Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Tamanho: px
Começar a partir da página:

Download "Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1"

Transcrição

1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular). O fato é que em física lidamos com uma grande gama de valores. Trabalhamos com números gigantescos tais como a massa da Terra ou a quantidade de átomos em 1g de hidrogênio, ou com números muito pequenos entre os quais podemos citar o tamanho de um átomo ou a massa de um elétron. Consideremos por exemplo a massa da Terra, cerca de sextilhões de toneladas (este é um valor aproximado). Quantos zeros possui este número? Expresso em toneladas este número possui 1 zeros, expresso em quilogramas este número possui zeros. m Terra kg Há obviamente um grande inconveniente em ficar escrevendo este número gigantesco. Além disto, escrito desta forma, ele não faz nenhum sentido físico (veja o porquê no item ). E imagine a dificuldade em se fazer operações com números deste tamanho! O mesmo acontece com números muito pequenos. Tomemos por exemplo a massa de um elétron, um valor muito comum na física atômica: m elétron 0, kg Não precisa se dar ao trabalho de contar quantos zeros há após a vírgula, são 1 zeros entre a ela e o número 9 (este valor da massa é um valor aproximado cuja função é apenas ilustrativa). As objeções a respeito deste número são as mesmas discutidas acima. O que vamos ver agora é uma maneira mais simples de se escrever tais números. Porém cabe aqui um alerta: a discussão inicial é puramente matemática, não física. No ultimo item discutiremos algumas sutilezas a respeito destes números e, principalmente por que não faz sentido físico escrever a massa da Terra, ou do elétron, com esta quantidade absurda de zeros. -Potências de 10 A notação científica é fundamentada no uso de certas características das potências de 10. De fato escrever 10 elevado a qualquer número inteiro é muito simples. Observe a tabela a seguir: Potências positivas Potências negativas , , , , ,00001 Podemos ver que o expoente positivo indica quantos zeros devemos colocar à esquerda do 1, enquanto os expoentes negativos indicam quantos zeros há à direita do número 1 (ou dito de outra forma, o expoente negativo nos diz quantas casas há após a vírgula). -Notação Científica

2 A notação cientifica se utiliza destas propriedades das potencias para reescrever os grandes ou pequenos números da ciência. A idéia básica é escrever estes zeros como uma potência de dez, com expoentes positivos ou negativos. Não há uma regra rígida de como se deve escrever números nesta notação. Veremos aqui a regra geral, mas há muitas exceções. Vamos à regra então: escreva o número de tal forma que à esquerda da vírgula tenha apenas números entre 1 e 9, quaisquer outros números devem ficar a direita, se necessário ande com a virgula para a direita ou para esquerda chegar a este padrão (veja a figura a seguir). Vamos ver alguns exemplos reescrevendo os números a seguir a) 000 Perceba que o número 000 pode ser escrito como Agora escrevemos 1000 como uma potência de 10 x 1000 x 10 Pronto, o número 000 foi escrito em notação científica! Apesar deste método ser simples há um método ainda mais simples, reescreveremos o número colocando uma virgula em um lugar inofensivo 000 = 000,0 Agora vamos utilizar a regra da vírgula, toda vez que a vírgula anda uma casa para a esquerda do zero aumentamos 1 no expoente. cada vez que a vírgula anda uma casa para a direita diminui-se um no expoente. Esquematicamente teremos: Quadro 1-Prefixos. É usual simplificarmos o uso da notação cientifica com o uso de prefixos das grandezas. Por exemplo, o k utilizado em kg e kg significa 1000, ou em notação científica, 10. Outro exemplo é o m utilizado em mm, ml ou mg, que significa 0,001 ou As tabelas a seguir fornecem alguns prefixos, seus nomes e a potencia a que se referem. Para escrevermos nosso número em notação científica faremos a vírgula andar três casas para a esquerda e somamos no expoente. Como não há expoente então basta escrevermos,0 x 10. b) 000 Escrevemos o número como 000,0 e movemos a vírgula quatro casas para direita e escrevemos: Potência nome símbolo 10 kilo k 10 Mega M 10 9 Giga G 10 1 Tera T Potência nome símbolo 10 - deci d 10 - mili m 10 - micro 10-9 nano n 10-1 pico p

3 b) Escreva o número como 17000,0 e ande casas para a direita, teremos: 1,7 c) 1,7 Este número já possui vírgula, mais fácil. Ande casas para a direita e escreva 1,7 x 10 d),1 Este número possui uma vírgula e já tem uma potência de 10. Vamos andar duas casas para a direita e somar no expoente. Ficaremos com,1. e) 0,0 Este caso é diferente, para que este número fique no padrão da notação cientifica temos que andar duas casas para a direita, e o expoente será negativo:,0 x 10 - Seguindo este raciocínio podemos resolver os demais facilmente: f) 0,000 =, x 10 - g) 0,0 - = - h) 0,00 x 10 7 = x 10 i) - =, 1 -Operações (i) multiplicação A multiplicação de números escritos na forma de notação cientifica é simples, multiplicamos as potências entre si e os números entre si, acertando a vírgula da resposta final caso seja necessário. A multiplicação das potencias segue a regra matemática sobre produto de potencias de mesma base: conservamos a base e somamos os expoentes. Exemplos: a),0 x 10.,0 x10 =,0 x 10 + =,0 x 10 9 b), x 10.,0 x10 = 7, x 10 + = 7, x 10 7 c), x 10.,0 x10 = 1,0 x 10 + = 1,0 x 10 = 1, x 10 9 d), x 10.,0 x10 - =,9 x 10 +(-) =,9 x 10 - =,9 x 10 e), -7.,0 x10 - = 1,0 x 10-7+(-) = 1,0 x =1,0 x =,1 x 10-9 (ii) divisão Na divisão procederemos da mesma forma, mas lembrando que na divisão de potências de mesma base nós conservamos a base e subtraímos os expoentes. Exemplos: x 10 a) x 10-1, b) 0, x 10-0, x 10,0 x 10

4 7 x 10 c), x (-) - x 10 d) -, x 10 e) 7 x , x 10 0, x 10 --(-) --(-), x 10 0, x , x 10 0, x 10 - x 10 (iii) Adição e subtração Neste caso devemos lembrar que só podemos somar ou subtrair coisas semelhantes, neste caso só podemos somar e subtrair quando as potencias de 10 são iguais. Este é o caso dos exemplos a e b a seguir. a) x 10 x 10 b) x 10 7 x , x 10 Porem pode acontecer que as potencias não sejam iguais, neste caso usaremos o truque de andar com a vírgula para igualá-las. No exemplo a seguir transformaremos x 10 em 0, x 10 movendo a vírgula uma casa para a esquerda: c) x 10 = 0, x 10 =, x 10 Veja agora outros exemplos: - d) x 10 - = x 10-0,000 =,999 x 10 e) x f) - - 0,00 0,0 x 10,99 - Notação científica e precisão.,0 x 10 De um ponto de vista matemático não há diferença entre escrever um número de maneira convencional e escreve-lo em notação científica. Porém em física há. Pode parecer estranho, mas tal diferença tem haver com o que chamamos de precisão dos resultados. Considere, por exemplo, que você queira escrever a distância entre sua casa e o supermercado. Digamos que esta distância seja próxima a 100 m. A pergunta é: o quanto eu tenho certeza deste valor? Será que a distância é exatamente 100 m? Ou 10 m? Ou 1 m? Ou serão 17 m? Será que tem sentido dizer que a distância é de, exatamente, 1, m? A notação científica nos permite escrever a distância e fornecer a idéia de quão preciso é o resultado. Digamos por exemplo que você ache que a distância é próxima a 1000 m (pode ser 1100 m ou 100 m), então você pode escrever d = 1 x 10 m. Isto significa que eu sei que este 1 é garantido, o resto dos números não se tem certeza. Para ter um melhor resultado você pode medir a distância com maior cuidado e chegar a conclusão que a distância é próxima a 1100 m, mas não sabe dizer se é 110m ou 110m. Então escreva d = 1,1 x 10 m. Neste caso você está dizendo que você tem certeza dos dois números que você colocou. Agora se você escrever d= 1,100 x 10 m o que isto significa? Significa que você tem certeza que a distância entre sua casa e o supermercado é de exatamente 1100 m, e que não este valor não está errado nem por um metro! Matematicamente falando, os números 1,1 x10, 1,10 x 10 e 1,100 x 10 são idênticos. Mas fisicamente não. O número 1,100 x10 diz que seu resultado não está errado nem por um metro. Na introdução deste texto foi citada, como exemplo, a massa da Terra, vamos escrevê-la novamente: m Terra kg

5 Por que foi dito que este número não tem sentido físico? Por que, com todos estes zeros, este número diz que sabemos a massa da Terra sem errar nem por um quilo! Claro que isto não faz sentido. Provavelmente você não sabe nem a sua massa com esta precisão. Como procedemos então? Escrevemos em notação científica fornecendo apenas os números que temos alguma certeza que estão certos (chamamos estes números de algarismos significativos ): m Terra x10 kg Além de ser uma maneira mais compacta e operacional de se escrever este valor, a notação científica fornece uma maneira mais lógica de se escrevê-lo. Em física é comum termos números escritos com várias casas após a vírgula, mas os físicos só fazem isto quando tem certeza que estão certos, então, ao se deparar com um número com vários algarismos após a virgula, saiba que estes estão lá por que os cientistas tem certeza que aquele é o lugar deles. Para finalizar este resumo com um exemplo gostaria de escrever novamente a massa do elétron, desta vez em notação científica e com todos os algarismos significativos (os que temos certeza!), isto dará uma boa idéia de como se usa notação científica e de quão preciso pode ser um resultado experimental. Para ser bem preciso ao escrever este número vou deixar claro que há uma imprecisão igual a 0 nas duas ultimas casas decimais, ou seja este número possui um erro próximo de uma parte em milhões! m elétron 9,109 91x10-1 kg Veja mais sobre Física e Matemática no Site Plantão de Física -

Física Aplicada A Aula 1. Profª. Me. Valéria Espíndola Lessa

Física Aplicada A Aula 1. Profª. Me. Valéria Espíndola Lessa Física Aplicada A Aula 1 Profª. Me. Valéria Espíndola Lessa valeria-lessa@uergs.edu.br Este material está disponibilizado no endereço: http://matvirtual.pbworks.com/w/page/52894125 /UERGS O que é Física?

Leia mais

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão.

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Unidades de Medidas Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Como os antigos faziam para realizar medidas? - Na antiguidade:

Leia mais

Comprimento metro m Massa quilograma kg Tempo segundo s. Temperatura termodinâmica Kelvin K

Comprimento metro m Massa quilograma kg Tempo segundo s. Temperatura termodinâmica Kelvin K INTRODUÇÃO O Sistema Internacional e s ( S.I.) O SI é dividido em três grupos, a seguir: Sete s de Base Duas s Suplementares s derivadas Tabela 1 - s de Base do SI Comprimento metro m Massa quilograma

Leia mais

Unidades de Medidas - Parte I

Unidades de Medidas - Parte I Unidades de Medidas - Parte I Sistema Métrico Decimal Um dos legados da Revolução Francesa foi criar um sistema de medidas que fosse baseado em constantes naturais e não em padrões arbitrários como pé,

Leia mais

Sistema Internacional de Unidades (SI) e Medida

Sistema Internacional de Unidades (SI) e Medida Área do Conhecimento: Ciências da Natureza e Matemática Componente Curricular: Física Prof. Dr. Mário Mascarenhas Sistema Internacional de Unidades (SI) e Medida Sistema adotado oficialmente no Brasil

Leia mais

MÓDULO 1. Os Métodos da Física:

MÓDULO 1. Os Métodos da Física: MÓDULO 1 O QUE É FÍSICA? Física é o ramo da ciência que estuda as propriedades das partículas elementares e os fenômenos naturais e provocados, de modo lógico e ordenado. Os Métodos da Física: Todas as

Leia mais

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari Eletricidade Aula ZERO Profª Heloise Assis Fazzolari Plano de aulas O objetivo da disciplina é dar ao aluno noções de eletricidade e fenômenos relacionados. Critério de Avaliação Quatro provas bimestrais

Leia mais

Medição em Química e Física

Medição em Química e Física Medição em Química e Física Hás-de fazê-la desta maneira: o comprimento será de trezentos côvados; a largura, de cinquenta côvados; e a altura, de trinta côvados. Génesis, VI, 15 Professor Luís Gonçalves

Leia mais

Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14?

Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14? Unidade III 6 CIRCUITOS DIGITAIS 6.1 Sistemas de numeração O que quer dizer 14? Sabemos, por força de educação e hábito, que os algarismos 1 e 4 colocados desta forma representam a quantidade catorze.

Leia mais

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado?

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa caminha diariamente 4 000 m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa trabalhou durante 10 dias para fazer um serviço pelo qual recebeu R$ 325,00. Quanto recebeu por

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

TUTORIAL DE OPERAÇÕES BÁSICAS

TUTORIAL DE OPERAÇÕES BÁSICAS TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a

Leia mais

FÍSICA EXPERIMENTAL I. 1-Medida e algarismos significativos DFIS/UDESC

FÍSICA EXPERIMENTAL I. 1-Medida e algarismos significativos DFIS/UDESC FÍSICA EXPERIMENTAL I 1-Medida e algarismos DFIS/UDESC 1. Introdução: Como a grande maioria das ciências positivistas: A Física se utiliza se do Método Científico: Que se estrutura em: Observação Formulação

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO Silva, Thiago Luis Nogueira. S586i

nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO Silva, Thiago Luis Nogueira. S586i nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO S586i Silva, Thiago Luis Nogueira. Instrumentos e sistemas de medida : engenharia de produção / Thiago Luis Nogueira Silva. Varginha, 2015.

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Progressão Aritmética e Geométrica Progressão Aritmética Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão aritmética,

Leia mais

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATERIAIS DIFERENÇAS ENTRE PROCESSOS FÍSICOS E QUÍMICOS DIFERENÇAS ENTRE PROPRIEDADES FÍSICAS E QUÍMICAS Exa+dão x Precisão Algarismos significa+vos

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Fundamentos de Física. Vitor Sencadas

Fundamentos de Física. Vitor Sencadas Fundamentos de Física Vitor Sencadas vsencadas@ipca.pt Grandezas físicas e sistemas de unidades 1.1. Introdução A observação de um fenómeno é incompleta quando dela não resultar uma informação quantitativa.

Leia mais

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores Operações com potências A UUL AL A Quando um número é multiplicado por ele mesmo, dizemos que ele está elevado ao quadrado, e escrevemos assim: Introdução a a = a² Se um número é multiplicado por ele mesmo

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

MEDIÇÃO NO LABORATÓRIO

MEDIÇÃO NO LABORATÓRIO MEDIÇÃO NO LABORATÓRIO Medição e medida de grandezas físicas Uma grandeza física é uma propriedade de um corpo ou uma característica de um fenómeno que pode ser medida. A medição é a operação pela qual

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

Unidades de Medidas e as Unidades do Sistema Internacional

Unidades de Medidas e as Unidades do Sistema Internacional Unidades de Medidas e as Unidades do Sistema Internacional Metrologia é a ciência da medição, abrangendo todas as medições realizadas num nível conhecido de incerteza, em qualquer dominio da atividade

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando INTRODUÇÃO O PROBLEMA D, tem sua história, sua evolução e generalizações citadas na página REFERÊNCIA da MATEMÁTICA. Entre as referências destaca-se o livro "O Homem que Calculava", de Malba Tahan, pseudônimo

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

QMC 5119 II Semestre de 2014 EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS

QMC 5119 II Semestre de 2014 EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS 1. Introdução: Química é uma ciência experimental e por isso consideramos importante que você inicie a disciplina Introdução ao Laboratório de Química realizando

Leia mais

FÍSICA. Fornece uma compreensão quantitativa de certos fenómenos que ocorrem no Universo.

FÍSICA. Fornece uma compreensão quantitativa de certos fenómenos que ocorrem no Universo. Introdução e Vectores FÍSICA Prof. Marília Peres Adaptado de Serway & Jewett Sobre a Física Fornece uma compreensão quantitativa de certos fenómenos que ocorrem no Universo. Baseia-se em observações experimentais

Leia mais

Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração

Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração Sistemas de Numeração Sistemas de Numeração (Aula Extra) Sistemas de diferentes bases Álgebra Booleana Roberta Lima Gomes - LPRM/DI/UFES Sistemas de Programação I Eng. Elétrica 27/2 Um sistema de numeração

Leia mais

Potências de dez, ordens de grandeza e algarismos significativos

Potências de dez, ordens de grandeza e algarismos significativos Potências de dez, ordens de grandeza e algarismos significativos Potências de dez Há muitos séculos que o homem procura compreender e prever o comportamento da natureza. O que chamamos de ciências naturais

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco.

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco. ÁBACO VERTICAL É de extrema importância que os alunos construam os conceitos de número já nas séries iniciais, a fim de que estes evoluam do concreto aos estágios de abstração. Os Parâmetros Curriculares

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Tabela I - As sete unidades de base do SI, suas unidades e seus símbolos.

Tabela I - As sete unidades de base do SI, suas unidades e seus símbolos. 1. Sistemas de Unidades 1.1 O Sistema Internacional Os mais diversos sistemas de medidas foram inventados ao longo da história, desde o início das civilizações mais organizadas. Durante vários séculos,

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

=6,93 10! Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel

=6,93 10! Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel 1 - BÁSICOS Importante: Você não irá avançar na disciplina de física I se não tiver conhecimentos

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

Sistemas de numeração e conversão de bases Decimal e binário

Sistemas de numeração e conversão de bases Decimal e binário Sistemas de numeração e conversão de bases Decimal e binário Cálculo de conversão de bases para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação

Leia mais

USO DA CALCULADORA CIENTÍFICA

USO DA CALCULADORA CIENTÍFICA USO DA CALCULADORA CIENTÍFICA Este guia usa a calculadora Casio modelo fx-82ms ou similares. REGRA BÁSICA PARA O USO CONSCIENTE DA CALCULADORA: Salvo em situações mais complicadas, UTILIZE A CALCULADORA

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

Critérios de Divisibilidade

Critérios de Divisibilidade Critérios de Divisibilidade Introdução Se você procurar pela Internet, irá encontrar dezenas de sites que falam sobre este assunto, alguns muito bons por sinal, mas a grande maioria deles embora apresentem

Leia mais

Aula 6: Aritmética em Bases Não Decimais

Aula 6: Aritmética em Bases Não Decimais Aula 6: Aritmética em Bases Não Decimais Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Aritmética em Bases Não Decimais FAC 1 / 35 Introdução

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Usando números muito pequenos e números muito grandes

Usando números muito pequenos e números muito grandes Usando números muito pequenos e números muito grandes Leia o seguinte texto, em voz alta, e em menos de 30 segundos: "...como, por exemplo, o nosso Sistema Solar que tem um diâmetro aproximado de 100000000000

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Introdução à Computação

Introdução à Computação Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Introdução à Computação A Informação

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

MÉTODO CUCA LEGAL PARA CALCULAR RAÍZES QUADRADAS.

MÉTODO CUCA LEGAL PARA CALCULAR RAÍZES QUADRADAS. MÉTODO CUCA LEGAL PARA CALCULAR RAÍZES QUADRADAS. Autor: Andreilson Oliveira da Silva; Coautores: Edson de Souza Soares Neto; Jonaldo Oliveira de Medeiros; Elionardo Rochelly Melo de Almeida Instituto

Leia mais

Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo.

Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo. Aritmética Binária Aqui tudo nasce do cálculo. Todo o hardware computacional está sustentado sobre cálculos de adição e subtração de elementos binários (bits), portanto o estudo da aritmética binária é

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Múltiplos e submúltiplos

Múltiplos e submúltiplos Múltiplos e submúltiplos Múltiplos e submúltiplos Fator Nome do prefixo Símbolo Fator Nome do prefixo Símbolo 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 10 2 10 1 yotta zetta exa peta tera giga mega

Leia mais

Cálculo da Raiz Quadrada sem o uso da Calculadora

Cálculo da Raiz Quadrada sem o uso da Calculadora Cálculo da Raiz Quadrada sem o uso da Calculadora Márcio Roberto Rocha Ribeiro rocha.ufg@gmail.com IMTec/Regional Catalão/Universidade Federal de Goiás Aline Lourenço Costa 1 aline.l.costa@outlook.com

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

SISTEMAS DE NUMERAÇÃO. Introdução à Ciência da Computação ICC0001

SISTEMAS DE NUMERAÇÃO. Introdução à Ciência da Computação ICC0001 SISTEMAS DE NUMERAÇÃO Introdução à Ciência da Computação ICC0001 2 Histórico Como surgiram os sistemas de numeração? Primeiro: As pessoas precisavam contar... Dias, rebanho, árvores e tudo mais... Segundo:

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem a qual poderemos ter dificuldades em apreender os conceitos básicos e

Leia mais

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos

Leia mais

RAZÕES TRIGONOMÉTRICAS AULA ESCRITA

RAZÕES TRIGONOMÉTRICAS AULA ESCRITA RAZÕES TRIGONOMÉTRICAS AULA ESCRITA 1. Apresentação É hora de revisar as Razões Trigonométricas. Boas aulas! 2 INTRODUÇÃO Vimos que Trigonometria é o ramo da matemática que estuda as medidas do triângulo,

Leia mais

2005 by Pearson Education. Capítulo 01

2005 by Pearson Education. Capítulo 01 QUÍMICA A Ciência Central 9ª Edição Capítulo 1 Introdução: matéria & medida David P. White O estudo da química A perspectiva molecular da química A matéria é o material físico do universo. A matéria é

Leia mais

Aula 5. Números decimais. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental

Aula 5. Números decimais. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental Números decimais Aula 5 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Metas Apresentar o conceito de números decimais e demonstrar como realizar as operações elementares, envolvendo esse

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

Roteiro da aula. MA091 Matemática básica. Cálculo de potências. Expoentes positivos. Aula 7 Potências. Francisco A. M. Gomes.

Roteiro da aula. MA091 Matemática básica. Cálculo de potências. Expoentes positivos. Aula 7 Potências. Francisco A. M. Gomes. Roteiro da aula MA091 Matemática básica Aula 7 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de 016 1 / 6 Francisco A. M. Gomes

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aulas 5 e 6 03/2014 Erros Aritmética no Computador A aritmética executada por uma calculadora ou computador é diferente daquela

Leia mais

Aula 4: Bases Numéricas

Aula 4: Bases Numéricas Aula 4: Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Bases Numéricas FAC 1 / 36 Introdução e Justificativa Diego Passos (UFF)

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

Bacharelado em Ciência e Tecnologia Processamento da Informação. Equivalência Portugol Java. Linguagem Java

Bacharelado em Ciência e Tecnologia Processamento da Informação. Equivalência Portugol Java. Linguagem Java Linguagem Java Objetivos Compreender como desenvolver algoritmos básicos em JAVA Aprender como escrever programas na Linguagem JAVA baseando-se na Linguagem Portugol aprender as sintaxes equivalentes entre

Leia mais

O conceito de número foi evoluindo ao longo dos tempos, tendo-se criado novos números para responder a problemas entretanto surgidos.

O conceito de número foi evoluindo ao longo dos tempos, tendo-se criado novos números para responder a problemas entretanto surgidos. CONJUNTOS NUMÉRICOS CONJUNTOS NUMÉRICOS O conceito de número foi evoluindo ao longo dos tempos, tendo-se criado novos números para responder a problemas entretanto surgidos. CONJUNTOS NUMÉRICOS NATURAIS

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Sistemas Binários. José Delgado Arquitetura de Computadores Sistemas binários 1

Sistemas Binários. José Delgado Arquitetura de Computadores Sistemas binários 1 Sistemas Binários Circuitos combinatórios Circuitos sequenciais Representação de números Notação em complemento para 2 Soma e subtração Grandes números José Delgado 22 Arquitetura de Computadores Sistemas

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Introdução à Computação

Introdução à Computação Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Introdução à Computação A Informação

Leia mais

Números Primos, Fatores Primos, MDC e MMC

Números Primos, Fatores Primos, MDC e MMC Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,

Leia mais

Conversões numéricas de base. Organização de Computadores

Conversões numéricas de base. Organização de Computadores Conversões numéricas de base Organização de Computadores Sistema de base binária O sistema binário ou de base 2 é um sistema de numeração posicional em que todas as quantidades se representam com base

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Eletrônica Digital. Instituto Federal de Santa Catarina Campus São José. Área de Telecomunicações. Sistema de Numeração

Eletrônica Digital. Instituto Federal de Santa Catarina Campus São José. Área de Telecomunicações. Sistema de Numeração Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações Curso Técnico Integrado em Telecomunicações Eletrônica Digital Sistema de Numeração INTRODUÇÃO Eletrônica digital trabalha com

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES REPRESENTAÇÃO NUMÉRICA. Cristina Boeres

FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES REPRESENTAÇÃO NUMÉRICA. Cristina Boeres FUNDAMENTOS DE ARQUITETURAS DE COMPUTADORES REPRESENTAÇÃO NUMÉRICA Cristina Boeres ! Sistema de escrita para expressão de números Notação matemática! Composto por símbolos Símbolos tem significados ou

Leia mais

Unidades de Distância, Tempo e Massa

Unidades de Distância, Tempo e Massa Unidades de Distância, Tempo e Massa Para podermos comparar medidas em astrofísica precisamos estabelecer unidades que sirvam como padrão. Precisamos definir unidades de distância, de tempo e de massa

Leia mais

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo.

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo. MEDIDAS LINEARES Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/299.792.458 segundo. Nome e símbolo As unidades do Sistema Internacional podem ser escritas

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS

COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS Rogério P. Livi Instituto de Física UFRGS Porto Alegre RS I. Introdução Nossa experiência, tanto em disciplinas teóricas como de laboratório,

Leia mais

Sistemas Numéricos. Soma Subtração. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos. Soma Subtração. Prof. Celso Candido ADS / REDES / ENGENHARIA Soma Subtração 1 Introdução Sistemas Numéricos Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Adição; Subtração. 2 SOMA

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

Prof. Oscar Rodrigues dos Santos FÍSICA º. Semestre.

Prof. Oscar Rodrigues dos Santos FÍSICA º. Semestre. Prof. Oscar Rodrigues dos Santos FÍSICA 1 2012-1º. Semestre oscarsantos@utfpr.edu.br Ementa Sistema de Unidades Análise Dimensional Teoria de Erros Vetores Cinemática Leis de Newton Lei da Conservação

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 09 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

ESTRUTURAS DE REPETIÇÃO - PARTE 1

ESTRUTURAS DE REPETIÇÃO - PARTE 1 AULA 15 ESTRUTURAS DE REPETIÇÃO - PARTE 1 15.1 O comando enquanto-faca- Considere o problema de escrever um algoritmo para ler um número inteiro positivo, n, e escrever todos os números inteiros de 1 a

Leia mais

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matemática Sistema Métrico Decimal Definição: O SISTEMA MÉTRICO DECIMAL é parte integrante do Sistema de Medidas. É adotado no Brasil tendo

Leia mais

QUI219 QUÍMICA ANALÍTICA (Farmácia)

QUI219 QUÍMICA ANALÍTICA (Farmácia) QUI219 QUÍMICA ANALÍTICA (Farmácia) Prof. Mauricio X. Coutrim (mcoutrim@iceb.ufop.br) Sala 29 ICEB II inferior (em frente à PROPP) PORQUE ESTUDAR Q.A.? 23/09/2016 Química Analítica I Prof. Mauricio Xavier

Leia mais

0.1 Introdução Conceitos básicos

0.1 Introdução Conceitos básicos Laboratório de Eletricidade S.J.Troise Exp. 0 - Laboratório de eletricidade 0.1 Introdução Conceitos básicos O modelo aceito modernamente para o átomo apresenta o aspecto de uma esfera central chamada

Leia mais

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52

Leia mais