Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Tamanho: px
Começar a partir da página:

Download "Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1"

Transcrição

1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular). O fato é que em física lidamos com uma grande gama de valores. Trabalhamos com números gigantescos tais como a massa da Terra ou a quantidade de átomos em 1g de hidrogênio, ou com números muito pequenos entre os quais podemos citar o tamanho de um átomo ou a massa de um elétron. Consideremos por exemplo a massa da Terra, cerca de sextilhões de toneladas (este é um valor aproximado). Quantos zeros possui este número? Expresso em toneladas este número possui 1 zeros, expresso em quilogramas este número possui zeros. m Terra kg Há obviamente um grande inconveniente em ficar escrevendo este número gigantesco. Além disto, escrito desta forma, ele não faz nenhum sentido físico (veja o porquê no item ). E imagine a dificuldade em se fazer operações com números deste tamanho! O mesmo acontece com números muito pequenos. Tomemos por exemplo a massa de um elétron, um valor muito comum na física atômica: m elétron 0, kg Não precisa se dar ao trabalho de contar quantos zeros há após a vírgula, são 1 zeros entre a ela e o número 9 (este valor da massa é um valor aproximado cuja função é apenas ilustrativa). As objeções a respeito deste número são as mesmas discutidas acima. O que vamos ver agora é uma maneira mais simples de se escrever tais números. Porém cabe aqui um alerta: a discussão inicial é puramente matemática, não física. No ultimo item discutiremos algumas sutilezas a respeito destes números e, principalmente por que não faz sentido físico escrever a massa da Terra, ou do elétron, com esta quantidade absurda de zeros. -Potências de 10 A notação científica é fundamentada no uso de certas características das potências de 10. De fato escrever 10 elevado a qualquer número inteiro é muito simples. Observe a tabela a seguir: Potências positivas Potências negativas , , , , ,00001 Podemos ver que o expoente positivo indica quantos zeros devemos colocar à esquerda do 1, enquanto os expoentes negativos indicam quantos zeros há à direita do número 1 (ou dito de outra forma, o expoente negativo nos diz quantas casas há após a vírgula). -Notação Científica

2 A notação cientifica se utiliza destas propriedades das potencias para reescrever os grandes ou pequenos números da ciência. A idéia básica é escrever estes zeros como uma potência de dez, com expoentes positivos ou negativos. Não há uma regra rígida de como se deve escrever números nesta notação. Veremos aqui a regra geral, mas há muitas exceções. Vamos à regra então: escreva o número de tal forma que à esquerda da vírgula tenha apenas números entre 1 e 9, quaisquer outros números devem ficar a direita, se necessário ande com a virgula para a direita ou para esquerda chegar a este padrão (veja a figura a seguir). Vamos ver alguns exemplos reescrevendo os números a seguir a) 000 Perceba que o número 000 pode ser escrito como Agora escrevemos 1000 como uma potência de 10 x 1000 x 10 Pronto, o número 000 foi escrito em notação científica! Apesar deste método ser simples há um método ainda mais simples, reescreveremos o número colocando uma virgula em um lugar inofensivo 000 = 000,0 Agora vamos utilizar a regra da vírgula, toda vez que a vírgula anda uma casa para a esquerda do zero aumentamos 1 no expoente. cada vez que a vírgula anda uma casa para a direita diminui-se um no expoente. Esquematicamente teremos: Quadro 1-Prefixos. É usual simplificarmos o uso da notação cientifica com o uso de prefixos das grandezas. Por exemplo, o k utilizado em kg e kg significa 1000, ou em notação científica, 10. Outro exemplo é o m utilizado em mm, ml ou mg, que significa 0,001 ou As tabelas a seguir fornecem alguns prefixos, seus nomes e a potencia a que se referem. Para escrevermos nosso número em notação científica faremos a vírgula andar três casas para a esquerda e somamos no expoente. Como não há expoente então basta escrevermos,0 x 10. b) 000 Escrevemos o número como 000,0 e movemos a vírgula quatro casas para direita e escrevemos: Potência nome símbolo 10 kilo k 10 Mega M 10 9 Giga G 10 1 Tera T Potência nome símbolo 10 - deci d 10 - mili m 10 - micro 10-9 nano n 10-1 pico p

3 b) Escreva o número como 17000,0 e ande casas para a direita, teremos: 1,7 c) 1,7 Este número já possui vírgula, mais fácil. Ande casas para a direita e escreva 1,7 x 10 d),1 Este número possui uma vírgula e já tem uma potência de 10. Vamos andar duas casas para a direita e somar no expoente. Ficaremos com,1. e) 0,0 Este caso é diferente, para que este número fique no padrão da notação cientifica temos que andar duas casas para a direita, e o expoente será negativo:,0 x 10 - Seguindo este raciocínio podemos resolver os demais facilmente: f) 0,000 =, x 10 - g) 0,0 - = - h) 0,00 x 10 7 = x 10 i) - =, 1 -Operações (i) multiplicação A multiplicação de números escritos na forma de notação cientifica é simples, multiplicamos as potências entre si e os números entre si, acertando a vírgula da resposta final caso seja necessário. A multiplicação das potencias segue a regra matemática sobre produto de potencias de mesma base: conservamos a base e somamos os expoentes. Exemplos: a),0 x 10.,0 x10 =,0 x 10 + =,0 x 10 9 b), x 10.,0 x10 = 7, x 10 + = 7, x 10 7 c), x 10.,0 x10 = 1,0 x 10 + = 1,0 x 10 = 1, x 10 9 d), x 10.,0 x10 - =,9 x 10 +(-) =,9 x 10 - =,9 x 10 e), -7.,0 x10 - = 1,0 x 10-7+(-) = 1,0 x =1,0 x =,1 x 10-9 (ii) divisão Na divisão procederemos da mesma forma, mas lembrando que na divisão de potências de mesma base nós conservamos a base e subtraímos os expoentes. Exemplos: x 10 a) x 10-1, b) 0, x 10-0, x 10,0 x 10

4 7 x 10 c), x (-) - x 10 d) -, x 10 e) 7 x , x 10 0, x 10 --(-) --(-), x 10 0, x , x 10 0, x 10 - x 10 (iii) Adição e subtração Neste caso devemos lembrar que só podemos somar ou subtrair coisas semelhantes, neste caso só podemos somar e subtrair quando as potencias de 10 são iguais. Este é o caso dos exemplos a e b a seguir. a) x 10 x 10 b) x 10 7 x , x 10 Porem pode acontecer que as potencias não sejam iguais, neste caso usaremos o truque de andar com a vírgula para igualá-las. No exemplo a seguir transformaremos x 10 em 0, x 10 movendo a vírgula uma casa para a esquerda: c) x 10 = 0, x 10 =, x 10 Veja agora outros exemplos: - d) x 10 - = x 10-0,000 =,999 x 10 e) x f) - - 0,00 0,0 x 10,99 - Notação científica e precisão.,0 x 10 De um ponto de vista matemático não há diferença entre escrever um número de maneira convencional e escreve-lo em notação científica. Porém em física há. Pode parecer estranho, mas tal diferença tem haver com o que chamamos de precisão dos resultados. Considere, por exemplo, que você queira escrever a distância entre sua casa e o supermercado. Digamos que esta distância seja próxima a 100 m. A pergunta é: o quanto eu tenho certeza deste valor? Será que a distância é exatamente 100 m? Ou 10 m? Ou 1 m? Ou serão 17 m? Será que tem sentido dizer que a distância é de, exatamente, 1, m? A notação científica nos permite escrever a distância e fornecer a idéia de quão preciso é o resultado. Digamos por exemplo que você ache que a distância é próxima a 1000 m (pode ser 1100 m ou 100 m), então você pode escrever d = 1 x 10 m. Isto significa que eu sei que este 1 é garantido, o resto dos números não se tem certeza. Para ter um melhor resultado você pode medir a distância com maior cuidado e chegar a conclusão que a distância é próxima a 1100 m, mas não sabe dizer se é 110m ou 110m. Então escreva d = 1,1 x 10 m. Neste caso você está dizendo que você tem certeza dos dois números que você colocou. Agora se você escrever d= 1,100 x 10 m o que isto significa? Significa que você tem certeza que a distância entre sua casa e o supermercado é de exatamente 1100 m, e que não este valor não está errado nem por um metro! Matematicamente falando, os números 1,1 x10, 1,10 x 10 e 1,100 x 10 são idênticos. Mas fisicamente não. O número 1,100 x10 diz que seu resultado não está errado nem por um metro. Na introdução deste texto foi citada, como exemplo, a massa da Terra, vamos escrevê-la novamente: m Terra kg

5 Por que foi dito que este número não tem sentido físico? Por que, com todos estes zeros, este número diz que sabemos a massa da Terra sem errar nem por um quilo! Claro que isto não faz sentido. Provavelmente você não sabe nem a sua massa com esta precisão. Como procedemos então? Escrevemos em notação científica fornecendo apenas os números que temos alguma certeza que estão certos (chamamos estes números de algarismos significativos ): m Terra x10 kg Além de ser uma maneira mais compacta e operacional de se escrever este valor, a notação científica fornece uma maneira mais lógica de se escrevê-lo. Em física é comum termos números escritos com várias casas após a vírgula, mas os físicos só fazem isto quando tem certeza que estão certos, então, ao se deparar com um número com vários algarismos após a virgula, saiba que estes estão lá por que os cientistas tem certeza que aquele é o lugar deles. Para finalizar este resumo com um exemplo gostaria de escrever novamente a massa do elétron, desta vez em notação científica e com todos os algarismos significativos (os que temos certeza!), isto dará uma boa idéia de como se usa notação científica e de quão preciso pode ser um resultado experimental. Para ser bem preciso ao escrever este número vou deixar claro que há uma imprecisão igual a 0 nas duas ultimas casas decimais, ou seja este número possui um erro próximo de uma parte em milhões! m elétron 9,109 91x10-1 kg Veja mais sobre Física e Matemática no Site Plantão de Física -

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Aula 6: Aritmética em Bases Não Decimais

Aula 6: Aritmética em Bases Não Decimais Aula 6: Aritmética em Bases Não Decimais Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Aritmética em Bases Não Decimais FAC 1 / 35 Introdução

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

Usando números muito pequenos e números muito grandes

Usando números muito pequenos e números muito grandes Usando números muito pequenos e números muito grandes Leia o seguinte texto, em voz alta, e em menos de 30 segundos: "...como, por exemplo, o nosso Sistema Solar que tem um diâmetro aproximado de 100000000000

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO SISTEMAS DE NUMERAÇÃO 1. INTRODUÇÃO Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo

Leia mais

04 Fórmulas Matemáticas

04 Fórmulas Matemáticas HEWLETT-PACKARD 04 Fórmulas Matemáticas [Digite o subtítulo do documento] Prof. Rodrigo [Digite aqui o resumo do documento. Em geral, o resumo é uma breve descrição do conteúdo do documento. Digite aqui

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

=6,93 10! Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel

=6,93 10! Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel 1 - BÁSICOS Importante: Você não irá avançar na disciplina de física I se não tiver conhecimentos

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matemática Sistema Métrico Decimal Definição: O SISTEMA MÉTRICO DECIMAL é parte integrante do Sistema de Medidas. É adotado no Brasil tendo

Leia mais

Usando potências de 10

Usando potências de 10 Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.

Leia mais

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais.

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais. POTENCIAÇÂO A potenciação é uma forma de representar uma multiplicação de fatores iguais. A potência é o resultado. x x x cada termo desta multiplicação é chamado de fator, portanto temos 4 fatores iguais

Leia mais

Capítulo V Sistemas Numéricos

Capítulo V Sistemas Numéricos Capítulo V Sistemas Numéricos Introdução Em capítulos anteriores estudamos diversas funções lógicas. No próximo capítulo veremos que operações aritméticas como soma e subtração de números binários podem

Leia mais

Deixando de odiar Matemática Parte 4

Deixando de odiar Matemática Parte 4 Deixando de odiar Matemática Parte 4 Fatoração 2 Quantidade de divisores de um número natural 3 Mínimo Múltiplo Comum 5 Simplificação de Frações 7 Máximo Divisor Comum 8 Método da Fatoração Simultânea

Leia mais

A aplicação do método se resume em algumas partes: Apostila escrita e desenvolvida por Renan Cerpe Versão 1.0

A aplicação do método se resume em algumas partes: Apostila escrita e desenvolvida por Renan Cerpe Versão 1.0 Introdução: O método Bindfolded, traduzido como "olhos vendados", é um dos maiores desafios para um Speed Cuber. Solucionar o Cubo Mágico com os olhos vendados parece ser algo impossível e que impressiona

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

Observando embalagens

Observando embalagens Observando embalagens A UUL AL A O leite integral é vendido em caixas de papelão laminado por dentro. Essas embalagens têm a forma de um paralelepípedo retângulo e a indicação de que contêm 1000 ml de

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

0.1 Introdução Conceitos básicos

0.1 Introdução Conceitos básicos Laboratório de Eletricidade S.J.Troise Exp. 0 - Laboratório de eletricidade 0.1 Introdução Conceitos básicos O modelo aceito modernamente para o átomo apresenta o aspecto de uma esfera central chamada

Leia mais

1-Eletricidade básica

1-Eletricidade básica SENAI 1 1-Eletricidade básica 1.1 - Grandezas Elétricas: 1.1 - Carga Elétrica, Tensão Elétrica, Corrente Elétrica, Resistência Elétrica; 1.2 - Leis de Ohm: 1.2.1-1 a Lei de Ohm 1.2.2 múltiplos e submúltiplos

Leia mais

Números e Operações. Nome: N.ª: Ano: Turma:

Números e Operações. Nome: N.ª: Ano: Turma: MATEMÁTICA 3º CICLO FICHA 1 Números e Operações Números Racionais Nome: N.ª: Ano: Turma: Data: / / 20 Os números 1, 2, 3, 4, 5, chamam-se números naturais. O conjunto dos números naturais representa-se

Leia mais

1) Unidades de Medida

1) Unidades de Medida CURSO DE INSTRUMENTAÇÃO Conceitos Fundamentais Cedtec 2007/2 Sem equivalente na Apostila 1 Pressão e NívelN 1) Unidades de Medida É necessário saber trabalhar com unidades de medida no Sistema Internacional

Leia mais

Unidade 1: O Computador

Unidade 1: O Computador Unidade : O Computador.3 Arquitetura básica de um computador O computador é uma máquina que processa informações. É formado por um conjunto de componentes físicos (dispositivos mecânicos, magnéticos, elétricos

Leia mais

VERDADES E MENTIRAS. Quem está mentindo e quem está dizendo a verdade. Quantas pessoas estão mentindo e quantas estão dizendo a verdade

VERDADES E MENTIRAS. Quem está mentindo e quem está dizendo a verdade. Quantas pessoas estão mentindo e quantas estão dizendo a verdade VERDADES E MENTIRAS Chamamos de a um tipo específico de questão, cujo enunciado nos apresenta uma situação qualquer, envolvendo normalmente alguns personagens, que irão declarar algo. O ponto principal

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

Lista de Exercícios 06 Modularização (Procedimentos e Funções)

Lista de Exercícios 06 Modularização (Procedimentos e Funções) Lista de Exercícios 06 Modularização (Procedimentos e Funções) Procedimentos: Passagem de parâmetros. 1) Escreva um procedimento que receba um número inteiro e imprima o mês correspondente ao número. Por

Leia mais

NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos

NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos 1 NÚMEROS E OPERAÇÕES Sistema de Numeração Decimal O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional Na base 10, dispomos de 10 algarismos

Leia mais

Matemática Régis Cortes MÚLTIPLOS E DIVISORES

Matemática Régis Cortes MÚLTIPLOS E DIVISORES MÚLTIPLOS E DIVISORES Múltiplos e divisores de um número Um número é múltiplo de outro quando, ao dividirmos o primeiro pelo segundo, o resto é zero. Observe as seguintes divisões entre números Naturais:

Leia mais

Prova Final de Matemática

Prova Final de Matemática Prova Final de Matemática.º Ciclo do Ensino Básico Decreto-Lei n.º 39/0, de 5 de julho Prova 6/Época Especial Critérios de Classificação 0 Páginas 05 Prova 6/E. Especial CC Página / 0 CRITÉRIOS GERAIS

Leia mais

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno,

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno, CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4 Prezado Aluno, Neste EP daremos sequência ao nosso estudo da linguagem da lógica matemática. Aqui veremos o conectivo que causa mais dificuldades para os alunos e

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.

Leia mais

Exemplo COMO FAZER UM TRABALHO ESCOLAR O QUE DEVE CONSTAR EM UM TRABALHO ESCOLAR? Um Trabalho Escolar que se preze, de nível fundamental, deve conter:

Exemplo COMO FAZER UM TRABALHO ESCOLAR O QUE DEVE CONSTAR EM UM TRABALHO ESCOLAR? Um Trabalho Escolar que se preze, de nível fundamental, deve conter: COMO FAZER UM TRABALHO ESCOLAR O QUE DEVE CONSTAR EM UM TRABALHO ESCOLAR? Um Trabalho Escolar que se preze, de nível fundamental, deve conter: 1. Capa 2. Folha de Rosto 3. Sumário 4. Introdução 5. Texto

Leia mais

JOGOS MATEMÁTICOS 2º ANO

JOGOS MATEMÁTICOS 2º ANO JOGOS MATEMÁTICOS 2º ANO ENCONTRE 1 Objetivos: - Realizar operações de adição e/ou subtração. - Estimular o cálculo mental. - Compor o número 1 com duas parcelas. Número de jogadores: 2 ou 4. Materiais:

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

MATÉRIA TÉCNICA APTTA BRASIL SENSORES MAGNETO-RESTRITIVOS UM CRUZAMENTO DE DOIS TIPOS DE SENSORES CONHECIDOS.

MATÉRIA TÉCNICA APTTA BRASIL SENSORES MAGNETO-RESTRITIVOS UM CRUZAMENTO DE DOIS TIPOS DE SENSORES CONHECIDOS. MATÉRIA TÉCNICA APTTA BRASIL SENSORES MAGNETO-RESTRITIVOS UM CRUZAMENTO DE DOIS TIPOS DE SENSORES CONHECIDOS. Figura 1: Aqui uma vista dos sensores do eixo comando de válvulas de um NISSAN Máxima 2012.

Leia mais

Cubo, prismas, cilindro

Cubo, prismas, cilindro A UUL AL A Cubo, prismas, cilindro Qual é a quantidade de espaço que um sólido ocupa? Esta é uma das principais questões quando estudamos as figuras espaciais. Para respondê-la, a geometria compara esse

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

Espera, espera, tive uma idéia e uma idéia não se deixa fugir.

Espera, espera, tive uma idéia e uma idéia não se deixa fugir. Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FSE 24 de outubro de 2009 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

(a 2, b) = p 2 q 2. AV2 - MA 14-2011. Questão 1.

(a 2, b) = p 2 q 2. AV2 - MA 14-2011. Questão 1. Questão 1. (1,5) Sejam a e b dois números naturais tais que (a, b) = pq, em que p e q são dois números primos distintos. Quais são os possíveis valores de (a) (a 2, b)? (b) (a 3, b)? (c) (a 2, b 3 )? Suponhamos

Leia mais

3. Computadores Industriais

3. Computadores Industriais UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENG. DE PRODUÇÃO E SISTEMAS - DEPS INFORMÁTICA INDUSTRIAL IFD 3. Computadores Industriais Igor Kondrasovas

Leia mais

Tutorial do aluno Ambiente Virtual de Aprendizagem (AVA) Rede e-tec Brasil

Tutorial do aluno Ambiente Virtual de Aprendizagem (AVA) Rede e-tec Brasil Instituto Federal de Educação, Ciência e Tecnologia do Pará Tutorial do aluno Ambiente Virtual de Aprendizagem (AVA) Rede e-tec Brasil 2015 I F P A 1 0 5 a n o s SUMÁRIO APRESENTAÇÃO... 2 1 CALENDÁRIO

Leia mais

1.2. Grandezas Fundamentais e Sistemas de Unidades

1.2. Grandezas Fundamentais e Sistemas de Unidades CAPÍTULO 1 Grandezas, Unidades e Dimensões 1.1. Medidas Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenómeno, susceptível de ser medida, i.e. à qual se pode atribuir um

Leia mais

4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos

4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos 4. Jogos com dados de cores correspondentes àquelas dos Blocos Lógicos Prepare um dado com três cores em suas faces (azul, amarelo e vermelho), sendo que cada cor deve aparecer duas vezes; Com as peças

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Vestibular 011 Utilize as informações a seguir para responder às questões de números e 3. Um

Leia mais

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de

Leia mais

Lógica dos Conectivos: validade de argumentos

Lógica dos Conectivos: validade de argumentos Lógica dos Conectivos: validade de argumentos Renata de Freitas e Petrucio Viana IME, UFF 16 de setembro de 2014 Sumário Razões e opiniões. Argumentos. Argumentos bons e ruins. Validade. Opiniões A maior

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

Exame Analítico. a) 0 b) 1 c) 3 d) 4 e) 5. 2) Qual é o próximo número da seqüência? {4, 5, 26/3, 33/2,...} a) 102/4 b) 55/3 c) 66/4 d) 162/5 e) 62/4

Exame Analítico. a) 0 b) 1 c) 3 d) 4 e) 5. 2) Qual é o próximo número da seqüência? {4, 5, 26/3, 33/2,...} a) 102/4 b) 55/3 c) 66/4 d) 162/5 e) 62/4 Exame Analítico 1) Você deverá analisar a seqüência das 5 próximas frases para concluir a afirmativa correta: (1) Vou lhe dizer 5 verdades; (2) A frase anterior é mentira; (3) A frase anterior é mentira;

Leia mais

c- Muitas vezes nos deparamos com situações em que nos sentimos tão pequenos e às vezes pensamos que não vamos dar conta de solucioná-las.

c- Muitas vezes nos deparamos com situações em que nos sentimos tão pequenos e às vezes pensamos que não vamos dar conta de solucioná-las. FICHA DA SEMANA 5º ANO A e B Instruções: 1- Cada atividade terá uma data de realização e deverá ser entregue a professora no dia seguinte; 2- As atividades deverão ser copiadas e respondidas no caderno,

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Para entendermos esse resultado, primeiro consideremos o seguinte lema: ˆ. d 3 r f z =

Para entendermos esse resultado, primeiro consideremos o seguinte lema: ˆ. d 3 r f z = Eletromagnetismo I Aula 2 Eercícios: faça os problemas numerados de 15 a 26 do Capítulo 1 do livro-teto. O Teorema da Divergência de Gauss: http://en.wikipedia.org/wiki/divergence_theorem d 3 r F ( ) da

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

TESTES PARA O SIMULADO COC

TESTES PARA O SIMULADO COC TESTES PARA O SIMULADO COC 1-) Para obter certo resultado, Rodrigo deverá pensar em um número natural, multiplicá-lo por 2, subtrair 3 do resultado e, finalmente, subtrair o quadrado do número pensado.

Leia mais

Sistemas Digitais Circuitos Aritméticos e Representação de Números com Sinal

Sistemas Digitais Circuitos Aritméticos e Representação de Números com Sinal Sistemas Digitais Circuitos Aritméticos e Representação de Números com Sinal João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) joao.carvalho@inesc.pt Circuitos Aritméticos Circuitos aritméticos são

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Resistores e CA. sen =. logo

Resistores e CA. sen =. logo Resistores e CA Quando aplicamos uma voltagem CA em um resistor, como mostrado na figura, uma corrente irá fluir através do resistor. Certo, mas quanta corrente irá atravessar o resistor. Pode a Lei de

Leia mais

II Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2015

II Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2015 1 2 Questão 1 Artur é muito bom em problemas matemáticos e sempre propõe desafios aos seus colegas. Desta vez, Artur criou uma sequência infinita de letras, juntando as palavras que formavam o nome de

Leia mais

JUSPODIVM

JUSPODIVM MATERIAL ETRA COMENTÁRIOS DAS QUESTÕES DA PROVA AFRF - 2005 31 - Ana quer vender um apartamento por R$ 400.000,00 à vista ou financiado pelo sistema de juros compostos a taxa de 5% ao semestre. Paulo está

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120 Que algarismos devem ser colocados nos pontinhos da conta abaixo?... 34 x 41... O Invente um problema que tenha como solução os cálculos abaixo: IS x 12 = 180 300-180 = 120 Em diversas situações do nosso

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Jogos com números Colocando números

Jogos com números Colocando números Jogos com números Colocando números 1) Coloque os dígitos de 1 a 6 sem repeti-los, cada um em um quadrado para que a igualdade expressada a seguir seja correta. Observe que dois quadrados juntos indicam

Leia mais

15.053 26 de fevereiro de 2002

15.053 26 de fevereiro de 2002 15.053 26 de fevereiro de 2002 Análise de Sensibilidade apresentado como Perguntas Freqüentes Pontos ilustrados em um exemplo contínuo de fabricação de garrafas. Se o tempo permitir, também consideraremos

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

MEDIÇÃO EM QUÍMICA. Escola Secundária José Saramago FQA nível 1-2007/2008. Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora

MEDIÇÃO EM QUÍMICA. Escola Secundária José Saramago FQA nível 1-2007/2008. Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora MEDIÇÃO EM QUÍMICA Escola Secundária José Saramago FQA nível 1-2007/2008 Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora A L 1.1 Medição em Química SUMÁRIO: Obtenção e tratamento

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

Indíce. Indice... 1. 1) Identificar a sua persona (Cliente ideal)...erro! Indicador não definido. Exemplo... 4

Indíce. Indice... 1. 1) Identificar a sua persona (Cliente ideal)...erro! Indicador não definido. Exemplo... 4 Indíce Sumário Indice... 1 1) Identificar a sua persona (Cliente ideal)...erro! Indicador não definido. Exemplo... 4 2) Gerar relacionamento / lista de emails... 5 Exemplo... 6 3)Faça a oferta... 7 Exemplo...

Leia mais

TESTES SOCIOMÉTRICOS

TESTES SOCIOMÉTRICOS TESTES SOCIOMÉTRICOS Docente: Mestre Mª João Marques da Silva Picão Oliveira TESTES SOCIOMÉTRICOS * O Teste Sociométrico ajuda-nos a avaliar o grau de integração duma criança/jovem no grupo; a descobrir

Leia mais

Elevador Hidráulico. O objetivo deste experimento é mostrar o Princípio de Pascal no funcionamento de um elevador hidráulico.

Elevador Hidráulico. O objetivo deste experimento é mostrar o Princípio de Pascal no funcionamento de um elevador hidráulico. Elevador Hidráulico Objetivo Contexto O objetivo deste experimento é mostrar o Princípio de Pascal no funcionamento de um elevador hidráulico. Em 1652 um jovem cientista francês Blaise Pascal (1623-1662),

Leia mais

COBRANÇA BANCÁRIA CAIXA

COBRANÇA BANCÁRIA CAIXA COBRANÇA BANCÁRIA CAIXA ESPECIFICAÇÃO DE CÓDIGO DE BARRAS PARA BLOQUETOS DE COBRANÇA COBRANÇAS RÁPIDA E SEM REGISTRO GESER NOVEMBRO/2000 ÍNDICE PÁGINA 1 INTRODUÇÃO... 3 2 ESPECIFICAÇÕES...4 2.1 FORMATO......

Leia mais

MODELO SUGERIDO PARA PROJETO DE PESQUISA

MODELO SUGERIDO PARA PROJETO DE PESQUISA MODELO SUGERIDO PARA PROJETO DE PESQUISA MODELO PARA ELABORAÇÃO DE PROJETO DE PESQUISA (Hospital Regional do Mato Grosso do Sul- HRMS) Campo Grande MS MÊS /ANO TÍTULO/SUBTÍTULO DO PROJETO NOME DO (s) ALUNO

Leia mais

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 15.1 Conteúdo: Conceituar e exemplificar MMC.

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 15.1 Conteúdo: Conceituar e exemplificar MMC. CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 15.1 Conteúdo: Conceituar e exemplificar MMC. CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Aplicar os conceitos

Leia mais

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) +

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) + MÓDULO XII EXPRESSÕES ALGÉBRICAS 1. Epressão algébrica Em álgebra, se empregam outros símbolos além dos algarismos. Damos o nome de epressão algébrica ao conjunto de letras e números ligados entre si por

Leia mais

www.interaulaclube.com.br

www.interaulaclube.com.br A UU L AL A O mar Observe atentamente a figura abaixo. Uma olhada mais despreocupada para o desenho pode dar a impressão de que estamos diante de uma região desértica na superfície da Terra. Mas, prestando

Leia mais

VALOR DO DINHEIRO NO TEMPO E PORCENTAGEM. Profa. Dra. Lousanne Cavalcanti Barros Resende

VALOR DO DINHEIRO NO TEMPO E PORCENTAGEM. Profa. Dra. Lousanne Cavalcanti Barros Resende VALOR DO DINHEIRO NO TEMPO E 1 PORCENTAGEM Profa. Dra. Lousanne Cavalcanti Barros Resende 2 Objetivos da aula Apresentar e contextualizar o valor do dinheiro no tempo; Diferenciar Capital e Montante; Apresentar

Leia mais

Valor máximo que é possível medir

Valor máximo que é possível medir MEDIÇÃO EM QUÍMICA Escola Secundária José Saramago FQA 10.ºAno 2009/2010 Marília Peres I NSTRUMENTOS DE MEDIDA Alcance Valor máximo que é possível medir Sensibilidade ou Natureza do aparelho Valor da menor

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 10: Exercícios Cap 01. www.laercio.com.br

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 10: Exercícios Cap 01. www.laercio.com.br MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 10: Exercícios Cap 01 www.laercio.com.br APOSTILA 10 Exercícios cap 01 MATÉRIA FÁCIL, QUESTÕES DIFÍCEIS HORA DE ESTUDAR (cap 01) Apostila de complemento

Leia mais

UM POUCO MAIS DE FORMATAÇÃO

UM POUCO MAIS DE FORMATAÇÃO UM POUCO MAIS DE FORMATAÇÃO Ao digitar os dados na planilha abaixo, observamos que o conteúdo da célula B5 ultrapassa seus limites invadindo os campos das células C5 e D5. Observe que na barra de fórmulas

Leia mais

FAMA Investimentos Ltda. Política de Rateio e Divisão de Ordens

FAMA Investimentos Ltda. Política de Rateio e Divisão de Ordens FAMA Investimentos Ltda. Política de Rateio e Divisão de Ordens 1. Introdução Faz parte da cultura ética e profissional da FAMA Investimentos Ltda. ( FAMA ) conduzir a carteira de investimento e a alocação

Leia mais

Nivelamento Matemática Básica

Nivelamento Matemática Básica Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga

Leia mais

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos

Leia mais

Notas de Aula: Física Aplicada a Imaginologia - parte I

Notas de Aula: Física Aplicada a Imaginologia - parte I Notas de Aula: Física Aplicada a Imaginologia - parte I Prof. Luciano Santa Rita Fonte: Prof. Rafael Silva www.lucianosantarita.pro.br tecnologo@lucianosantarita.pro.br 1 Conteúdo Programático Notação

Leia mais

Denilson Marques ENEM 2013 ENEM 2013 ENEM 2013 ENEM 2013 Números Proporcionais Suponha que x represente os valores de uma grandeza e que y represente os valores correspondentes a outra grandeza.

Leia mais

Tudo vem dos sonhos. Primeiro sonhamos, depois fazemos.

Tudo vem dos sonhos. Primeiro sonhamos, depois fazemos. Nível 1 5 a e 6 a séries do Ensino Fundamental 2ª FASE - 8 de outubro de 2005 Cole aqui a etiqueta com os dados do aluno. Nome do(a) aluno(a): Assinatura do(a) aluno(a): Parabéns pelo seu desempenho na

Leia mais

Aula 3 Distribuição de Frequências.

Aula 3 Distribuição de Frequências. 1 Estatística e Probabilidade Aula 3 Distribuição de Frequências. Professor Luciano Nóbrega Distribuição de frequência 2 Definições Básicas Dados Brutos são os dados originais que ainda não foram numericamente

Leia mais

BALANÇO PATRIMONIAL AMBIENTAL - EXERCÍCIO COMENTADO Prof Alan

BALANÇO PATRIMONIAL AMBIENTAL - EXERCÍCIO COMENTADO Prof Alan FACULDADE EVANGÉLICA CIÊNCIAS CONTÁBEIS DISCIPLINA: CONTABILIDADE AMBIENTAL E SOCIAL TURMA: 3º, 4º e 5º PERÍODOS BALANÇO PATRIMONIAL AMBIENTAL - EXERCÍCIO COMENTADO Prof Alan Considere os fatos contábeis

Leia mais

INICIADOS - 2ª Sessão ClubeMath 7-11-2009

INICIADOS - 2ª Sessão ClubeMath 7-11-2009 INICIADOS - 2ª Sessão ClubeMath 7-11-2009 Adivinhar o dia de aniversário de outra pessoa e o mês Temos uns cartões mágicos, que vão permitir adivinhar o dia de aniversário de qualquer pessoa e outros que

Leia mais

Nota sobre a variabilidade da velocidade da luz (Note on the variability of the speed of light)

Nota sobre a variabilidade da velocidade da luz (Note on the variability of the speed of light) Nota sobre a variabilidade da velocidade da luz (Note on the variability of the speed of light) Valdir Monteiro dos Santos Godoi valdir.msgodoi@gmail.com RESUMO Reforçamos a necessidade de mais experiências

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática Financeira da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei

Leia mais

Como criar uma conta e a 1ª campanha no Adwords

Como criar uma conta e a 1ª campanha no Adwords Como criar uma conta e a 1ª campanha no Adwords Olá, aqui é o Samuel de Almeida. Este é um dos materiais bônus que você recebeu ao comprar o nosso curso de Vendas Online com o Google Adwords. É um material

Leia mais

Treinamento sobre Progress Report.

Treinamento sobre Progress Report. Treinamento sobre Progress Report. Objetivo O foco aqui é trabalhar o desenvolvimento pessoal de cada aluno. O instrutor irá analisar cada um e pensar em suas dificuldades e barreiras de aprendizado e,

Leia mais

Cálculo de Soma de Verificação do User Datagram Protocol

Cálculo de Soma de Verificação do User Datagram Protocol Resumo Cálculo de Soma de Verificação do User Datagram Protocol Othon Marcelo Nunes Batista Mestre em Informática othonb@yahoo.com Mesmo sendo um protocolo que nada garante, o UDP tem um campo no datagrama

Leia mais