Ezequias Martins França Paulo Giovanni de Souza Carvalho. Resolução dos problemas 2.4 e 2.6 da lista de exercícios

Tamanho: px
Começar a partir da página:

Download "Ezequias Martins França Paulo Giovanni de Souza Carvalho. Resolução dos problemas 2.4 e 2.6 da lista de exercícios"

Transcrição

1 Ezequias Martins França Paulo Giovanni de Souza Carvalho Resolução dos problemas 2.4 e 2.6 da lista de exercícios Brasil 2017

2 Ezequias Martins França Paulo Giovanni de Souza Carvalho Resolução dos problemas 2.4 e 2.6 da lista de exercícios Trabalho técnico solicitado pelo professor Waldir T. Pinto como requisito parcial para aprovação na disciplina de Hidrodinâmica l, componente da grade curricular de Engenharia Naval. Universidade do Estado do Amazonas Escola Superior de Tecnologia Graduação em Engenharia Naval Brasil 2017

3 2 2.4 Problema 4 Considere o escoamento potencial para a expansão do duto mostrado na Figura 2. Considere que a velocidade de entrada no duto é igual a 10 m/s e que a vazão é constante. Calcule o campo de velocidade no domínio indicado fazendo as seguintes considerações: (a) a velocidade horizontal é constante ao longo de cada seção transversal. Figura 1-Problema 4 Primeiramente, para começar a análise do campo de velocidades, deve-se calcular a vazão no duto, a qual é definida pela seguinte equação: O valor para a vazão encontrado foi de 10 /s, considerando-se uma profundidade (perpendicular ao plano da figura) de 1 m. Como será definido na letra b, para a criação da malha, foi adotado um espaçamento de 0.2 m entre os pontos. Assim, para o comprimento de 3 m do duto, foram definidos 16 pontos no sentido do eixo x e 11 no sentido do eixo y. Desta forma, as velocidades para cada seção foram calculadas dividindo-se o valor da vazão pela área de cada seção e, assim, obtendo o módulo da velocidade para cada seção, como mostra a figura seguinte: Figura 2-Campo de Velocidades -1 Colunas 1-12 Figura 3-Campo de Velocidades -2 Colunas Onde os pontos com NaN não fazem parte do escoamento e, portanto, não possuem valores.

4 3 (b) Use a rotina desenvolvida no curso para calcular o campo de velocidade. Para calcular o campo de velocidades a partir da rotina desenvolvida durante o curso no Matlab, é necessário, primeiramente, criar a malhar e as condições de contorno do escoamento no duto. Para isso, como já dito, foi considerada uma malha com espaçamento entre os pontos de dx=dy=0.2 m e, a partir daí, utilizando a ferramenta Meshgrid do Matlab, foram geradas duas matrizes X e Y de tamanho 11x16, sendo que cada uma contém as coordenadas do eixo correspondente dos pontos. Feito isso, foram inseridas as paredes inferior e superior do duto e feito um gráfico que foi realizado até então, como mostrado a seguir. Figura 4-Malha do escoamento no duto Foram dados ao problema os valores da função de corrente (Psi) para a parede superior e inferior (em azul) como sendo 10 e 0, respectivamente. Assim, foi-se necessário definir os valores de psi para cada um dos pontos internos. Para tal, utilizou-se a equação de Laplace em diferenças finitas, a qual é mostrada a seguir: Onde vale. Contudo, como é igual a, a equação de Laplace reduz-se à: Como a equação de Laplace necessita dos valores de psi dos pontos ao redor do ponto o qual estamos analisando, os valores ainda não definidos são tomados como 0 e, assim, o processo para encontrar os valores de psi para os pontos internos é feito cerca de 100 vezes, uma vez que conforme as iterações são realizadas, os valores de psi convergem para um valor real. Realizadas as iterações, foi-se elaborado um gráfico com o comando contourf no Matlab mostrando as linhas de corrente durante o escoamento no duto, como mostrado a seguir:

5 4 Figura 5- Gráfico de contorno do escoamento As linhas que separam as cores na figura 5 representam as linhas de corrente para os quais os valores de psi são constantes. A partir dos valores de psi encontrados, é possível encontrar os valores das velocidades para cada ponto interno utilizando, também, a equação de Laplace para diferenças finitas, com exceção dos pontos para os quais as velocidades são conhecidas, como na seção da entrada e saída do duto (em x e y), assim como para os pontos nas paredes que possuem somente a componente da velocidade em x (u). A fórmula para o cálculo das velocidades dos pontos internos é mostrado a seguir: Assim, e Para os pontos nas extremidades para os quais os valores das componentes da velocidade não são conhecidos, as equações acima sofrem uma variação, uma vez que estes pontos estão na fronteira do escoamento. Portanto, u e v são dados da seguinte forma: Calculados os valores das componentes da velocidade para cada ponto, o módulo da velocidade é dado por: Assim, o campo de velocidades, a partir da rotina criada no Matlab, obtido foi:

6 5 Figura 6- Gráfico do campo de velocidades pela rotina-1 Figura 7- Gráfico do campo de velocidades pela rotina-2 (c) Calcule o coeficiente de pressão sobre a parede inferior do tubo para os dois casos (a) e (b) e discuta os resultados obtidos. A fórmula do coeficiente de pressão é: Da fórmula de distribuição de pressão, tem-se que e são valores de referência, é a densidade e p é a pressão. Da equação de Bernoulli, temos: Considerando que o escoamento acontece em um plano perpendicular ao vetor da gravidade, isto é, todos os pontos do escoamento tem a mesma cota z, as parcelas em função de h da equação de Bernoulli são canceladas e, assim, obtém-se: Substituindo na fórmula do coeficiente de pressão dado pelo problema, temos: Assim, temos que é função somente do campo de velocidades, o qual já foi calculado para ambos os casos. Foi adotado para como 10 m/s (velocidade de entrada). Portanto, a distribuição do coeficiente de pressão para os casos (a) e (b) são mostrados a seguir:

7 6 Figura 8- Gráfico da distribuição do coeficiente de pressão na parede inferior-caso (a) Figura 9- Gráfico da distribuição do coeficiente de pressão na parede inferior-caso (b) Portando, a partir dos gráficos, observa-se que para o caso (a), até chegar em x=1m, o escoamento não apresenta variação na distribuição do coeficiente de pressão sobre a parede inferior do duto enquanto que, para o mesmo intervalo de x no caso (b), há uma queda deste coeficiente e para o comportamento deste é mais similar. De acordo com White, a partir da análise do gráfico de para o caso (b), é provável que a teoria potencial não seja muito realista para este escoamento, uma vez que os efeitos viscosos são fortes.

8 7 (i) Distribuição de pressão: Aplicando a rquação de Bernoulli Em seguida, anula-se o de cada lado: Isolando ambas as velocidades e dividindo-se os dois lados da equação por na seguinte equação: chega-se E,como foi fornecido pela questão, ou seja, Logo, a equação para a distribuição de pressão fica: (ii) Função de corrente

9 8 A função corrente para o corpo oval de Rankine é dada pela soma dos psi s dos três escoamentos presentes neste sistema: 1. Escoamento uniforme O escoamento uniforme só ocorre na horizontal. Portanto, a coordenada v da velocidade é nula e a coordenada u será igual a U. Integrando u em relação à y encontra-se o seguinte valor de psi para o escoamento uniforme: 2. Fonte e sumidouro O psi para esses casos é dado pela equação: A qual será positiva para a fonte e negativa para o sumidouro. Assim, a função corrente irá resultar, a princípio, em: Agora, é preciso simplificar essa equação em coordenadas cartesianas em função de x e y. Figura 10- Escoamento em um corpo oval de Rankine Calculando os valores de e a partir de um ponto genérico (x,y) e extraindo seus arco tangentes e depois substituindo na equação da Função Corrente, resulta em:

10 9 (iii) Calculando u=0 no ponto de estagnação: Figura 11- Equação resultante fazendo u=0 A partir do ponto de estagnação, chegamos na seguinte expressão: (1) (iv) Fazendo o psi(0,h), obtém-se: Figura 12- Equação resultante para psi com x=0 e y=h Fazendo psi=0 e isolando (h/a): (2)

11 10 Isolando m na equação (1), a na equação (2) e depois substituindo m na nova equação de a junto com os valores U=10, h=0.2 e l=1, encontramos o valor para a, como mostrado a seguir: Figura 13- Equação para f(a) Em que f(a) deve ser zero e assim encontramos suas raízes de determinamos o valor de a. Plotamos f(a) no GeoGebra para encontrar as raízes, de acordo com a seguinte figura: Figura 14- Gráfico de f(a) - 1

12 11 Figura 15- Gráfico de f(a) - 2 Temos, do gráfico acima, que a=0,929. Substituindo a na equação de m, temos : m= Figura 16- Substituição dos valores na equação de m (v) Cálculo das componentes u e v da velocidade: Primeiro, foi substituído os valores encontrados anteriormente na função psi e, após isto, foi derivada para encontrar u e v.

13 12 Figura 17- Substituição dos valores já encontrados na equação psi Figura 18- Derivadas de psi para encontrar eu v (vi) Cálculo do módulo da velocidade: Figura 19- Módulo da velocidade

14 13 (vii) Pontos ao longo do contorno do corpo oval de Rankine Para o campo de distribuição de pressão, precisamos encontra os pontos de contorno em psi = 0. Assim, isolando x, tem-se que: x= Desta forma, o gráfico da função fica: Os pontos selecionados são: Figura 20- Gráfico de x para psi=0 (0, 0.2), (0.25, 0.199), (0.5, 0.19), (0.75, 0.15), (1, 0) (viii) Velocidade nos pontos selecionados Figura 21- Velocidade nos pontos selecionados

15 14 (ix) Campo de pressão Ajustando para equação e substituindo encontramos a seguinte expressão para calcular o campo de pressão nos pontos obtidos: Figura 22- Velocidade nos pontos selecionados (x) Força de Sustentação Integrando a equação do campo de pressão para cada ponto através da regra de Simpson obtém-se que o resultado dá o valor da força de sustentação. Assim, o valor da força de sustentação atuando no hidrofólio, em Newtons, vale: Figura 23- Valor da força de sustentação

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q. Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Mecânica dos Fluidos I

Mecânica dos Fluidos I Mecânica dos Fluidos I Aula prática 5 (Semana de 19 a 23 de Outubro de 2009) EXERCÍCIO 1 Um reservatório de água, A, cuja superfície livre é mantida a 2 10 5 Pa acima da pressão atmosférica, descarrega

Leia mais

e ficam muito próximos dos resultados colhidos na literatura, inclusive nos pontos de velocidade

e ficam muito próximos dos resultados colhidos na literatura, inclusive nos pontos de velocidade 74 (a) Linhas de corrente coloridas com o módulo da ve- (b) Iso-superficie Q = 300 colorida com o módulo da locidade V velocidade V Figura 5.25 Dinâmica do escoamento para Re = 10000. em x = 0, 5 m, e

Leia mais

PROGRAD / COSEAC Engenharia de Recursos Hídricos e Meio Ambiente - Gabarito

PROGRAD / COSEAC Engenharia de Recursos Hídricos e Meio Ambiente - Gabarito Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) Calcule o valor da área plana ABCDA da figura abaixo sabendo que AD e DC são arcos de parábolas e os pontos A,B,C e D têm coordenadas (-6,6),

Leia mais

Cinemática Bidimensional

Cinemática Bidimensional Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações

Leia mais

Solução

Solução Uma barra homogênea e de secção constante encontra-se apoiada pelas suas extremidades sobre o chão e contra uma parede. Determinar o ângulo máximo que a barra pode formar com o plano vertical para que

Leia mais

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo.

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo. MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 201/2018 EIC0010 FÍSICA I 1º ANO, 2º SEMESTRE 12 de junho de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

Actividade Formativa 1

Actividade Formativa 1 Actividade Formativa 1 Resolução 1. a. Dada a função y 3+4x definida no conjunto A {x R: 2 x < 7} represente graficamente A e a sua imagem; exprima a imagem de A como um conjunto. b. Dada a função y 3

Leia mais

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita.

GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita. GAAL - 2013/1 - Simulado - 2 produto escalar, produto vetorial, retas e planos SOLUÇÕES Exercício 1: Determine a equação do plano em cada situação descrita. (a) O plano passa pelo ponto A = (2, 0, 2) e

Leia mais

Solução

Solução Uma barra homogênea e de secção constante encontra-se apoiada pelas suas extremidades sobre o chão e contra uma parede. Determinar o ângulo máximo que a barra pode formar com o plano vertical para que

Leia mais

Experiência 6 - Perda de Carga Distribuída ao Longo de

Experiência 6 - Perda de Carga Distribuída ao Longo de Experiência 6 - Perda de Carga Distribuída ao Longo de Tubulações Prof. Vicente Luiz Scalon 1181 - Lab. Mecânica dos Fluidos Objetivo: Medida de perdas de carga linear ao longo de tubos lisos e rugosos.

Leia mais

AULA 02 - DESEMPENHO DAS BOMBAS CENTRÍFUGAS

AULA 02 - DESEMPENHO DAS BOMBAS CENTRÍFUGAS AULA 02 - DESEMPENHO DAS BOMBAS CENTRÍFUGAS 1 Objetivos Determinar o ponto de trabalho de uma bomba centrífuga: vazão, altura manométrica, potência consumida e eficiência. 2 Características do sistema

Leia mais

= 0,28 m/s. F = m d 2 x d t 2

= 0,28 m/s. F = m d 2 x d t 2 Um bloco de massa m = 0,1 kg é ligado a uma mola de constante elástica k = 0,6 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Disciplina: Sistemas Fluidomecânicos. Análise de Turbomáquinas 1ª Parte

Disciplina: Sistemas Fluidomecânicos. Análise de Turbomáquinas 1ª Parte Disciplina: Sistemas Fluidomecânicos Análise de Turbomáquinas 1ª Parte Análise de Turbomáquinas O método empregado para a análise de turbomáquinas depende essencialmente dos dados a serem obtidos. Volume

Leia mais

GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA

GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA 1ª Prova 2007 Questão 1: FÁCIL O valor de H é calculado pela equação de Torricelli: Para isso, deve-se calcular a velocidade inicial e final: (sinal negativo,

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

Isolando as forças, temos:

Isolando as forças, temos: FÍSICA I 2014.2 1 LEIS DE NEWTON a) Isolando as forças, temos: O coeficiente de atrito estático, é o coeficiente de atrito máximo que faz um corpo ficar parado. Ele cresce até chegar num ponto em que uma

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 6 CINEMÁTICA DOS FLUIDOS PROF.: KAIO DUTRA Conservação da Massa O primeiro princípio físico para o qual nós aplicamos a relação entre as formulações de sistema e de volume

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

Roteiro - Aula Prática Orifícios e Bocais:

Roteiro - Aula Prática Orifícios e Bocais: Laboratório de Hidráulica - Aula Prática de Orifícios e Bocais 1 Roteiro - Aula Prática Orifícios e Bocais: 1. Objetivo do experimento: Estudo de escoamento em orifícios e bocais s, e demonstração das

Leia mais

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente.

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. RESUMO MECFLU P2 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. Hipóteses Fluido invíscido (viscosidade nula) não ocorre perda de energia. Fluido incompressível

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - Fenômenos de Transporte I FT I 07 Equações básicas na forma integral para o volume de controle Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas

Leia mais

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Tubo de Pitot Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Desvantagem: Diversas tecnologias, o que dificulta a calibração do equipamento (de

Leia mais

Prof. MSc. David Roza José 1/37

Prof. MSc. David Roza José 1/37 1/37 Métodos Abertos Objetivos: Reconhecer as diferenças entre os métodos intervalados e abertos para a localização de raízes; Compreender o método da iteração de ponto-fixo e avaliar suas características

Leia mais

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,

Leia mais

FENÔMENOS DE TRANSPORTES AULA 7 E 8 EQUAÇÕES DA ENERGIA PARA REGIME PERMANENTE

FENÔMENOS DE TRANSPORTES AULA 7 E 8 EQUAÇÕES DA ENERGIA PARA REGIME PERMANENTE FENÔMENOS DE TRANSPORTES AULA 7 E 8 EQUAÇÕES DA ENERGIA PARA REGIME PERMANENTE PROF.: KAIO DUTRA Equação de Euler Uma simplificação das equações de Navier-Stokes, considerando-se escoamento sem atrito

Leia mais

Disciplina: Sistemas Fluidomecânicos. Análise de Turbomáquinas

Disciplina: Sistemas Fluidomecânicos. Análise de Turbomáquinas Disciplina: Sistemas Fluidomecânicos Análise de Turbomáquinas Análise de Turbomáquinas O método empregado para a análise de turbomáquinas depende essencialmente dos dados a serem obtidos. Volume de controle

Leia mais

de maior força, tanto na direção normal quanto na direção tangencial, está em uma posição no

de maior força, tanto na direção normal quanto na direção tangencial, está em uma posição no 66 (a) Velocidade resultante V (b) Ângulo de ataque α Figura 5.13 Velocidade resultante e ângulo de ataque em função de r/r para vários valores de tsr. A Fig. 5.14 mostra os diferenciais de força que atuam

Leia mais

parâmetros de cálculo 4. Velocidade 5. Vazão

parâmetros de cálculo 4. Velocidade 5. Vazão parâmetros de cálculo 4. Velocidade Velocidade é distância percorrida por unidade de tempo. A unidade usual é m/s. Uma maneira de entender a velocidade da água na tubulação é imaginar uma partícula de

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

APOSTILA PARA ATIVIDADE DE CAMPO Medição de Vazão

APOSTILA PARA ATIVIDADE DE CAMPO Medição de Vazão APOSTILA PARA ATIVIDADE DE CAMPO Medição de Vazão Objetivo: conhecer processos de medição de vazão e saber calcular uma vazão pelo método de medição com flutuadores e Molinete. 1 Introdução Fluviometria:

Leia mais

5 CISALHAMENTO SIMPLES

5 CISALHAMENTO SIMPLES 5 CISALHAMENTO SIMPLES Conforme visto anteriormente, sabe-se que um carregamento transversal aplicado em uma viga resulta em tensões normais e de cisalhamento em qualquer seção transversal dessa viga.

Leia mais

Capítulo 4. Análise de circuitos elétricos básicos: em série, em paralelo e misto. Figura 3.32 Associação em série-paralelo de geradores.

Capítulo 4. Análise de circuitos elétricos básicos: em série, em paralelo e misto. Figura 3.32 Associação em série-paralelo de geradores. ELETRôNCA Figura 3.3 Associação em série-paralelo de geradores. Capítulo 4 A figura 3.33 mostra as simplificações sucessivas do circuito da figura 3.3. Figura 3.33 Simplificações sucessivas do circuito

Leia mais

MATERIAL DE APOIO Integrais

MATERIAL DE APOIO Integrais MATERIAL DE APOIO Integrais Éliton Fontana Fábio César Menslin Júnior 1 Definições 1.1 Integral indefinida Uma integral é dita indefinida quando não se conhece os limites de integração, ou seja, o intervalo

Leia mais

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h =

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h = UNIVERSIDADE FEDERAL DE ITAJUBÁ FÍSICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/06/206 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 0 Prova sem consulta. 02 Duração:

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

MÉTODO DE ELEMENTOS FINITOS (MEF)

MÉTODO DE ELEMENTOS FINITOS (MEF) 3 0 Exercício Programa de PMR 2420 Data de entrega: 17/06/2013 (até as 17:00hs) MÉTODO DE ELEMENTOS FINITOS (MEF) 1) Considere a estrutura da figura abaixo sujeita a duas cargas concentradas F 3 (t) e

Leia mais

4 ESTUDOS PRELIMINARES

4 ESTUDOS PRELIMINARES 79 4 ESTUDOS PRELIMINARES A metodologia da dinâmica dos fluidos computacionais foi aplicada para alguns casos simples de forma a verificar a adequação do software ANSYS CFX na resolução dos problemas descritos

Leia mais

ESCOLA SECUNDÁRIA FERREIRA DIAS, AGUALVA - SINTRA

ESCOLA SECUNDÁRIA FERREIRA DIAS, AGUALVA - SINTRA ESCOLA SECUNDÁRIA FERREIRA DIAS, AGUALVA - SINTRA CURSOS PROFISSIONAIS Disciplina: FÍSICA E QUÍMICA Módulo (*) : F1 Forças e Movimento - *Trabalho e Energia (*) e extensão do módulo, se aplicável. Matriz

Leia mais

Primeira Verificação de Aprendizagem (1 a V.A.) - 28/05/2014

Primeira Verificação de Aprendizagem (1 a V.A.) - 28/05/2014 UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Primeira Verificação

Leia mais

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE

SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 15 16 SOLUÇÃO ANALÍTICA E NUMÉRICA DA EQUAÇÃO DE LAPLACE 3. Todos os dispositivos elétricos funcionam baseados na ação de campos elétricos, produzidos por cargas elétricas, e campos magnéticos, produzidos

Leia mais

Métodos Numéricos Professor Tenani - 3 / 42

Métodos Numéricos Professor Tenani -  3 / 42 Métodos Numéricos Professor Tenani - www.professortenani.com.br 1 / 42 Métodos Numéricos Professor Tenani - www.professortenani.com.br 2 / 42 Introdução Objetivos da Seção Entender o que são problemas

Leia mais

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS

RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS RESUMO MECFLU P3 REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS Equação do Teorema do Transporte de Reynolds: : variação temporal da propriedade

Leia mais

2 Casca cilíndrica delgada

2 Casca cilíndrica delgada Vibrações livres não lineares de cascas cilíndricas com gradação funcional 29 2 Casca cilíndrica delgada Inicia-se este capítulo com uma pequena introdução sobre cascas e, em seguida, apresenta-se a teoria

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.10 Séries de Taylor e Maclaurin Copyright Cengage Learning. Todos os direitos reservados. Começaremos supondo

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO 1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB 047 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 3 ROTEIRO Tópicos da aula 3:

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo

Leia mais

Universidade de São Paulo Instituto de Física Laboratório Didático

Universidade de São Paulo Instituto de Física Laboratório Didático Universidade de São Paulo Instituto de Física Laboratório Didático MOVIMENTO DE ELÉTRONS EM CAMPOS ELÉTRICOS E MAGNÉTICOS E DETERMINAÇÃO DA RAZÃO CARGA/MASSA DO ELÉTRON Guia de estudos 1. Objetivos Estudar

Leia mais

Fenômeno de Transportes A PROFª. PRISCILA ALVES

Fenômeno de Transportes A PROFª. PRISCILA ALVES Fenômeno de Transportes A PROFª. PRISCILA ALVES PRISCILA@DEMAR.EEL.USP.BR Proposta do Curso Critérios de Avaliação e Recuperação Outras atividades avaliativas Atividades experimentais: Será desenvolvida

Leia mais

Mas Da figura, temos:

Mas Da figura, temos: 1. Na tubulação da figura 1, óleo cru escoa com velocidade de 2,4 m/s no ponto A; calcule até onde o nível de óleo chegará no tubo aberto C. (Fig.1). Calcule também a vazão mássica e volumétrica do óleo.

Leia mais

ADA 1º BIMESTRE CICLO I MATEMÁTICA 3ª SÉRIE DO ENSINO MÉDIO. (B)y = x + 3 (C)y = 2x + 3 (D)y = 3x - 3 (E)y = 5x + 5 Gabarito: D.

ADA 1º BIMESTRE CICLO I MATEMÁTICA 3ª SÉRIE DO ENSINO MÉDIO. (B)y = x + 3 (C)y = 2x + 3 (D)y = 3x - 3 (E)y = 5x + 5 Gabarito: D. ADA 1º BIMESTRE CICLO I MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM 1 DA ADA Observe as equações da reta a seguir: I) y = x 1 II) y 4x = III) y 4x + = 0 IV) y + 1 = x V) y + 1 = (x 1 ) Dessas equações, a que

Leia mais

Fluidos - Dinâmica. Estudo: Equação da Continuidade Equação de Bernoulli Aplicações

Fluidos - Dinâmica. Estudo: Equação da Continuidade Equação de Bernoulli Aplicações Fluidos - Dinâmica Estudo: Equação da Continuidade Equação de Bernoulli Aplicações Dinâmica em Fluido Ideal Nosso fluido ideal satisfaz a quatro requisitos: 1. Escoamento laminar: a velocidade do fluido

Leia mais

perturbações verticais no sistema além da força peso do corpo e da reação normal da carreta sobre o bloco. A aceleração da gravidade é igual a g.

perturbações verticais no sistema além da força peso do corpo e da reação normal da carreta sobre o bloco. A aceleração da gravidade é igual a g. Uma carreta de massa move-se sem atrito em trilhos horizontais com velocidade v. Na parte dianteira da carreta coloca-se um corpo de massa m com velocidade inicial zero. Para que comprimento da carreta

Leia mais

PROJETO CONTRA INCÊNDIOS E EXPLOSÕES

PROJETO CONTRA INCÊNDIOS E EXPLOSÕES PROJETO CONTRA INCÊNDIOS E EXPLOSÕES Fundamentos de hidráulica aplicados à proteção contra incêndios Prof. Dr. Eduardo Luiz de Oliveira Departamento de Engenharia Civil Faculdade de Engenharia UNESP BAURU

Leia mais

Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1)

Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1) PRÁTICA 13: CENTRO DE MASSA Centro de massa (ou centro de gravidade) de um objeto pode ser definido como o ponto em que ele pode ser equilibrado horizontalmente. Seu significado físico tem muita utilidade

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas

Leia mais

4 Modelagem Numérica. 4.1 Método das Diferenças Finitas

4 Modelagem Numérica. 4.1 Método das Diferenças Finitas 4 Modelagem Numérica Para se obter a solução numérica das equações diferenciais que regem o processo de absorção de CO 2,desenvolvido no capitulo anterior, estas precisam ser transformadas em sistemas

Leia mais

Disciplina: Sistemas Térmicos

Disciplina: Sistemas Térmicos Disciplina: Sistemas Térmicos Apresentação da Primeira Lei da Termodinâmica Primeira Lei para um Sistema que Percorre um Ciclo Primeira Lei para Mudança de Estado do Sistema Descrição da Propriedade Termodinâmica

Leia mais

Respostas a lápis ou com caneta de cor distinta à mencionada no item acima serão desconsideradas.

Respostas a lápis ou com caneta de cor distinta à mencionada no item acima serão desconsideradas. Aluno: CPF: Matriculado no curso de Engenharia Data: 24/03/2011 Horário: Professor: Anibal Livramento da Silva Netto 1 a Avaliação de Física Teórica II Nas diversas questões desta avaliação, você deverá:

Leia mais

Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos

Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I Aula 4: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos A pressão gerada no interior de um fluido estático

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS Prof. Bruno Farias Fluidos Os fluidos desempenham um papel vital em muitos aspectos

Leia mais

ANPEC. Prova de Matemática Exame de 2017

ANPEC. Prova de Matemática Exame de 2017 ANPEC Prova de Matemática Exame de 2017 Exercícios 1. Considere o seguinte conjunto: C = x, y : x ' 2x 1 y min x + 17, x + 19. Analise a veracidade das seguintes afirmações: A. O valor máximo da coordenada

Leia mais

1 a PROVA Gabarito. Solução:

1 a PROVA Gabarito. Solução: INSTITUTO DE FÍSICA DA UFBA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO DISCIPLINA: FÍSICA GERAL E EXPERIMENTAL III FIS 123) TURMA: T02 SEMESTRE: 2 o /2012 1 a PROVA Gabarito 1. Três partículas carregadas

Leia mais

Gabarito da G3 de Equações Diferenciais

Gabarito da G3 de Equações Diferenciais Gabarito da G3 de Equações Diferenciais 03. MAT 54 Ques..a.b.c.a.b 3 4 5.a 5.b soma Valor.0.0.0.0.0.0.0.0.0 0.0 Nota ) Considere o problema abaixo que representa o comportamento de duas espécies(com densidades

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Hidrodinâmica. dm dt. d dt FORMA INTEGRAL DA EQUAÇÃO DA CONTINUIDADE (CONSERVAÇÃO DE MASSA): Mecânica dos Fluidos - Professor Eduardo Loureiro

Hidrodinâmica. dm dt. d dt FORMA INTEGRAL DA EQUAÇÃO DA CONTINUIDADE (CONSERVAÇÃO DE MASSA): Mecânica dos Fluidos - Professor Eduardo Loureiro FORMA INTEGRAL DA EQUAÇÃO DA CONTINUIDADE (CONSERVAÇÃO DE MASSA): Considere um Volume de Controle indeformável (Região II) A Região I é definida de tal forma que sua massa entra no V.C. no intervalo de

Leia mais

4.1. Validação da análise de fluxo e transporte de soluto no meio fraturado

4.1. Validação da análise de fluxo e transporte de soluto no meio fraturado 4 Exemplos Este capítulo apresenta exemplos utilizados na validação das implementações computacionais realizadas neste trabalho, incluindo um teste comparativo entre os métodos de Picard e BFGS. São apresentados

Leia mais

PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta

PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta Questão 1 (5,0) A Figura abaixo ilustra um sólido com comportamento elástico linear, solicitado por ações externas. Este sólido possui espessura t sendo t c, t L e está sem qualquer impedimento a deslocamentos

Leia mais

superfície que envolve a distribuição de cargas superfície gaussiana

superfície que envolve a distribuição de cargas superfície gaussiana Para a determinação do campo elétrico produzido por um corpo, é possível considerar um elemento de carga dq e assim calcular o campo infinitesimal de gerado. A partir desse princípio, o campo total em

Leia mais

Vetor Tangente, Normal e Binormal. T(t) = r (t)

Vetor Tangente, Normal e Binormal. T(t) = r (t) CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)

Leia mais

Capítulo 06. Raízes: Métodos Abertos

Capítulo 06. Raízes: Métodos Abertos Capítulo 06 Raízes: Métodos Abertos Objetivos do capítulo Reconhecer a diferença entre os métodos intervalares e os métodos abertos para localização de raízes. Compreender o método de iteração de ponto

Leia mais

Aprimorando os Conhecimentos de Eletricidade Lista 3 Campo Elétrico Linhas de Força Campo Elétrico de uma Esfera Condutora

Aprimorando os Conhecimentos de Eletricidade Lista 3 Campo Elétrico Linhas de Força Campo Elétrico de uma Esfera Condutora Aprimorando os Conhecimentos de letricidade Lista 3 Campo létrico Linhas de Força Campo létrico de uma sfera Condutora 1. (UFRS-004) Duas cargas elétricas, A e B, sendo A de C e B de 4C, encontram-se em

Leia mais

TÉCNICAS AVANÇADAS DE MODELAÇÃO E SIMULAÇÃO

TÉCNICAS AVANÇADAS DE MODELAÇÃO E SIMULAÇÃO Universidade de Coimbra Faculdade de Ciência e Tecnologia Departamento de Engenharia Química TÉCNICAS AVANÇADAS DE MODELAÇÃO E SIMULAÇÃO PROFESSOR NUNO DE OLIVEIRA MODELAGEM DE UM SEPARADOR POR MEMBRANA

Leia mais

HGP Prática 8 30/1/ HIDRÁULICA GERAL PRÁTICA N 8

HGP Prática 8 30/1/ HIDRÁULICA GERAL PRÁTICA N 8 HGP Prática 8 30//03 4 ) TEMA: Medidas de velocidades de fluidos. HIDRÁULICA GERAL PRÁTICA N 8 ) OBJETIOS: Avaliação das velocidades de fluidos gasosos e líquidos em escoamento, por meio de tubo de Pitot

Leia mais

Capítulo 19. Fórmulas de Integração Numérica

Capítulo 19. Fórmulas de Integração Numérica Capítulo 19 Fórmulas de Integração Numérica Você tem um problema Lembre-se que a velocidade de um saltador de bungee jumping em queda livre como uma função do tempo pode ser calculada como: v t gm gc.

Leia mais

CADERNO DE EXERCÍCIOS DE MECÂNICA DOS FLUIDOS

CADERNO DE EXERCÍCIOS DE MECÂNICA DOS FLUIDOS CADERNO DE EXERCÍCIOS DE MECÂNICA DOS FLUIDOS Prof. Jesué Graciliano da Silva https://jesuegraciliano.wordpress.com/aulas/mecanica-dos-fluidos/ 1 Prof. Jesué Graciliano da Silva Refrigeração - Câmpus São

Leia mais

Disciplina: Sistemas Fluidomecânicos. Equação da Quantidade de Movimento para Regime Permanente

Disciplina: Sistemas Fluidomecânicos. Equação da Quantidade de Movimento para Regime Permanente Disciplina: Sistemas Fluidomecânicos Equação da Quantidade de Movimento para Regime Permanente Introdução A revisão de Mecânica dos Fluidos discorreu, entre outros tópicos, sobre como é realizado o balanceamento

Leia mais

Transferência de Calor 1

Transferência de Calor 1 Transferência de Calor Guedes, Luiz Carlos Vieira. G94t Transferência de calor : um / Luiz Carlos Vieira Guedes. Varginha, 05. 80 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World

Leia mais

EXAME ENSINO PROFISSIONAL

EXAME ENSINO PROFISSIONAL AGRUPAMENTO DE ESCOLAS DE OLIVEIRA DE FRADES EXAME ENSINO PROFISSIONAL Disciplina: Física e Química Módulo: F1 Tipo de Prova: Escrita Duração: 90 minutos Ano letivo: 2012/2013 Conteúdos Objetivos Estrutura

Leia mais

HIDROSTÁTICA. Priscila Alves

HIDROSTÁTICA. Priscila Alves HIDROSTÁTICA Priscila Alves priscila@demar.eel.usp.br OBJETIVOS Exemplos a respeito da Lei de Newton para viscosidade. Variação da pressão em função da altura. Estática dos fluidos. Atividade de fixação.

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Engenharia Biomédica EN2310 MODELAGEM, SIMULAÇÃO E CONTROLE APLICADOS A SISTEMAS BIOLÓGICOS. Professores: Ronny Calixto Carbonari

Engenharia Biomédica EN2310 MODELAGEM, SIMULAÇÃO E CONTROLE APLICADOS A SISTEMAS BIOLÓGICOS. Professores: Ronny Calixto Carbonari Engenharia Biomédica EN310 MODEAGEM, SIMUAÇÃO E CONTROE APICADOS A SISTEMAS BIOÓGICOS Professores: Ronny Calixto Carbonari Janeiro de 013 Método de Elementos Finitos (MEF): Elementos de Treliça Objetivo

Leia mais

MEDIDAS DE PERDA DE CARGA DISTRIBUIDA

MEDIDAS DE PERDA DE CARGA DISTRIBUIDA MEDIDAS DE PERDA DE CARGA DISTRIBUIDA - OBJETIVO Consolidar o conceito de perda de carga a partir do cálculo das perdas distribuídas e localizadas em uma tubulação. - INTRODUÇÃO TEÓRICA.. PERDA DE CARGA

Leia mais

Conceitos de vetores. Decomposição de vetores

Conceitos de vetores. Decomposição de vetores Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas

Leia mais

Resolução prova de matemática UDESC

Resolução prova de matemática UDESC Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente

Leia mais

Calcule a pressão p 1

Calcule a pressão p 1 Calcule a pressão p 1 (1) (2) (4) (3) h = 0 h precisa corrigir p = p m + gh não precisa corrigir p = p m Dado p m, H, h 2, h 1, g água e g Hg, calcule p 1 (pela hidrostática) Esta foi a primeira atividade

Leia mais

4.6. Experiência do tubo de Pitot

4.6. Experiência do tubo de Pitot 4.6. Experiência do tubo de Pitot 98 O tubo de Pitot serve para determinar a velocidade real de um escoamento. Na sua origem, poderia ser esquematizado como mostra a figura 33. Figura 33 que foi extraída

Leia mais