DEDUÇÃO DA EQUAÇÃO DE TRANSPORTE

Tamanho: px
Começar a partir da página:

Download "DEDUÇÃO DA EQUAÇÃO DE TRANSPORTE"

Transcrição

1 Prof. Wahington Braga 1/7 DEDUÇÃO DA EQUAÇÃO DE TRANSPORTE CONSERVAÇÃO DA MASSA: Etuamo vário cao no quai a conervação a maa era feita e forma trivial, poi liávamo com itema. Entretanto, para ituaçõe como o a o ecape e maa e um balão e gá, preciaremo contabilizar a maa que ficou lá entro. Utilizano a ua última figura como referencial, poemo ecrever que: MASSA ENTRANDO NO VC - MASSA SAINDO DO VC = VARIAÇÃO LÍQUIDA DA MASSA DENTRO DO VC Coniere a ituação: Por efinição, no intante t, inicial, a fronteira o itema e o Volume e Controle ão coinciente. Em coneqüência, a proprieae o itema e coinciem com a proprieae o VC. No intante final, o itema ocupa o epaço inicao por II + III e o Volume e Controle ocupa o epaço inicao por I + II, ito é, há aina um epaço one itema e Volume e Controle, VC, ão coinciente e portanto, a proprieae em II têm o memo valore. Noo objetivo aqui é eterminar como poeremo relacionar a proprieae o itema com a proprieae o VC no intante poteriore. Para ito, vamo lembrar, inicialmente, que a iferença funamental entre o conceito e itema e o e volume e controle é a noção que maa etá atraveano a fronteira o VC, chamaa e uperfície e controle. Ito implica em que energia etá também cruzano a fronteira, bem como a quantiae e movimento ou qualquer outra proprieae, incluive a

2 Prof. Wahington Braga 2/7 entropia. Para facilitar ou melhor para generalizar noo etuo, vamo tratar o problema a conervação e uma proprieae genérica B (que poerá er a maa, a energia...), exteniva 1 e a ua proprieae inteniva, b, que e relacionam por uma equação como: VC ou S ( ) B= bρ Vol Normalmente, no noo problema, não etamo intereao apena na variação a proprieae B. Frequentemente, o que no interea é aber quanto a proprieae B irá variar em um eterminao intante e tempo. Ito é, etamo frequentemente procurano eterminar a taxa e variação a proprieae B, ou eja: t b ρ (Vol) Do curo e cálculo, tiramo a informação que a erivaa é efinia pela expreão: B(t+ t) B(t) b (Vol) lim t ρ = Aplicano eta efinição à variação a maa entro o Volume e Controle, obtemo: B(t b (Vol) lim + t) B(t) t ρ = one o ínice foi uao para inicar que a proprieae everá er meia no Volume e Controle. Obervano a figura anterior, poemo concluir que: B(t) = B(t) B(t+ t) = B (t+ t) + B (t+ t) I II Entretanto, como a região II é aina compartilhaa, temo que: II + = II + B (t t) B (t t) 1 Significano que epene a maa.

3 Prof. Wahington Braga 3/7 e eta forma, B(t+ t) = B (t+ t) + B (t+ t) I Subtituino na equação que trabalhávamo: t ou melhor: b ρ (Vol) = t 0 II = B (t+ t) + B (t+ t) B (t+ t) I III B I(t + t) + B (t + t) B III(t + t) B (t) lim t B (t+ t) B III(t+ t) t t t b (Vol) lim I ρ = lim t 0 t 0 Porém, evemo lembrar que: e portanto, noa equação e reuz à: B(t + t) B(t) + lim B(t) = B(t) B (t+ t) B III(t+ t) t t t b (Vol) lim I ρ = lim t 0 t 0 B(t + t) B(t) + lim B B (t + t) B (t + t) DB = lim lim + I III t t 0 t t 0 t

4 Prof. Wahington Braga 4/7 recuperano a efinição e erivaa 2. Voltano à figura, não é ifícil concluirmo que o primeiro termo o lao ireito etá aociao, e alguma forma, com a entraa e maa arratano a proprieae B e o eguno termo etá aociao com a aía e maa, (também arratano a proprieae B). Deta forma, vamo olhar melhor o que acontece na entraa e na aía e maa. Na verae, vamo ver ito pela aía, um pouco mai fácil. Coniere a figura abaixo: Na figura, V R é a velociae relativa com que fluio cruza eta fronteira. Conierano que a velociae a paree (por tranlação ou eformação) eja V b, temo que V R = V - V b, one V é a velociae em algum referencial inercial. O volume aociao à maa que etá aino poe er ecrito como: LAcoθ S Entretanto, o comprimento L percorrio urante o tempo L= VR t t pelo fluio ecoano vale Deta forma, poemo eterminar que a quantiae a proprieae B que etá aino o VC é eterminaa pela expreão: r bρv tcoθ A= t bρv.na ˆ R S R Por analogia, a quantiae a proprieae B que etá entrano no VC é: t b V r = ρ.na one o inal negativo é introuzio poi na entraa, a normal n e o vetor velociae etão R ˆ 2 Note que efinimo a erivaa parcial a proprieae B efinia para um itema como D para iferenciar a erivaa a proprieae B ao longo o Volume e Controle, que chamamo e. DB/ é também conhecia como erivaa material ou ubtantiva.

5 Prof. Wahington Braga 5/7 em entio opoto, como motra a figura: Aim, aociano a informaçõe e tomano o limite quano o intervalo e tempo vai a zero, poemo ecrever: B (t+ t) = = ρ ˆ I lim maa entrano b V R.nA B (t+ t) = =+ ρ ˆ III lim maa aino b V R.nA e aim, obtemo finalmente: B = bρ V ˆ R.nA + t DB one inica a uperfície e controle. Ito é, ou DB B = + bρv ˆ R.nA t

6 Prof. Wahington Braga 6/7 D itema bρ (Vol) = bρ (Vol) + bρv ˆ R.nA t Uma importante relação é a conhecia relação e Leibnitz: t ( bρ) bρ (Vol) = (Vol) + bρv ˆ b.na t one V b inica a velociae e eformação o Volume e Controle. Para um VC ineformável, V b = 0 e com ito 3, ( bρ) b (Vol) (Vol) t ρ = t Uaremo eta relação em alguma ituaçõe, para exemplificar. Naturalmente, preciaremo agora trabalhar com alguma a equaçõe poívei. Nete tópico e Termoinâmica, veremo brevemente a equação a continuiae, ou a conervação a maa, ma noa ênfae erá na equação e energia, a er aplicaa a ituaçõe na quai a variaçõe e temperatura ão importante. No tópico e Mecânica o Fluio, iremo trabalhar um pouco mai com a equação a continuiae ma a ênfae erá na equação e quantiae e movimento. EQUAÇÃO DA CONTINUIDADE, OU CONSERVAÇÃO DA MASSA: Coniere a ituação na qual B interee e ecreve: ou então, D itema = mou b = 1. Neta ituação, a equação e ρ (Vol) = ρ (Vol) + ρv ˆ R.nA t 3 Neta ituação, poemo argumentar que a erivaa a integral é igual à integral a erivaa. Lembre-e que V b etermina o que acontece com o limite (contorno) o VC. Neta ituação, tem-e que V R ur = V.

7 Prof. Wahington Braga 7/7 m t m = + ρv.na ˆ R t Em coneqüência a efinição que emo ao conceito e itema, e maa é contante, temo que: e aim, noa equação paa a er: m 0 t = m 0 = + V ˆ R.nA t ρ m = ρv ˆ R.nA t que inica que a taxa e variação a maa entro o Volume e Controle é equivalente à maa líquia (ito é, à iferença entre a maa que entra meno à que ai) que atraveou a fronteira.

Laboratório de Sistemas e Sinais Equações Diferenciais

Laboratório de Sistemas e Sinais Equações Diferenciais Laboratório e Sitema e Sinai Equaçõe Diferenciai Luí Cala e Oliveira Abril 2009 O objectivo ete trabalho e laboratório é o e realizar experiência com moelo e itema em tempo contínuo ecrito por equaçõe

Leia mais

v y quando a carga passa pela posição x 0, em m / s, são: Quando na posição A, q fica sujeita a uma força eletrostática de módulo F exercida por Q.

v y quando a carga passa pela posição x 0, em m / s, são: Quando na posição A, q fica sujeita a uma força eletrostática de módulo F exercida por Q. 1. (Ufrg 015) Em uma aula e Fíica, foram utilizaa ua efera metálica iêntica, X e Y : X etá upena por um fio iolante na forma e um pênulo e Y fica obre um uporte iolante, conforme repreentao na figura abaixo.

Leia mais

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria Cálculo Diferencial e Integral II Lita 8 - Exercício/ Reumo da Teoria Derivada Direcionai Definição Derivada Direcional. A derivada da função f x, no ponto P x, na direção do veror u u 1, u é o número

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

"Introdução à Mecânica do Dano e Fraturamento" Parte I. São Carlos, outubro de 2000

Introdução à Mecânica do Dano e Fraturamento Parte I. São Carlos, outubro de 2000 "Introução à Mecânica o Dano e Fraturamento" Texto n.3 : FUNDAMENTOS DA TERMODINÂMICA DOS SÓLIDOS Parte I São Carlos, outubro e 2000 Sergio Persival Baroncini Proença - Funamentos a termoinámica os sólios

Leia mais

Capítulo 4. Formulação dos problemas. V cos( ) W V cos( ) V sin( ) W V sin( ) Modelo 6-dof de um UAV Modelo unicycle

Capítulo 4. Formulação dos problemas. V cos( ) W V cos( ) V sin( ) W V sin( ) Modelo 6-dof de um UAV Modelo unicycle Capítulo 4 Formulação o problema Apó uma análie o tema ete trabalho foram ientificao vário problema para etuo e reolução. Nete capítulo ão formulao o problema e introuzia efiniçõe. 4.1 - Moelo 6-of e um

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

Física I. Oscilações - Resolução

Física I. Oscilações - Resolução Quetõe: Fíica I Ocilaçõe - Reolução Q1 - Será que a amplitude eacontantenafae de um ocilador, podem er determinada, e apena for epecificada a poição no intante =0? Explique. Q2 - Uma maa ligada a uma mola

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

FENÔMENO DE TRANSPORTE II: INTRODUÇÃO, MODOS DE TRANSFERÊNCIA E CONSERVAÇÃO DA ENERGIA PROF. GERÔNIMO

FENÔMENO DE TRANSPORTE II: INTRODUÇÃO, MODOS DE TRANSFERÊNCIA E CONSERVAÇÃO DA ENERGIA PROF. GERÔNIMO FENÔMENO DE TRANSPORTE II: INTRODUÇÃO, MODOS DE TRANSFERÊNCIA E CONSERVAÇÃO DA ENERGIA PROF. GERÔNIMO Tranferência de calor e energia térmica O QUE É TRANSFERÊNCIA DE CALOR? Tranferência de calor é a energia

Leia mais

Formulação integral da dinâmica de fluidos

Formulação integral da dinâmica de fluidos Formulação integral a inâmica e fluios Paulo R. e Souza Menes Grupo e Reologia Departamento e Engenharia Mecânica Pontifícia Universiae Católica - RJ agosto e 2010 Sumário o teorema o transporte e Reynols

Leia mais

3.8 O Teorema da divergência ou Teorema de Gauss

3.8 O Teorema da divergência ou Teorema de Gauss 144 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.8 O Teorema a ivergência ou Teorema e Gauss O Teorema e tokes relaciona uma integral e superfície com uma e linha ao longo o boro a superfície. O Teorema e Gauss

Leia mais

Aula 08 Equações de Estado (parte I)

Aula 08 Equações de Estado (parte I) Aula 8 Equaçõe de Etado (parte I) Equaçõe de Etado input S output Já vimo no capítulo 4 ( Repreentação de Sitema ) uma forma de repreentar itema lineare e invariante no tempo (SLIT) atravé de uma função

Leia mais

Curso de Engenharia Civil

Curso de Engenharia Civil Curso e Engenharia Civil Escoamento ao reor e corpos imersos: teoria a camaa limite CC75D Mecânica os fluios Prof. Fernano Oliveira e Anrae Definição e camaa limite É a camaa o escoamento na região ajacente

Leia mais

III- FLEXÃO SIMPLES 1- EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO

III- FLEXÃO SIMPLES 1- EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO III- FLEXÃO SIMPLES - EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO A eormaçõe na lexão imple correponem ao omínio, 3 e 4. O valore e x que limitam ete omínio poem er obtio acilmente a equaçõe e compatibiliae

Leia mais

Balanço integral de massa

Balanço integral de massa Balanços integrais Balanço integral e massa Teorema e Transporte: t ψv = Vs ψ: graneza por uniae e volume Vs: volume qualquer Ss: super:cie que limita Vs v s : velociae e Ss ψ V + ψ v Vs s ns t Ss A iéia

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 19 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que

Leia mais

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante:

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. A regra a constante

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univeridade Salvador UNIFACS Curo de Engenharia Método Matemático Aplicado / Cálculo Avançado / Cálculo IV Profa: Ila Rebouça Freire A Tranformada de Laplace Texto 0: A Tranformada Invera. A Derivada da

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

Teste para Amostras Dependentes (teste t pareado)

Teste para Amostras Dependentes (teste t pareado) Tete e Hipótee para ua populaçõe Tete para Amotra Depenente (tete t pareao) Um tete t poe er uao para tetar a iferença e ua méia a população quano uma amotra é elecionaa aleatoriamente e caa população.

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 26 Macroeconomia I º Semetre e 27 Profeore: Gilberto Taeu Lima e Pero Garcia Duarte Lita e Exercício

Leia mais

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b.

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b. ª Avaliação ) Encontre lim 9 9. A substituição e por 9 leva a uma ineterminação o tipo 0/0. ( ) + 9 lim lim lim lim 9 9 9 9 9 9 + 9 + 9 + lim 9 ( 9 ) 9 lim + + 9 + 6 9 ( + ) se 0 < < b ) Dao f, etermine

Leia mais

Transformada de Laplace

Transformada de Laplace Sinai e Sitema - Tranformada de Laplace A Tranformada de Laplace é uma importante ferramenta para a reolução de equaçõe diferenciai. Também é muito útil na repreentação e análie de itema. É uma tranformação

Leia mais

Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira. Aula 24. A Lei da Indução de Faraday

Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira. Aula 24. A Lei da Indução de Faraday Eletromagnetismo I Prof. Ricaro Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 24 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que se o

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroeconomia I 1º Semetre e 2017 Profeor Fernano Rugitky Lita e Exercício 5 [1] Coniere

Leia mais

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como:

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como: 1 Acaêmico(a) Turma: Capítulo 4: Derivaa 4.1 Definição A erivaa por ser entenia como taxa e variação instantânea e uma função e expressa como: f (x) = y = y x Eq. 1 Assim f (x) é chamao e erivaa a função

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

O valor máximo da tensão tangencial de cisalhamento é obtido no ponto onde o momento estático é máximo, isto é, na linha neutra.

O valor máximo da tensão tangencial de cisalhamento é obtido no ponto onde o momento estático é máximo, isto é, na linha neutra. I - CISALHAMENTO 1 - ESTADO DE TENSÃO 1.1 - GENERALIDADES No capítulo anteriore, analiou-e o comportamento e viga e concreto armao ubmetia a olicitaçõe normai. A tenõe interna reultante o efeito e flexão

Leia mais

MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional

MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional MECÂNICA DO CONTÍNUO Tópico 2 Cont. Elaticidade Linear Cálculo Variacional PROF. ISAAC NL SILVA Lei de Hooke Até o limite elático, a tenão é diretamente proporcional à deformação: x E. e x e e y z n E

Leia mais

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado!

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado! ## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## LISTA DE EXERCÍCIOS Operações com Vetores na Forma Algébrica [Analítica] no R [página 7] 5) Daos os vetores u i j Inicialmente, antes e substituir

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

1 Transformada de Laplace de u c (t)

1 Transformada de Laplace de u c (t) Tranformada de Laplace - Função de Heaviide Prof ETGalante Equaçõe diferenciai ob ação de funçõe decontínua aparecem com frequência na análie do uxo de corrente em circuito elétrico ou na vibraçõe de itema

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definiçõe O gráfico do Lugar geométrico da raíze, conite no deenho de todo o valore que o pólo de malha fechada de uma função

Leia mais

Condução de calor numa barra semi-infinita

Condução de calor numa barra semi-infinita Univeridade de São Paulo Ecola de Engenharia de Lorena Departamento de Engenharia de Materiai Condução de calor numa barra emi-infinita Prof. Luiz T. F. Eleno Ecola de Engenharia de Lorena da Univeridade

Leia mais

Aula 20. Efeito Doppler

Aula 20. Efeito Doppler Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento

Leia mais

Objetivos da quinta aula da unidade 5. Evocar os conceitos de potência e rendimento de uma máquina

Objetivos da quinta aula da unidade 5. Evocar os conceitos de potência e rendimento de uma máquina 305 Curo Báico de Mecânica do Fluido Objetivo da quinta aula da unidade 5 Evocar o conceito de potência e rendimento de uma máquina Introduzir o conceito de potência fornecida, ou retirada, de um fluido

Leia mais

III Corpos rígidos e sistemas equivalentes de forças

III Corpos rígidos e sistemas equivalentes de forças III Corpos rígios e sistemas equivalentes e forças Nem sempre é possível consierar toos os corpos como partículas. Em muitos casos, as imensões os corpos influenciam os resultaos e everão ser tias em conta.

Leia mais

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 )

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 ) Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEFT, MEBiom o Sem. 20/2 2//20 Duração: h30mn.,5 val.) a) Represente na

Leia mais

OLIMPÍADAS DE FÍSICA. Selecção para as provas internacionais. 19 de Maio de Prova Teórica

OLIMPÍADAS DE FÍSICA. Selecção para as provas internacionais. 19 de Maio de Prova Teórica OLIMPÍADAS DE FÍSICA Selecção para as provas internacionais 19 e Maio e 000 Prova Teórica Duração a prova: 3H I. Vários tópicos Este problema é constituío por várias alíneas sem qualquer ligação entre

Leia mais

5 Análise dos modelos

5 Análise dos modelos 5 Análie o moelo Nete caítulo, a formulação o roblema ireto, que nete cao utiliza o moelo e rocha conoliaa e não conoliaa areentao no caítulo 4, é ubmetia a uma análie aramétrica e a uma análie e enitiviae,

Leia mais

INTERVALO DE CONFIANÇA

INTERVALO DE CONFIANÇA INTERVALO DE CONFIANÇA Supoha que etejamo itereado um parâmetro populacioal verdadeiro (ma decohecido) θ. Podemo etimar o parâmetro θ uado iformação de oa amotra. Chamamo o úico úmero que repreeta o valor

Leia mais

26 a Aula AMIV LEAN, LEC Apontamentos

26 a Aula AMIV LEAN, LEC Apontamentos 26 a Aula 2004..5 AMIV LEAN, LEC Apontamentos (Ricaro.Coutinho@math.ist.utl.pt) 26. Sistemas e equações iferenciais 26.. Definição Consiere-se f : D R R n R n,contínuanoconjuntoabertod Vamos consierar

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

Modelação e Simulação Problemas - 4

Modelação e Simulação Problemas - 4 Modelação e Simulação - Problema Modelação e Simulação Problema - P. Para cada uma da funçõe de tranferência eguinte eboce qualitativamente a repota no tempo ao ecalão unitário uando empre que aplicável)

Leia mais

Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa MECÂNICA

Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa MECÂNICA Diciplina de Fíica Aplicada A 212/2 Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MECÂNICA Neta aula etudaremo a primeira parte da Fíica Cláica: a Mecânica. A Mecânica divide-e

Leia mais

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral, Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado

Leia mais

Módulo III Movimento Uniforme (MU)

Módulo III Movimento Uniforme (MU) Módulo III Moimento Uniforme (MU) Em moimento retilíneo ou curilíneo em que a elocidade ecalar é mantida contante, diz-e que o móel etá em moimento uniforme. Nete cao, a elocidade ecalar intantânea erá

Leia mais

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos Tópicos e Física Clássica I Aula 4 A ientiae e Beltrami; a notação δ e alguns eemplos a c tort A seguna forma a equação e Euler-Lagrange Consiere F F [y), y ); ]. Então: F Agora consiere Da primeira equação

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO OCEANOGRÁFICO IOF Oceanografia Física Descritiva

UNIVERSIDADE DE SÃO PAULO INSTITUTO OCEANOGRÁFICO IOF Oceanografia Física Descritiva UNIVERSIDADE DE SÃO PAULO INSTITUTO OCEANOGRÁFICO IOF10 - Oceanografia Fíica Decritiva Arquivo obtido em: Aluno Danilo Rodrigue Vieira IOF10 - OCEANOGRAFIA FÍSICA DESCRITIVA a Lita de Exercício o Semetre

Leia mais

ERG FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula 2

ERG FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula 2 ERG-009 - FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula Profeor Joé R. Simõe-Moreira, Ph.D. e-mail: jrimoe@up.br ESPECIALIZAÇÃO EM ENERGIAS RENOVÁVEIS, GERAÇÃO DISTRIBUÍDA E EFICIÊNCIA ENERGÉTICA

Leia mais

QUESTÃO 21 ITAIPU/UFPR/2015

QUESTÃO 21 ITAIPU/UFPR/2015 QUTÃO TAPU/UFPR/5. Um gerador com conexão etrela-aterrado etá prete a er conectado a um itema elétrico atravé de um tranformador elevador ligado com conexão delta-etrela aterrado, tal como repreentado

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,

Leia mais

30 a Aula AMIV LEAN, LEC Apontamentos

30 a Aula AMIV LEAN, LEC Apontamentos 30 a Aula 20041124 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 301 Equações iferenciais e orem n Comecemos com consierações gerais sobre equações e orem n; nomeaamente sobre a sua relação

Leia mais

Cinemática Exercícios

Cinemática Exercícios Cinemática Exercício Aceleração e MUV. 1- Um anúncio de um certo tipo de automóvel proclama que o veículo, partindo do repouo, atinge a velocidade de 180 km/h em 8. Qual a aceleração média dee automóvel?

Leia mais

5 Modelagem da máquina síncrona e seus controles associados

5 Modelagem da máquina síncrona e seus controles associados 5 Moelagem a máuina íncrona e eu controle aociao 5.1 Introução O geraore em conjunto com eu controle aociao e contituem no euipamento mai importante e mai complexo preente no itema e potência. Geram toa

Leia mais

Física II. Lei de Gauss

Física II. Lei de Gauss Física II 1) Três cargas Q 1 =5µC, Q 2 =-80µC e Q 3 = 10 µc estão ispostas em triângulo. Q 1 está a 50cm e Q 2 (seguno o eixo os xx ) e Q 3 está a 30cm e Q 1 e a 40cm e Q 2 no sentio positivo o eixo yy.

Leia mais

Fenômenos de Transporte III. Aula 07. Prof. Gerônimo

Fenômenos de Transporte III. Aula 07. Prof. Gerônimo Fenômeno de Tranporte III ula 7 Prof. Gerônimo 7- DIFUSÃO EM REGIME PERMETE COM REÇÃO QUÍMIC 7.- Conideraçõe a repeito Vimo até então a difuão ocorrendo em que houvee geração ou conumo do oluto no meio

Leia mais

e-física IFUSP 08 Movimento dos Projéteis Exercícios Resolvidos

e-física IFUSP 08 Movimento dos Projéteis Exercícios Resolvidos e-fíica Enino de Fíica Online Inituto de Fíica da USP 8 Moimento do Projétei Eercício Reolido Eercício Reolido 8.1 A figura ilutra a ituação na ual em um determinado intante um projétil de maa m = kg ai

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Corrente e Eq. da Continuidade (Capítulo 5 Páginas 109 a 113) Densidade de corrente Elétrica Equação da Continuidade Forma Integral Equação da Continuidade Forma

Leia mais

CIRCUITOS ELÉTRICOS APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DA FORMA. Prof. Flávio A. M. Cipparrone. Escola Politécnica da USP

CIRCUITOS ELÉTRICOS APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DA FORMA. Prof. Flávio A. M. Cipparrone. Escola Politécnica da USP IRUITOS ELÉTRIOS APLIAÇÕES DAS EQUAÇÕES DIFERENIAIS DA FORMA x t x t x t x ( t) s Prof. Flávio A. M. iarrone Escola Politécnica a USP Teoria Para resolver a equação iferencial x ( t) x( t) x( t) xs( t),

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 21 17 DE ABRIL DE 2017 EQUAÇÕES DIFERENCIAIS Equações iferenciais são equações (algébricas) one figuram funções e erivaas e várias orens e funções.

Leia mais

Receptor Ótimo. Implementação do receptor ótimo baseada em Filtro Casado. s 1 (t M t) a M. b 1. s M (t M t) Selecionar Maior. (t) + w(t) r(t) = s i

Receptor Ótimo. Implementação do receptor ótimo baseada em Filtro Casado. s 1 (t M t) a M. b 1. s M (t M t) Selecionar Maior. (t) + w(t) r(t) = s i Receptor Ótimo Implementação o receptor ótimo baseaa em Filtro Casao s (t M t) t t M b r(t) s i (t) + w(t) a Selecionar m ˆ m i Maior s M (t M t) t t M a M b M Receptor Ótimo Implementação o receptor ótimo

Leia mais

Termoestatística. Distribuição de Boltzmann e Função de Partição

Termoestatística. Distribuição de Boltzmann e Função de Partição 4300259 Termoestatística Distribuição e Boltzmann e Função e Partição Reservatório (A) Sistema (B) P (U) = res(u res ) B (U) tot (U tot ) P (U) =C(T ) B (U) exp U e ( E q/kbt ) T a (Eq) P (Eq) T b T a

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido.

FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido. FÍSICA º ANO I- ETOES - GANDEZA ESCALA E ETOIAL a) G Ecalar: é aquela que fica perfeitamente definida quando conhecemo o eu valor numérico e a ua unidade de medida Ex: maa, tempo, comprimento, energia,

Leia mais

Projeto do compensador PID no lugar das raízes

Projeto do compensador PID no lugar das raízes Projeto do compenador PID no lugar da raíze 0 Introdução DAELN - UTFPR - Controle I Paulo Roberto Brero de Campo Neta apotila erão etudado o projeto do compenadore PI, PD e PID atravé do lugar da raíze

Leia mais

Leis de Newton. 1.1 Sistemas de inércia

Leis de Newton. 1.1 Sistemas de inércia Capítulo Leis e Newton. Sistemas e inércia Supomos a existência e sistemas e referência, os sistemas e inércia, nos quais as leis e Newton são válias. Um sistema e inércia é um sistema em relação ao qual

Leia mais

Miloje / Shutterstock. Matemática B. CP_18_GAIA_MB1.indd 1 12/01/ :44

Miloje / Shutterstock. Matemática B. CP_18_GAIA_MB1.indd 1 12/01/ :44 Miloje / Shuttertock Matemática _18_GI_M1.indd 1 1/01/018 14:44 Matemática aula 1 é ietriz de Ô Ô Ô Soma de ângulo adjacente Quanto ao valor, a oma de doi ângulo adjacente pode er claificada em trê categoria:

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 01 Circuitos Magnéticos

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 01 Circuitos Magnéticos SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 01 Circuitos Magnéticos Tópicos a Aula e oje Proução e campo magnético a partir e corrente elétrica Lei circuital e Ampère Intensiae e campo magnético ()

Leia mais

Modulo 5 Lei de Stevin

Modulo 5 Lei de Stevin Moulo 5 Lei e Stevin Simon Stevin foi um físico e matemático belga que concentrou suas pesquisas nos campos a estática e a hirostática, no final o século 16, e esenvolveu estuos também no campo a geometria

Leia mais

8 Equações de Estado

8 Equações de Estado J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo

Leia mais

Fenômenos de Transporte III. Aula 10. Prof. Gerônimo

Fenômenos de Transporte III. Aula 10. Prof. Gerônimo Fenômeno de Tranporte III ula 0 Prof. erônimo .4 Balanço macrocópico de matéria em regime permanente e em reação química. Para projetar ou dimenionar um equipamento detinado à eparação ão neceário informaçõe

Leia mais

Ondas e Óptica. No espelho côncavo, se o objeto está colocado entre o foco e o vértice ( s < f ) do espelho a imagem é virtual e direita.

Ondas e Óptica. No espelho côncavo, se o objeto está colocado entre o foco e o vértice ( s < f ) do espelho a imagem é virtual e direita. Onda e Óptica Epelho eférico V = Vértice do epelho = entro de curatura do epelho F = Foco do epelho = Ditância do objeto ao értice de epelho = Ditância da imagem ao értice do epelho f = Foco do epelho

Leia mais

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s Simulao 1 Física AFA/EFOMM 1- A face inferior e uma camaa e nuvens é plana e horizontal. Um rojão estoura entre o solo e a camaa e nuvens. Uma pessoa situaa na mesma vertical e junto ao solo vê o clarão

Leia mais

Estudo do Circuito Grampeador para os Conversores Flyback e Forward e do Circuito Equivalente do Transformador de Três Enrolamentos

Estudo do Circuito Grampeador para os Conversores Flyback e Forward e do Circuito Equivalente do Transformador de Três Enrolamentos UFSC - Univeridade Federal de Santa Catarina CTC - Centro Tecnolóico EEL - Departamento de Enenharia Elétrica INEP - Intituto de Eletrônica de Potência Etudo do Circuito Grampeador para o Converore Flyback

Leia mais

= 1 d. = -36 π Pa

= 1 d. = -36 π Pa EO -1-7/5/16 Grupo I R. 1-a) A capaciae e um conensaor plano e área S e separação, cheio e um ielétrico e permitiviae ε é C = ε S. Assim a situação apresentaa equivale a ois conensaores em paralelo, cuja

Leia mais

PSI3213 CIRCUITOS ELÉTRICOS II

PSI3213 CIRCUITOS ELÉTRICOS II PSI33 CIRCUITOS ELÉTRICOS II Solução do Exercício Complementare Correpondente à Matéria da a Prova a) il ( ) = ( não há geradore independente ) Reitência equivalente vita pelo indutor: i i 5 i E i = i

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Corrente e Eq. da Continuidade (Capítulo 4 Páginas 109 a 113) Densidade de corrente Elétrica Equação da Continuidade Forma Integral Equação da Continuidade Forma

Leia mais

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL

DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DERIVADAS DE FUNÇÕES REAIS DE UMA VARIÁVEL 1 a Eição Rio Grane Eitora a FURG 2016 Universiae Feeral o Rio

Leia mais

Aula 4 Modelos CC e CA para Diodos. Prof. AC.Seabra-PSI/EPUSP

Aula 4 Modelos CC e CA para Diodos. Prof. AC.Seabra-PSI/EPUSP Aula 4 Moelos CC e CA para ioos Prof. AC.Seabra-PS/EPUSP 2013 1 1 PS 2223 ntroução à Eletrônica Programação para a Primeira Prova Prof. AC.Seabra-PS/EPUSP 2013 2 4ª Aula: Moelos CC e CA para ioos Na aula

Leia mais

PROVA de FÍSICA MÓDULO II do PISM ( ) QUESTÕES OBJETIVAS. 09. Leia, com atenção:

PROVA de FÍSICA MÓDULO II do PISM ( ) QUESTÕES OBJETIVAS. 09. Leia, com atenção: PROVA e FÍSIA MÓDUO II o PISM (2004-2006) QUESTÕES OBJETIVAS 09. eia, com atenção: Use, se necessário: Aceleração gravitacional g = 0 m/s 2 Densiae a água = 000 kg/m alor latente e vaporização a água =

Leia mais

QUESTÕES PROPOSTAS RESOLUÇÃO POR ETAPAS

QUESTÕES PROPOSTAS RESOLUÇÃO POR ETAPAS Fisica 1.. C Da Terra à Lua Pág. 30A 4.1. (C) As forças»f 1 e»f têm sentios contrários. 4.. (B) O bloco terá nas uas situações movimento uniformemente acelerao. Na situação A, como as forças têm o mesmo

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Etatítica Material teórico Medida de Diperão ou Variação Reponável pelo Conteúdo: Profª M. Roangela Maura C. Bonici MEDIDAS DE DISPERSÃO OU VARIAÇÃO Introdução ao Conteúdo Cálculo da

Leia mais

FLEXÃO NORMAL SIMPLES Dimensionamento de Seções T

FLEXÃO NORMAL SIMPLES Dimensionamento de Seções T CPÍTULO 4 Volume 1 FLEXÃO NORL SIPLES Dimenionamento e Seçõe T Pro. Joé ilton e raújo - FURG 1 4.1 - Geometria a eção tranveral h h ' ' largura a nervura; largura a mea; h altura total a eção; h epeura

Leia mais

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2 r od la ort no C UNESDADE DE MOG DAS CUZES - ENGENHAA EÉCA Prof. Joé oberto Marque CUSO DE ENGENHAA EÉCA EEÔNCA DE POÊNCA Ex. ONE CHAEADA PWM ABAXADOA BUCK Objetivo: O objetivo deta exeriência é demontrar

Leia mais

Física I REVISÃO DE IMPULSO, QUANTIDADE DE MOVIMENTO E COLISÃO

Física I REVISÃO DE IMPULSO, QUANTIDADE DE MOVIMENTO E COLISÃO nual VOLUE 6 Física I ULS 9 e 3: REVISÃO DE IPULSO, QUNTIDDE DE OVIENTO E COLISÃO EXERCÍCIOS PROPOSTOS 1. Daos: V 1 8 /s V,6 /s Proprieae o gráfico fxt, o ipulso a força resultante é nuericaente igual

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade robabiliae e Estatística I Antonio Roque Aula 0 Distribuições e robabiliae Consiere a seguinte situação: O Departamento e sicologia a Universiae YZ resolveu azer um eperimento para eterminar a eistência

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x.

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x. RESUMO DERIVADAS DEFINIÇÃO A erivaa naa mais é o que a inclinação a reta tangente a y=f(x) ou a taxa e variação instantânea e y em relação a x. x 0 f(x +h) f(x ) f (x 0 ) = lim h 0 h 0 0 DIFERENCIABILIDADE

Leia mais

4. CONTROLE PID COM O PREDITOR DE SMITH

4. CONTROLE PID COM O PREDITOR DE SMITH 4 CONTROLADOR PID COM O PREDITOR DE SMITH 28 4. CONTROLE PID COM O PREDITOR DE SMITH 4.1 SINTONIA DO CONTROLADOR PID Nete capítulo erá apreentada a metodologia para a intonia do controlador PID. Reultado

Leia mais

Estudo Físico dos Gases

Estudo Físico dos Gases Estuo Físico os Gases eoria Cinética os Gases Gás é um estao a matéria; as partículas neste estao estão em movimento aleatório e caótico; São compressíveis; Os gases ocupam too o volume o recipiente e,

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais

UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Disciplina: Equações Diferenciais Repota: UNIVERSIDADE DO ESTADO DO AMAZONAS - ESCOLA NORMAL SUPERIOR Diciplina: Equaçõe Diferenciai Profeora: Geraldine Silveira Lima Eercício Livro: Jame Stewart Eercício 9.1 1. Motre que y 1 é uma olução

Leia mais

Capítulo 1 Vapor d água e seus efeitos termodinâmicos. Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron Derivação das equações

Capítulo 1 Vapor d água e seus efeitos termodinâmicos. Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron Derivação das equações Capítulo 1 Vapor d água e eu efeito termodinâmico Energia lire de Gibb e Helmholtz Equação de Clauiu Clapeyron Deriação da equaçõe Energia Lire de Helmholtz - F A energia lire de Helmholtz, F, de um corpo

Leia mais