕES MATEMÁTICA - CARGOS TÉCNICOS

Leia mais

Aplicações de Leis de Newton

Aplicações de Leis de Newton Aplicações de Leis de Newton Evandro Bastos dos Santos 22 de Maio de 2017 1 Introdução Na aula anterior vimos o conceito de massa inercial e enunciamos as leis de Newton. Nessa aula, nossa tarefa é aplicar

Leia mais

2010The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho Prof.: Anastácio Pinto Gonçalves Filho Introdução Para um corpo rígido em equilíbrio estático, as forças e momentos externos estão balenceadas e não impõem movimento de translação ou de rotação ao corpo.

Leia mais

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula ENG1200 Mecânica Geral 2013.2 Lista de Exercícios 1 Equilíbrio da Partícula Questão 1 - Prova P1 2013.1 Determine o máximo valor da força P que pode ser aplicada na estrutura abaixo, sabendo que no tripé

Leia mais

Capítulo 1 Carga axial

Capítulo 1 Carga axial Capítulo 1 Carga axial 1.1 - Revisão Definição de deformação e de tensão: L P A Da Lei de Hooke: P 1 P E E A E EA Barra homogênea BC, de comprimento L e seção uniforme de área A, submetida a uma força

Leia mais

Aula 4: Diagramas de Esforços internos

Aula 4: Diagramas de Esforços internos ula 4: Diagramas de Esforços internos Estudo das Vigas Isostáticas Como já mencionado, vigas são peças (barras) da estrutura onde duas dimensões são pequenas em relação a terceira. Isto é, o comprimento

Leia mais

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum.

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum. Vetores Uma partícula que se move em linha reta pode se deslocar em apenas uma direção, sendo o deslocamento positivo em uma e negativo na outra direção. Quando uma partícula se move em três dimensões,

Leia mais

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um

Leia mais

COLÉGIO SÃO JOÃO GUALBERTO

COLÉGIO SÃO JOÃO GUALBERTO RESOLUÇÃO COMENTADA Prof.: Pedro Bittencourt Série: 1ª Turma: A Disciplina: Física Nota: Atividade: Avaliação mensal 1º bimestre Valor da Atividade: 10 Instruções Esta avaliação é individual e sem consulta.

Leia mais

CURSO DE ENGENHARIA CIVIL. Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. Goiânia HIPERESTÁTICA

CURSO DE ENGENHARIA CIVIL. Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. Goiânia HIPERESTÁTICA CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS Tópico: Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. Goiânia - 2014 O projeto estrutural tem como objetivo a concepção de uma estrutura

Leia mais

EQUILÍBRIO INTERNO DE ESTRUTURAS

EQUILÍBRIO INTERNO DE ESTRUTURAS EQUILÍBRIO INTERNO DE ETRUTURA ORÇA AXIAL, CORTANTE E MOMENTO LETOR: Apesar de na prática uma estrutura possuir três dimensões, podemos reduzir este sistema em planos e semi-planos. ocalizaremos nossa

Leia mais

Capítulo 3 Esforço Normal. 1ª. Questão

Capítulo 3 Esforço Normal. 1ª. Questão Capítulo 3 Esforço Normal 1ª. Questão A estaca da figura possui 60 mm de diâmetro e está submetida a uma carga de 20 kn. O solo tem a capacidade de resistir lateralmente, por meio de uma carga que varia

Leia mais

Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas

Material Teórico - O Plano Cartesiano e Sistemas de Equações. Sistemas de Equações do Primeiro Grau com Duas Incógnitas Material Teórico - O Plano Cartesiano e Sistemas de Equações Sistemas de Equações do Primeiro Grau com Duas Incógnitas Sétimo Ano do Ensino Fundamental Prof Francisco Bruno Holanda Prof Antonio Caminha

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

Olimpíada Brasileira de Física 2006

Olimpíada Brasileira de Física 2006 Olimpíada rasileira de Física 2006 Gabarito - Segunda Fase Terceira Série Questão 01-3a série (6,0 pontos) G α Fa Fy 1,5m 1,5m P Fx a) trabalho realizado pelo pintor i) O estudante deve saber que o trabalho

Leia mais

MECÂNICA 1 RESUMO E EXERCÍCIOS* P1

MECÂNICA 1 RESUMO E EXERCÍCIOS* P1 MECÂNICA 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com RESULTANTE DE FORÇAS R = F i MOMENTO

Leia mais

VETORES. Física. primeiro à extremidade do último vetor traçado. magnético.

VETORES. Física. primeiro à extremidade do último vetor traçado. magnético. Prof. Paulino Mourão VETORES Física MARÇO/009 ursos C 1. GRANDEZAS FÍSICAS 3. SOMA DE VETORES º E.M. Master 11/03/09 1.1. Grandezas Escalares São totalmente definidas somente por um valor numérico associado

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Estruturas Hiperestáticas Planas

Estruturas Hiperestáticas Planas Estruturas Hiperestáticas Planas P1 19/09/96 1ª Questão Traçar o diagrama de momentos fletores e forças cortantes decorrentes de um resfriamento T da barra CE da estrutura da figura abaixo. Considerar

Leia mais

Resolução Leis de Newton EsPCEx 2018 Prof. Douglão

Resolução Leis de Newton EsPCEx 2018 Prof. Douglão Resolução Leis de Newton EsPCEx 018 Prof. Douglão Gabarito: Resposta da questão 1: [A] T Fe P m a T Fe P 0 Fe T P kq T mg d d kq T mg k d Q T mg Resposta da questão : A figura 1 apresenta o diagrama de

Leia mais

Capítulo 2 Cargas e esforços

Capítulo 2 Cargas e esforços Cargas e esforços Professora Elaine Toscano Capítulo 2 Cargas e esforços 2.1 Cargas té o presente momento foram adotadas apenas cargas concentradas e cargasmomento nos exemplos, no entanto, na prática,

Leia mais

CAPÍTULO V ESFORÇO NORMAL E CORTANTE

CAPÍTULO V ESFORÇO NORMAL E CORTANTE 1 CAPÍTULO V ESFORÇO NORMAL E CORTANTE I. TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES) A. TENSÕES E DEFORMAÇÕES: Sempre que tivermos uma peça de estrutura, submetida à carga externa com componente no seu eixo

Leia mais

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações

Leia mais

Propriedades mecânicas dos materiais

Propriedades mecânicas dos materiais Propriedades mecânicas dos materiais Ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade é inerente

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS IBMEC Graduação em Engenharia Civil Teoria das Estruturas I EXERCÍCIOS RESOLVIDOS 1. Classifique as estruturas abaixo quanto à estaticidade: (a) : estrutura isostática (4 variáveis, 4 equações) (b) : estrutura

Leia mais

Estruturas. Treliças planas. Treliça Simples O elemento básico de uma treliça plana é o triangulo. Três barras unidas por pinos em suas extremidades.

Estruturas. Treliças planas. Treliça Simples O elemento básico de uma treliça plana é o triangulo. Três barras unidas por pinos em suas extremidades. TRELIÇAS Estruturas Como já é sabido o equilíbrio de um único corpo rígido ou de um sistema de elementos conectados, tratado como um único corpo rígido. Inicialmente desenhamos um diagrama de corpo livre

Leia mais

4 ESFORÇO DE FLEXÃO SIMPLES

4 ESFORÇO DE FLEXÃO SIMPLES 4 ESFORÇO DE FLEXÃO SIMPLES O esforço de flexão simples é normalmente resultante da ação de carregamentos transversais que tendem a curvar o corpo e que geram uma distribuição de tensões aproximadamente

Leia mais

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS 1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

MÉTODO DAS FORÇAS (FLEXIBILIDADE OU COMPATIBILIDADE)

MÉTODO DAS FORÇAS (FLEXIBILIDADE OU COMPATIBILIDADE) MÉTODO DAS FORÇAS (FLEXIBILIDADE OU COMPATIBILIDADE) A metodologia utilizada pelo Método das Forças para analisar uma estrutura hiperestática é: Somar uma série de soluções básicas que satisfazem as condições

Leia mais

Aula 5 Equilíbrio de um corpo rígido

Aula 5 Equilíbrio de um corpo rígido Aula 5 Equilíbrio de um corpo rígido slide 1 Condições de equilíbrio do corpo rígido Como mostra a Figura, este corpo está sujeito a um sistema externo de forças e momentos que é o resultado dos efeitos

Leia mais

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

Física D Semiextensivo v. 1

Física D Semiextensivo v. 1 Física D Semiextensivo v. 1 Exercícios 01) 01 02) B 03) A 01. Verdadeira. 02. Falsa. Pressão é uma grandeza escalar. 04. Falsa. Quantidade de movimento é grandeza vetorial. 08. Falsa. Impulso e velocidade

Leia mais

Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP

Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme

Leia mais

ESTÁTICA DAS ESTRUTURAS I PROF. IBERÊ 1 / 37 MÉTODO DOS ESFORÇOS

ESTÁTICA DAS ESTRUTURAS I PROF. IBERÊ 1 / 37 MÉTODO DOS ESFORÇOS ESTÁTCA DAS ESTUTUAS POF. BEÊ / 7 ÉTODO DOS ESFOÇOS Na resolução de estruturas hiperestáticas (aquelas que não podem ser resolvidas com as equações fundamentais da estática, a saber : somatória forças

Leia mais

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c

Leia mais

EME 311 Mecânica dos Sólidos

EME 311 Mecânica dos Sólidos 3 ANÁLISE DAS TRELIÇAS EME 311 Mecânica dos Sólidos - CAPÍTULO 3 - Profa. Patricia Email: patty_lauer@unifei.edu.br IEM Instituto de Engenharia Mecânica UNIFEI Universidade Federal de Itajubá 3.2 Esforços

Leia mais

Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO

Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO Nome: Armando dos Anjos Fernandes Formação Continuada Nova Eja Plano de Ação II Regional: Metro VI Tutor: Deivis de Oliveira Alves Este plano de ação contemplará as unidades 29 e 30. Unidade 29 I - Matrizes

Leia mais