Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Tamanho: px
Começar a partir da página:

Download "Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1"

Transcrição

1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular). O fato é que em física lidamos com uma grande gama de valores. Trabalhamos com números gigantescos tais como a massa da Terra ou a quantidade de átomos em 1g de hidrogênio, ou com números muito pequenos entre os quais podemos citar o tamanho de um átomo ou a massa de um elétron. Consideremos por exemplo a massa da Terra, cerca de sextilhões de toneladas (este é um valor aproximado). Quantos zeros possui este número? Expresso em toneladas este número possui 1 zeros, expresso em quilogramas este número possui zeros. m Terra kg Há obviamente um grande inconveniente em ficar escrevendo este número gigantesco. Além disto, escrito desta forma, ele não faz nenhum sentido físico (veja o porquê no item ). E imagine a dificuldade em se fazer operações com números deste tamanho! O mesmo acontece com números muito pequenos. Tomemos por exemplo a massa de um elétron, um valor muito comum na física atômica: m elétron 0, kg Não precisa se dar ao trabalho de contar quantos zeros há após a vírgula, são 1 zeros entre a ela e o número 9 (este valor da massa é um valor aproximado cuja função é apenas ilustrativa). As objeções a respeito deste número são as mesmas discutidas acima. O que vamos ver agora é uma maneira mais simples de se escrever tais números. Porém cabe aqui um alerta: a discussão inicial é puramente matemática, não física. No ultimo item discutiremos algumas sutilezas a respeito destes números e, principalmente por que não faz sentido físico escrever a massa da Terra, ou do elétron, com esta quantidade absurda de zeros. -Potências de 10 A notação científica é fundamentada no uso de certas características das potências de 10. De fato escrever 10 elevado a qualquer número inteiro é muito simples. Observe a tabela a seguir: Potências positivas Potências negativas , , , , ,00001 Podemos ver que o expoente positivo indica quantos zeros devemos colocar à esquerda do 1, enquanto os expoentes negativos indicam quantos zeros há à direita do número 1 (ou dito de outra forma, o expoente negativo nos diz quantas casas há após a vírgula). -Notação Científica

2 A notação cientifica se utiliza destas propriedades das potencias para reescrever os grandes ou pequenos números da ciência. A idéia básica é escrever estes zeros como uma potência de dez, com expoentes positivos ou negativos. Não há uma regra rígida de como se deve escrever números nesta notação. Veremos aqui a regra geral, mas há muitas exceções. Vamos à regra então: escreva o número de tal forma que à esquerda da vírgula tenha apenas números entre 1 e 9, quaisquer outros números devem ficar a direita, se necessário ande com a virgula para a direita ou para esquerda chegar a este padrão (veja a figura a seguir). Vamos ver alguns exemplos reescrevendo os números a seguir a) 000 Perceba que o número 000 pode ser escrito como Agora escrevemos 1000 como uma potência de 10 x 1000 x 10 Pronto, o número 000 foi escrito em notação científica! Apesar deste método ser simples há um método ainda mais simples, reescreveremos o número colocando uma virgula em um lugar inofensivo 000 = 000,0 Agora vamos utilizar a regra da vírgula, toda vez que a vírgula anda uma casa para a esquerda do zero aumentamos 1 no expoente. cada vez que a vírgula anda uma casa para a direita diminui-se um no expoente. Esquematicamente teremos: Quadro 1-Prefixos. É usual simplificarmos o uso da notação cientifica com o uso de prefixos das grandezas. Por exemplo, o k utilizado em kg e kg significa 1000, ou em notação científica, 10. Outro exemplo é o m utilizado em mm, ml ou mg, que significa 0,001 ou As tabelas a seguir fornecem alguns prefixos, seus nomes e a potencia a que se referem. Para escrevermos nosso número em notação científica faremos a vírgula andar três casas para a esquerda e somamos no expoente. Como não há expoente então basta escrevermos,0 x 10. b) 000 Escrevemos o número como 000,0 e movemos a vírgula quatro casas para direita e escrevemos: Potência nome símbolo 10 kilo k 10 Mega M 10 9 Giga G 10 1 Tera T Potência nome símbolo 10 - deci d 10 - mili m 10 - micro 10-9 nano n 10-1 pico p

3 b) Escreva o número como 17000,0 e ande casas para a direita, teremos: 1,7 c) 1,7 Este número já possui vírgula, mais fácil. Ande casas para a direita e escreva 1,7 x 10 d),1 Este número possui uma vírgula e já tem uma potência de 10. Vamos andar duas casas para a direita e somar no expoente. Ficaremos com,1. e) 0,0 Este caso é diferente, para que este número fique no padrão da notação cientifica temos que andar duas casas para a direita, e o expoente será negativo:,0 x 10 - Seguindo este raciocínio podemos resolver os demais facilmente: f) 0,000 =, x 10 - g) 0,0 - = - h) 0,00 x 10 7 = x 10 i) - =, 1 -Operações (i) multiplicação A multiplicação de números escritos na forma de notação cientifica é simples, multiplicamos as potências entre si e os números entre si, acertando a vírgula da resposta final caso seja necessário. A multiplicação das potencias segue a regra matemática sobre produto de potencias de mesma base: conservamos a base e somamos os expoentes. Exemplos: a),0 x 10.,0 x10 =,0 x 10 + =,0 x 10 9 b), x 10.,0 x10 = 7, x 10 + = 7, x 10 7 c), x 10.,0 x10 = 1,0 x 10 + = 1,0 x 10 = 1, x 10 9 d), x 10.,0 x10 - =,9 x 10 +(-) =,9 x 10 - =,9 x 10 e), -7.,0 x10 - = 1,0 x 10-7+(-) = 1,0 x =1,0 x =,1 x 10-9 (ii) divisão Na divisão procederemos da mesma forma, mas lembrando que na divisão de potências de mesma base nós conservamos a base e subtraímos os expoentes. Exemplos: x 10 a) x 10-1, b) 0, x 10-0, x 10,0 x 10

4 7 x 10 c), x (-) - x 10 d) -, x 10 e) 7 x , x 10 0, x 10 --(-) --(-), x 10 0, x , x 10 0, x 10 - x 10 (iii) Adição e subtração Neste caso devemos lembrar que só podemos somar ou subtrair coisas semelhantes, neste caso só podemos somar e subtrair quando as potencias de 10 são iguais. Este é o caso dos exemplos a e b a seguir. a) x 10 x 10 b) x 10 7 x , x 10 Porem pode acontecer que as potencias não sejam iguais, neste caso usaremos o truque de andar com a vírgula para igualá-las. No exemplo a seguir transformaremos x 10 em 0, x 10 movendo a vírgula uma casa para a esquerda: c) x 10 = 0, x 10 =, x 10 Veja agora outros exemplos: - d) x 10 - = x 10-0,000 =,999 x 10 e) x f) - - 0,00 0,0 x 10,99 - Notação científica e precisão.,0 x 10 De um ponto de vista matemático não há diferença entre escrever um número de maneira convencional e escreve-lo em notação científica. Porém em física há. Pode parecer estranho, mas tal diferença tem haver com o que chamamos de precisão dos resultados. Considere, por exemplo, que você queira escrever a distância entre sua casa e o supermercado. Digamos que esta distância seja próxima a 100 m. A pergunta é: o quanto eu tenho certeza deste valor? Será que a distância é exatamente 100 m? Ou 10 m? Ou 1 m? Ou serão 17 m? Será que tem sentido dizer que a distância é de, exatamente, 1, m? A notação científica nos permite escrever a distância e fornecer a idéia de quão preciso é o resultado. Digamos por exemplo que você ache que a distância é próxima a 1000 m (pode ser 1100 m ou 100 m), então você pode escrever d = 1 x 10 m. Isto significa que eu sei que este 1 é garantido, o resto dos números não se tem certeza. Para ter um melhor resultado você pode medir a distância com maior cuidado e chegar a conclusão que a distância é próxima a 1100 m, mas não sabe dizer se é 110m ou 110m. Então escreva d = 1,1 x 10 m. Neste caso você está dizendo que você tem certeza dos dois números que você colocou. Agora se você escrever d= 1,100 x 10 m o que isto significa? Significa que você tem certeza que a distância entre sua casa e o supermercado é de exatamente 1100 m, e que não este valor não está errado nem por um metro! Matematicamente falando, os números 1,1 x10, 1,10 x 10 e 1,100 x 10 são idênticos. Mas fisicamente não. O número 1,100 x10 diz que seu resultado não está errado nem por um metro. Na introdução deste texto foi citada, como exemplo, a massa da Terra, vamos escrevê-la novamente: m Terra kg

5 Por que foi dito que este número não tem sentido físico? Por que, com todos estes zeros, este número diz que sabemos a massa da Terra sem errar nem por um quilo! Claro que isto não faz sentido. Provavelmente você não sabe nem a sua massa com esta precisão. Como procedemos então? Escrevemos em notação científica fornecendo apenas os números que temos alguma certeza que estão certos (chamamos estes números de algarismos significativos ): m Terra x10 kg Além de ser uma maneira mais compacta e operacional de se escrever este valor, a notação científica fornece uma maneira mais lógica de se escrevê-lo. Em física é comum termos números escritos com várias casas após a vírgula, mas os físicos só fazem isto quando tem certeza que estão certos, então, ao se deparar com um número com vários algarismos após a virgula, saiba que estes estão lá por que os cientistas tem certeza que aquele é o lugar deles. Para finalizar este resumo com um exemplo gostaria de escrever novamente a massa do elétron, desta vez em notação científica e com todos os algarismos significativos (os que temos certeza!), isto dará uma boa idéia de como se usa notação científica e de quão preciso pode ser um resultado experimental. Para ser bem preciso ao escrever este número vou deixar claro que há uma imprecisão igual a 0 nas duas ultimas casas decimais, ou seja este número possui um erro próximo de uma parte em milhões! m elétron 9,109 91x10-1 kg Veja mais sobre Física e Matemática no Site Plantão de Física -

Física Aplicada A Aula 1. Profª. Me. Valéria Espíndola Lessa

Física Aplicada A Aula 1. Profª. Me. Valéria Espíndola Lessa Física Aplicada A Aula 1 Profª. Me. Valéria Espíndola Lessa valeria-lessa@uergs.edu.br Este material está disponibilizado no endereço: http://matvirtual.pbworks.com/w/page/52894125 /UERGS O que é Física?

Leia mais

Introdução à Astrofísica. Lição 1 Notação Científica

Introdução à Astrofísica. Lição 1 Notação Científica Introdução à Astrofísica Lição 1 Notação Científica Num lugar afastado da poluição luminosa podemos observar cerca de 5000 objetos no céu, entre nebulosas, galáxias, planetas e estrelas. Nossa galáxia

Leia mais

Universidade Federal do Maranhão - Campus Imperatriz Centro de Ciências Sociais, Saúde e Tecnologia Licenciatura em Ciências Naturais - LCN

Universidade Federal do Maranhão - Campus Imperatriz Centro de Ciências Sociais, Saúde e Tecnologia Licenciatura em Ciências Naturais - LCN Universidade Federal do Maranhão - Campus Imperatriz Centro de Ciências Sociais, Saúde e Tecnologia Licenciatura em Ciências Naturais - LCN Física Módulo 1 No encontro de hoje... Medição Grandezas Físicas,

Leia mais

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão.

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Unidades de Medidas Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Como os antigos faziam para realizar medidas? - Na antiguidade:

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos

Leia mais

Comprimento metro m Massa quilograma kg Tempo segundo s. Temperatura termodinâmica Kelvin K

Comprimento metro m Massa quilograma kg Tempo segundo s. Temperatura termodinâmica Kelvin K INTRODUÇÃO O Sistema Internacional e s ( S.I.) O SI é dividido em três grupos, a seguir: Sete s de Base Duas s Suplementares s derivadas Tabela 1 - s de Base do SI Comprimento metro m Massa quilograma

Leia mais

Dos inteiros aos reais

Dos inteiros aos reais Dos inteiros aos reais Ordenação de números inteiros relativos Para além dos números positivos, na vida real utilizam-se outros números para representar situações, tal como temperatura negativas, saldos

Leia mais

Unidades de Medidas - Parte I

Unidades de Medidas - Parte I Unidades de Medidas - Parte I Sistema Métrico Decimal Um dos legados da Revolução Francesa foi criar um sistema de medidas que fosse baseado em constantes naturais e não em padrões arbitrários como pé,

Leia mais

Sistema Internacional de Unidades (SI) e Medida

Sistema Internacional de Unidades (SI) e Medida Área do Conhecimento: Ciências da Natureza e Matemática Componente Curricular: Física Prof. Dr. Mário Mascarenhas Sistema Internacional de Unidades (SI) e Medida Sistema adotado oficialmente no Brasil

Leia mais

ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS

ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS 1.0 Objetivos Utilizar algarismos significativos. Distinguir o significado de precisão e exatidão. 2.0 Introdução Muitas observações na química são de natureza

Leia mais

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari Eletricidade Aula ZERO Profª Heloise Assis Fazzolari Plano de aulas O objetivo da disciplina é dar ao aluno noções de eletricidade e fenômenos relacionados. Critério de Avaliação Quatro provas bimestrais

Leia mais

= 3 x

= 3 x A Notação Científica 1. Introdução No estudo da Física, e das demais ciências, aparecem, às vezes, números muito grandes ou muito pequenos. Em ambos os casos, o número de algarismos a escrever é muito

Leia mais

Medição em Química e Física

Medição em Química e Física Medição em Química e Física Hás-de fazê-la desta maneira: o comprimento será de trezentos côvados; a largura, de cinquenta côvados; e a altura, de trinta côvados. Génesis, VI, 15 Professor Luís Gonçalves

Leia mais

ELABORAÇÃO DE RELATÓRIOS UNIDADES, MÚLTIPLOS E SUBMÚLTIPLOS

ELABORAÇÃO DE RELATÓRIOS UNIDADES, MÚLTIPLOS E SUBMÚLTIPLOS ELABORAÇÃO DE RELATÓRIOS As informações a seguir são de grande importância para a confecção dos relatórios dos experimentos de Química Geral e Orgânica. As correções são baseadas nas informações contidas

Leia mais

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado?

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa caminha diariamente 4 000 m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa trabalhou durante 10 dias para fazer um serviço pelo qual recebeu R$ 325,00. Quanto recebeu por

Leia mais

Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14?

Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14? Unidade III 6 CIRCUITOS DIGITAIS 6.1 Sistemas de numeração O que quer dizer 14? Sabemos, por força de educação e hábito, que os algarismos 1 e 4 colocados desta forma representam a quantidade catorze.

Leia mais

TUTORIAL DE OPERAÇÕES BÁSICAS

TUTORIAL DE OPERAÇÕES BÁSICAS TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a

Leia mais

NOTAÇÃO CIENTÍFICA EXERCÍCIOS DE FIXAÇÃO

NOTAÇÃO CIENTÍFICA EXERCÍCIOS DE FIXAÇÃO NOTAÇÃO CIENTÍFICA EXERCÍCIOS DE FIXAÇÃO 1) E0634 Represente em notação científica: (estes exercícios têm apenas números naturais, ou seja, não têm vírgula) a) 2.000.000 b) 14.000.000.000 c) 100.000 d)

Leia mais

Fundamentos de Física. Vitor Sencadas

Fundamentos de Física. Vitor Sencadas Fundamentos de Física Vitor Sencadas vsencadas@ipca.pt Grandezas físicas e sistemas de unidades 1.1. Introdução A observação de um fenómeno é incompleta quando dela não resultar uma informação quantitativa.

Leia mais

Multiplicação Divisão

Multiplicação Divisão Multiplicação Divisão 1 Introdução Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Multiplicação; Divisão. 2 MULTIPLICAÇÃO

Leia mais

REVISÃO R E C U P E R A Ç Ã O P A R A L E L A 2 º T R I M E S T R E F Í S I C A 3 º A N O

REVISÃO R E C U P E R A Ç Ã O P A R A L E L A 2 º T R I M E S T R E F Í S I C A 3 º A N O REVISÃO RECUPERAÇÃO PARALELA 2 º TRIMESTRE FÍSICA 3º ANO REVISÃO GRANDEZAS E UNIDADES DE MEDIDA Então: Se a grandeza for massa: 1km = 1.10³ 1µm = 1.10-6 1cm = 1.10-2 1nm = 1.10-9 1mm = 1.10-3 1kg = 10³g

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

Erros Experimentais. Algarismos Significativos

Erros Experimentais. Algarismos Significativos Erros Experimentais Não existe uma forma de se medir o valor real de alguma coisa. O melhor que podemos fazer em uma análise química é aplicar cuidadosamente uma técnica que a experiência nos garanta ser

Leia mais

MÓDULO 1. Os Métodos da Física:

MÓDULO 1. Os Métodos da Física: MÓDULO 1 O QUE É FÍSICA? Física é o ramo da ciência que estuda as propriedades das partículas elementares e os fenômenos naturais e provocados, de modo lógico e ordenado. Os Métodos da Física: Todas as

Leia mais

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

2 Representação numérica

2 Representação numérica 2 Representação numérica Agora que já conhecemos um pouco da história da Computação e da arquitetura de um computador, estudaremos como podemos representar números em outras bases numéricas e como algumas

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Progressão Aritmética e Geométrica Progressão Aritmética Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão aritmética,

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS

SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente

Leia mais

nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO Silva, Thiago Luis Nogueira. S586i

nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO Silva, Thiago Luis Nogueira. S586i nao INSTRUMENTOS E SISTEMAS DE MEDIDA ENGENHARIA DE PRODUÇÃO S586i Silva, Thiago Luis Nogueira. Instrumentos e sistemas de medida : engenharia de produção / Thiago Luis Nogueira Silva. Varginha, 2015.

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

FÍSICA EXPERIMENTAL I. 1-Medida e algarismos significativos DFIS/UDESC

FÍSICA EXPERIMENTAL I. 1-Medida e algarismos significativos DFIS/UDESC FÍSICA EXPERIMENTAL I 1-Medida e algarismos DFIS/UDESC 1. Introdução: Como a grande maioria das ciências positivistas: A Física se utiliza se do Método Científico: Que se estrutura em: Observação Formulação

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

Unidades de Medidas e as Unidades do Sistema Internacional

Unidades de Medidas e as Unidades do Sistema Internacional Unidades de Medidas e as Unidades do Sistema Internacional Metrologia é a ciência da medição, abrangendo todas as medições realizadas num nível conhecido de incerteza, em qualquer dominio da atividade

Leia mais

A divisão também é usada para se saber quantas vezes uma quantidade cabe em outra.

A divisão também é usada para se saber quantas vezes uma quantidade cabe em outra. DIVISÃO É o contrário da multiplicação. Ou seja, tem o sentido de dividir, repartir ou distribuir. Quando dividimos um número pelo outro, estamos diminuindo seu tamanho, distribuindo de maneira igual à

Leia mais

Potências de dez, ordens de grandeza e algarismos significativos

Potências de dez, ordens de grandeza e algarismos significativos Potências de dez, ordens de grandeza e algarismos significativos Potências de dez Há muitos séculos que o homem procura compreender e prever o comportamento da natureza. O que chamamos de ciências naturais

Leia mais

MEDIDAS: ERROS E INCERTEZAS

MEDIDAS: ERROS E INCERTEZAS FACULDADES OSWALDO CRUZ FÍSICA I - ESQ MEDIDAS: ERROS E INCERTEZAS 1. INTRODUÇÃO - A medida de uma grandeza qualquer é função do instrumental empregado e da habilidade e discernimento do operador. Definiremos

Leia mais

Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay. Potenciação. Sanja Gjenero. Fonte:

Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay. Potenciação. Sanja Gjenero. Fonte: Potenciação 31 Sanja Gjenero Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay Fonte: www.sxc.hu e-tec Brasil Estatística Aplicada META Apresentar as operações de potenciação. OBJETIVOS PRÉ-REQUISITOS

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

TEOREMA DE PITÁGORAS AULA ESCRITA

TEOREMA DE PITÁGORAS AULA ESCRITA TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou

Leia mais

Prof. Dr. Ederio D. Bidoia Monitor: Lucas Balduino Departamento de Bioquímica e Microbiologia, IB

Prof. Dr. Ederio D. Bidoia Monitor: Lucas Balduino Departamento de Bioquímica e Microbiologia, IB Aula 2 Prof. Dr. Ederio D. Bidoia Monitor: Lucas Balduino Departamento de Bioquímica e Microbiologia, IB Unesp campus de Rio Claro, SP Erros 1. Algarismos Significativos: Na matemática 3 é igual a 3,0000...

Leia mais

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores Operações com potências A UUL AL A Quando um número é multiplicado por ele mesmo, dizemos que ele está elevado ao quadrado, e escrevemos assim: Introdução a a = a² Se um número é multiplicado por ele mesmo

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo

Leia mais

Tabela I - As sete unidades de base do SI, suas unidades e seus símbolos.

Tabela I - As sete unidades de base do SI, suas unidades e seus símbolos. 1. Sistemas de Unidades 1.1 O Sistema Internacional Os mais diversos sistemas de medidas foram inventados ao longo da história, desde o início das civilizações mais organizadas. Durante vários séculos,

Leia mais

Revisão 1 H 99,985 2 H 0, C 98,89 13 C 1,11 14 N 99,63 15 N 0,37 16 O 99, O 0, O 0,204

Revisão 1 H 99,985 2 H 0, C 98,89 13 C 1,11 14 N 99,63 15 N 0,37 16 O 99, O 0, O 0,204 Revisão Número de massa A característica fundamental que define um elemento químico é o número de prótons (Z) no núcleo. Se chamarmos de N o número de nêutrons no núcleo, o número de massa A é dado por:

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10.

Identificar e aplicar os critérios de divisibilidade por 2, 3, 4, 5,6, 8, 9 e 10. DISCIPLINA: MATEMÁTICA PROFESSORA: GIOVANA 6os. ANOS (161 e 162) Você deverá: ORIENTAÇÃO DE ESTUDO RECUPERAÇÃO 3º. TRIMESTRE 1. Estudar o resumo dos conteúdos que, neste material, estão dentro dos quadros.

Leia mais

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATERIAIS DIFERENÇAS ENTRE PROCESSOS FÍSICOS E QUÍMICOS DIFERENÇAS ENTRE PROPRIEDADES FÍSICAS E QUÍMICAS Exa,dão x Precisão Algarismos significa,vos

Leia mais

=6,93 10! Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel

=6,93 10! Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel Prova 1 Tema 1 Básicos, Notação Científica e Conversão de medidas via fator unitário Prof. Leandro Neckel 1 - BÁSICOS Importante: Você não irá avançar na disciplina de física I se não tiver conhecimentos

Leia mais

Múltiplos e submúltiplos

Múltiplos e submúltiplos Múltiplos e submúltiplos Múltiplos e submúltiplos Fator Nome do prefixo Símbolo Fator Nome do prefixo Símbolo 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 10 2 10 1 yotta zetta exa peta tera giga mega

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATERIAIS DIFERENÇAS ENTRE PROCESSOS FÍSICOS E QUÍMICOS DIFERENÇAS ENTRE PROPRIEDADES FÍSICAS E QUÍMICAS Exa+dão x Precisão Algarismos significa+vos

Leia mais

QMC 5119 II Semestre de 2014 EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS

QMC 5119 II Semestre de 2014 EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS EXPERIÊNCIA Nº1 MEDIDAS E TRATAMENTO DE DADOS 1. Introdução: Química é uma ciência experimental e por isso consideramos importante que você inicie a disciplina Introdução ao Laboratório de Química realizando

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

Sistemas Binários. José Delgado Arquitetura de Computadores Sistemas binários 1

Sistemas Binários. José Delgado Arquitetura de Computadores Sistemas binários 1 Sistemas Binários Circuitos combinatórios Circuitos sequenciais Representação de números Notação em complemento para 2 Soma e subtração Grandes números José Delgado 23 Arquitetura de Computadores Sistemas

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a designação de números a propriedades de objetos ou a eventos do mundo real de forma a descrevêlos quantitativamente. Outra forma

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

UFSC Departamento de Química QMC 5119 Introdução ao Laboratório de Química 2015/1

UFSC Departamento de Química QMC 5119 Introdução ao Laboratório de Química 2015/1 1 UFSC Departamento de Química QMC 5119 Introdução ao Laboratório de Química 2015/1 Experiência 01: Algarismos significativos, medidas e tratamento de dados. Calibração de equipamentos volumétricos 1.

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

CAPÍTULO 1 MÚLTIPLOS E DIVISORES

CAPÍTULO 1 MÚLTIPLOS E DIVISORES 06 Matemática e Raciocínio Lógico Damares Pavione Capítulo Múltiplos e divisores CAPÍTULO MÚLTIPLOS E DIVISORES. NÚMERO PRIMO Um número será primo quando não for divisível por nenhum outro número além

Leia mais

Critérios de Divisibilidade

Critérios de Divisibilidade Critérios de Divisibilidade Introdução Se você procurar pela Internet, irá encontrar dezenas de sites que falam sobre este assunto, alguns muito bons por sinal, mas a grande maioria deles embora apresentem

Leia mais

ARITMÉTICA BINÁRIA. São duas as operações executadas pelo computador:

ARITMÉTICA BINÁRIA. São duas as operações executadas pelo computador: ARITMÉTICA BINÁRIA São duas as operações executadas pelo computador: - A adição - A comparação Todas as outras operações são executadas por meio de adições. Assim, para a subtracção, acha-se o complemento

Leia mais

FÍSICA. Fornece uma compreensão quantitativa de certos fenómenos que ocorrem no Universo.

FÍSICA. Fornece uma compreensão quantitativa de certos fenómenos que ocorrem no Universo. Introdução e Vectores FÍSICA Prof. Marília Peres Adaptado de Serway & Jewett Sobre a Física Fornece uma compreensão quantitativa de certos fenómenos que ocorrem no Universo. Baseia-se em observações experimentais

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Figuras: ALVARENGA, Beatriz, MÁXIMO, Antônio. Curso de Física-Vol. 1, Editora Scipione, 6a Ed. São Paulo (2005) Comprimento metro m

Figuras: ALVARENGA, Beatriz, MÁXIMO, Antônio. Curso de Física-Vol. 1, Editora Scipione, 6a Ed. São Paulo (2005) Comprimento metro m FÍSICA I AULA 01: GRANDEZAS FÍSICAS; SISTEMAS DE UNIDADES; VETORES TÓPICO 02: SISTEMAS DE UNIDADES Para efetuar medidas é necessário fazer uma padronização, escolhendo unidades para cada grandeza. Antes

Leia mais

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando INTRODUÇÃO O PROBLEMA D, tem sua história, sua evolução e generalizações citadas na página REFERÊNCIA da MATEMÁTICA. Entre as referências destaca-se o livro "O Homem que Calculava", de Malba Tahan, pseudônimo

Leia mais

MEDIÇÃO EM QUÍMICA MEDIR. É comparar o valor de uma dada grandeza com outro predefinido, que se convencionou chamar unidade.

MEDIÇÃO EM QUÍMICA MEDIR. É comparar o valor de uma dada grandeza com outro predefinido, que se convencionou chamar unidade. MEDIR É comparar o valor de uma dada grandeza com outro predefinido, que se convencionou chamar unidade. Medir o comprimento de uma sala É verificar quantas vezes a sala é mais comprida do que a unidade

Leia mais

RAZÕES TRIGONOMÉTRICAS AULA ESCRITA

RAZÕES TRIGONOMÉTRICAS AULA ESCRITA RAZÕES TRIGONOMÉTRICAS AULA ESCRITA 1. Apresentação É hora de revisar as Razões Trigonométricas. Boas aulas! 2 INTRODUÇÃO Vimos que Trigonometria é o ramo da matemática que estuda as medidas do triângulo,

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS

COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS COMO ESTIMAR DIMENSÕES E GRANDEZAS FÍSICAS: PEQUENOS E GRANDES NÚMEROS Rogério P. Livi Instituto de Física UFRGS Porto Alegre RS I. Introdução Nossa experiência, tanto em disciplinas teóricas como de laboratório,

Leia mais

Física Geral e Experimental I (2015/01)

Física Geral e Experimental I (2015/01) Diretoria de Ciências Exatas Laboratório de Física Roteiro 01 Física Geral e Experimental I (2015/01) Medidas Diretas de Grandezas Físicas 2 Medidas Diretas de Grandezas Físicas 1. Após estudar os assuntos

Leia mais

USO DA CALCULADORA CIENTÍFICA

USO DA CALCULADORA CIENTÍFICA USO DA CALCULADORA CIENTÍFICA Este guia usa a calculadora Casio modelo fx-82ms ou similares. REGRA BÁSICA PARA O USO CONSCIENTE DA CALCULADORA: Salvo em situações mais complicadas, UTILIZE A CALCULADORA

Leia mais

NOTA I MEDIDAS E ERROS

NOTA I MEDIDAS E ERROS NOTA I MEDIDAS E ERROS O estudo de um fenômeno natural do ponto de vista experimental envolve algumas etapas que, muitas vezes, necessitam de uma elaboração prévia de uma seqüência de trabalho. Antes de

Leia mais

Unidades estruturais que constituem as substâncias

Unidades estruturais que constituem as substâncias Unidades estruturais que constituem as substâncias As caraterísticas específicas de cada substância dependem da sua constituição, ou seja, do tipo de partículas ou unidades estruturais que formam a substância

Leia mais

AVALIAÇÃO DE FÍSICA P1 I BIMESTRE

AVALIAÇÃO DE FÍSICA P1 I BIMESTRE Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrizio Série: 1º ANO Disciplina: Física Data da prova: 22/02/14 AVALIAÇÃO DE FÍSICA P1 I BIMESTRE 1 - Considere a figura

Leia mais

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas

Leia mais

LISTA DE EXERCÍCIOS III 2 O BIMESTRE. NÚMEROS DECIMAIS: PROPRIEDADES E OPERAÇÕES (adição, subtração e multiplicação)

LISTA DE EXERCÍCIOS III 2 O BIMESTRE. NÚMEROS DECIMAIS: PROPRIEDADES E OPERAÇÕES (adição, subtração e multiplicação) NOME: Nº. - 6 o ANO - E.F.II DATA: / / 2016 PROF. MARCO MALZONE - MATEMÁTICA I LISTA DE EXERCÍCIOS III 2 O BIMESTRE NÚMEROS DECIMAIS: PROPRIEDADES E OPERAÇÕES (adição, subtração e multiplicação) PARTE

Leia mais

Sistemas de numeração e conversão de bases Decimal e binário

Sistemas de numeração e conversão de bases Decimal e binário Sistemas de numeração e conversão de bases Decimal e binário Cálculo de conversão de bases para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação

Leia mais

LISTA DE ATIVIDADES ...

LISTA DE ATIVIDADES ... LISTA DE ATIVIDADES - Apresentar os quadrados dos números inteiros de 0 a 50. 2- Apresentar o resultado de uma tabuada de um número qualquer. 3- Elaborar um diagrama que apresente o somatório dos valores

Leia mais

Algarismos significativos

Algarismos significativos Algarismos significativos PROF. JORGE SILVA PROFJWPS@GMAIL.COM Qual é o comprimento de AB? A B? 0 1 2 Coloca-se uma régua ao lado de AB, de forma que o zero da régua coincida com uma das extremidades do

Leia mais

aparecem os números, na parte de cima da máquina)

aparecem os números, na parte de cima da máquina) Um número de quatro algarismos multiplicado por outro de três algarismos deu como resultado 123 123. Quais são esses números? Vamos aprender a utilizar a máquina de calcular em operações simples. Para

Leia mais

O Sistema Internacional de Unidades - SI

O Sistema Internacional de Unidades - SI O Sistema Internacional de Unidades - SI http://www.inmetro.gov.br/consumidor/unidlegaismed.asp As informações aqui apresentadas irão ajudar você a compreender melhor e a escrever corretamente as unidades

Leia mais

Aula 1: Conjunto dos Números Inteiros

Aula 1: Conjunto dos Números Inteiros Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)

Leia mais

BASES FÍSICAS PARA ENGENHARIA 3: Med. Grandezas, Unidades e Representações

BASES FÍSICAS PARA ENGENHARIA 3: Med. Grandezas, Unidades e Representações BASES FÍSICAS PARA ENGENHARIA 3: Med. Grandezas, Unidades e Representações Medidas Dados das observações devem ser adequadamente organizados MEDIR comparar algo com um PADRÃO DE REFERÊNCIA Medidas diretas

Leia mais

A definição pode ser estendida para os seguintes casos particulares: e, com.

A definição pode ser estendida para os seguintes casos particulares: e, com. FUNÇÃO EXPONENCIAL REVISÃO: POTENCIAÇÃO Dados um número real a e um número natural n, a expressão a n representa a operação de potenciação onde a é chamado base e n é o expoente, e cujo resultado é obtido

Leia mais

Operações com números binários

Operações com números binários Operações com números binários Operações com sistemas de numeração Da mesma forma que se opera com os números decimais (somar, subtrair, multiplicar e dividir) é possível fazer essas mesmas operações com

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem a qual poderemos ter dificuldades em apreender os conceitos básicos e

Leia mais

Aula 5. Números decimais. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental

Aula 5. Números decimais. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental Números decimais Aula 5 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Metas Apresentar o conceito de números decimais e demonstrar como realizar as operações elementares, envolvendo esse

Leia mais

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco.

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco. ÁBACO VERTICAL É de extrema importância que os alunos construam os conceitos de número já nas séries iniciais, a fim de que estes evoluam do concreto aos estágios de abstração. Os Parâmetros Curriculares

Leia mais

1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total

1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total Cursos Técnicos Habilitações Plenas Eletrônica Digital Professor Arnaldo Sistemas de Numeração Bases Numéricas - Conversões Op. Sistema de Numeração Decimal Composto pela Base 10 e pelos Símbolos ( Algarismos

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA tânia@mat.unb.br CAPÍTULO 1 JOGOS E ATIVIDADES PARA INTRODUÇÃO DE NÚMEROS NEGATIVOS A idéia

Leia mais