FENÔMENOS DE TRANSPORTES

Tamanho: px
Começar a partir da página:

Download "FENÔMENOS DE TRANSPORTES"

Transcrição

1 FENÔMENOS DE TRANSPORTES AULA 6 CINEMÁTICA DOS FLUIDOS PROF.: KAIO DUTRA

2 Conservação da Massa O primeiro princípio físico para o qual nós aplicamos a relação entre as formulações de sistema e de volume de controle é o princípio de conservação da massa: a massa do sistema permanece constante. Formulação de volume de controle da conservação de massa:

3 Conservação da Massa O primeiro termo representa a taxa de variação da massa dentro do volume de controle; o segundo termo representa a taxa líquida de fluxo de massa para fora através da superfície de controle. A Equação indica que a soma da taxa de variação da massa dentro do volume de controle com a taxa líquida de fluxo de massa através da superfície de controle é zero. A equação da conservação da massa é também chamada de equação da continuidade.

4 Conservação da Massa Ao usar a Equação da Continuidade, um cuidado deve ser tomado na avaliação do produto escalar : ele pode ser positivo (escoamentos para fora (b), α = 0) ou negativo (escoamento para dentro, α = 180 ).

5 Conservação da Massa Casos especiais Considere primeiramente, o caso de um fluido incompressível, no qual a massa específica permanece constante. Quando ρ é constante, ele não é uma função do espaço e nem do tempo. Consequentemente, para fluidos incompressíveis: A integral de sobre todo o volume de controle é simplesmente o volume total do volume de controle. Assim, dividindo por ρ, escrevemos: Para um volume de controle não deformável, de forma e tamanho fixos, o volume é constante. A conservação de massa torna-se:

6 Conservação da Massa Casos especiais As dimensões do integrando na Equação da continuidade é L³/t. A integral sobre uma seção da superfície de controle é comumente chamada taxa de fluxo de volume ou vazão em volume, ou ainda vazão volumétrica. Desse modo, para um escoamento incompressível, a vazão volumétrica para dentro de um volume de controle deve ser igual à vazão volumétrica para fora do volume de controle. A vazão volumétrica Q, através de uma seção de uma superfície de controle de área A, é dada por: Velocidade Média:

7 Exemplo 1 Considere o escoamento permanente de água em uma junção de tubos conforme mostrado no diagrama. As áreas das seções são: A1 = 0,2 m², A2 = 0,2 m² e A3 = 0,15 m². O fluido também vaza para fora do tubo através de um orifício em com uma vazão volumétrica estimada em 0,1 m³/s. As velocidades médias nas seções 1 e 3 são V1 = 5 m/s e V3 = 12 m/s, respectivamente. Determine a velocidade do escoamento na seção 2.

8 Equação da Quantidade de movimento para um Volume de Controle A segunda lei de Newton, para um sistema movendo-se em relação a um sistema de coordenadas inerciais pode ser escrita pela equação abaixo: Onde define-se que a taxa de variação da quantidade de movimento com o tempo é igual a força que a modifica. Onde a quantidade de movimento linear do sistema é dada por: dp = Vdm

9 Equação da Quantidade de movimento para um Volume de Controle Desta forma a taxa de variação da quantidade de movimento linear com o tempo pode ser escrita da seguinte forma: dp dt = V dm dt Substituindo a taxa de variação da massa com o tempo na equação do momento, temos:

10 Equação da Quantidade de movimento para um Volume de Controle As foças geradoras de perturbação na quantidade de movimento são de duas formas (superfície (S) e campo (B)): Então teremos:

11 Equação da Quantidade de movimento para um Volume de Controle A Equação abaixo estabelece que a força total atuando sobre o volume de controle é igual à taxa de variação da quantidade de movimento dentro do volume de controle (a integral de volume) e/ou à taxa líquida na qual a quantidade de movimento está entrando ou saindo do volume de controle através da superfície de controle.

12 Equação da Quantidade de movimento para um Volume de Controle A equação da quantidade de movimento é uma equação vetorial. Geralmente escreveremos as três componentes escalares, como medidas nas coordenadas xyz do volume de controle. Obs.: O sinal do produto escalar da velocidade com a área deve ser conforme a equação da continuidade, onde escoamentos para fora são positivos, escoamentos para dentro são negativos.

13 Equação da Quantidade de movimento Análise Diferencial Já vimos que a segunda lei de Newton para um sistema é dada por: Para um sistema infinitesimal de massa dm, a segunda lei de Newton pode ser escrita: Introduzindo a aceleração de um elemento de fluido de massa dm em movimento em um campo de velocidade, podemos escrever a segunda lei de Newton na seguinte forma vetorial:

14 Equação da Quantidade de movimento Análise Diferencial As forças que atuam sobre um elemento fluido podem ser classificadas como forças de campo e forças de superfície; forças de superfície incluem tanto forças normais quanto forças tangenciais (de cisalhamento). Se as tensões no centro do elemento diferencial forem tomadas como σ xx, τ yx e τ zx, então as tensões atuando na direção x em cada face do elemento (obtidas por uma expansão em séries de Taylor em torno do centro do elemento) serão conforme mostrado na figura.

15 Equação da Quantidade de movimento Análise Diferencial Para obter a força de superfície resultante na direção x, df Sx, devemos somar as forças nesta direção:

16 Equação da Quantidade de movimento Análise Diferencial Quando a força da gravidade é a única força de corpo atuante, a força de corpo por unidade de massa é igual: Expressões semelhantes podem ser deduzidas para as componentes da força nas direções y e z:

17 Equação da Quantidade de movimento Análise Diferencial Então temos duas expressões para as componentes de df, teremos: Igualando as duas expressões, teremos a expressão para a quantidade de movimento:

18 Equação de Navier-Stokes Para um fluido newtoniano, a tensão viscosa é diretamente proporcional à taxa de deformação por cisalhamento. Aplicando expressões complexas que relacionam tensão e viscosidade obtém-se as famosas Equações de Navier- Stokes.

19 Equação de Navier-Stokes As equações de Navier-Sotkes são bastante simplificadas quando aplicadas ao escoamento incompressível com viscosidade constante. Sob estas condições, as equações se reduzem a:

20 Equação de Navier-Stokes Esta forma das equações de Navier-Stokes é provavelmente (junto com a equação de Bernoulli) o conjunto de equações mais famoso em mecânica dos fluidos, e tem sido largamente estudado. Por exemplo, teoria de lubrificação (descrição do comportamento de rolamento de máquinas), escoamento em tubos, e até mesmo o movimento do seu café quando você o mexe, são explicadas por essas equações. Infelizmente, elas não podem ser resolvidas analiticamente. Para situações mais complexas, tais como um sistema de clima global como o El Niño ou a sustentação em uma asa, as soluções para a equação de Navier-Stokes frequentemente devem ser encontradas com a ajuda de computadores. Francês Claude Louis Marie Henri Navier Irlandês George Gabriel Stokes

21 Equação de Navier-Stokes Embora estas equações foram escritas no século 19, ainda não foi comprovado que, as três dimensões existem sempre soluções, ou que, se elas existem, então não contêm qualquer singularidade (ou infinito ou descontinuidade). Existe um prêmio de U$ que foi oferecido em Maio de 2000 pelo o Instituto de Matemática Clay para qualquer um que fizer progressos substanciais na direção de uma matemática teórica que possa ajudar a entender este fenômeno. Francês Claude Louis Marie Henri Navier Irlandês George Gabriel Stokes

22 Exemplo 2 A água sai de um bocal estacionário e atinge uma placa plana, conforme mostrado. A água deixa o bocal a 15 m/s; a área do bocal é 0,01 m². Considerando que a água é dirigida normal à placa e que escoa totalmente ao longo da placa, determine a força horizontal sobre o suporte.

23 Exemplo 3 Uma placa plana com um orifício de 50 mm de diâmetro está instalada na extremidade de um tubo de 100 mm de diâmetro. Água escoa através do tubo e do orifício com uma vazão de 0,05 m³/s. O diâmetro do jato a jusante do orifício é 38 mm. Calcule a força externa necessária para manter a placa de orifício no lugar. Despreze o atrito na parede do tubo.

24 Exercícios F x =-954,7N

25 Exercícios F=132N

26 Exercícios

27 Exercícios

28 Exercícios A figura mostra um redutor em uma tubulação. O volume interno do redutor é 0,2 m3e a sua massa é 25 kg. Avalie a força total de reação que deve ser feita pelos tubos adjacentes para suportar o redutor. O fluido é a gasolina (SG=0,72). Fx=4679N.

Álgumas palavras sobre as Equações de Navier-Stokes

Álgumas palavras sobre as Equações de Navier-Stokes Álgumas palavras sobre as Equações de Navier-Stokes As equações de Navier-Stokes foram derivadas inicialmente por M. Navier em 1827 e por S.D. Poisson em 1831, baseando-se num argumento envolvendo considerações

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - enômenos de Transporte I T I 08 Equação da Quantidade de Movimento para um Volume de Controle Inercial Prof. Lucrécio ábio dos Santos Departamento de Engenharia Química LOQ/EEL tenção: Estas

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - Fenômenos de Transporte I EXERCÍCIOS FT I 07, 08 e 09 Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - Fenômenos de Transporte I FT I 07 Equações básicas na forma integral para o volume de controle Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas

Leia mais

FENÔMENOS DE TRANSPORTES AULA 7 E 8 EQUAÇÕES DA ENERGIA PARA REGIME PERMANENTE

FENÔMENOS DE TRANSPORTES AULA 7 E 8 EQUAÇÕES DA ENERGIA PARA REGIME PERMANENTE FENÔMENOS DE TRANSPORTES AULA 7 E 8 EQUAÇÕES DA ENERGIA PARA REGIME PERMANENTE PROF.: KAIO DUTRA Equação de Euler Uma simplificação das equações de Navier-Stokes, considerando-se escoamento sem atrito

Leia mais

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I

Departamento de Engenharia Mecânica. ENG 1011: Fenômenos de Transporte I Departamento de Engenharia Mecânica ENG 1011: Fenômenos de Transporte I Aula 9: Formulação diferencial Exercícios 3 sobre instalações hidráulicas; Classificação dos escoamentos (Formulação integral e diferencial,

Leia mais

Análise Diferencial de Escoamentos de Fluidos

Análise Diferencial de Escoamentos de Fluidos 12ª aula PME 3230 2016 Análise Diferencial de Escoamentos de Fluidos Prof. Dr. Marcos Tadeu Pereira Equações com Volume de Controle (VC) para Leis de Conservação de Massa, de Energia e de Quantidade de

Leia mais

Disciplina: Sistemas Fluidomecânicos. Equação da Quantidade de Movimento para Regime Permanente

Disciplina: Sistemas Fluidomecânicos. Equação da Quantidade de Movimento para Regime Permanente Disciplina: Sistemas Fluidomecânicos Equação da Quantidade de Movimento para Regime Permanente Introdução A revisão de Mecânica dos Fluidos discorreu, entre outros tópicos, sobre como é realizado o balanceamento

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análise através de volume de controle Conservação da quantidade de movimento EM-54 enômenos de Transporte Estudo de um volume de controle No estudo termodinâmico de um sistema o interesse se

Leia mais

Departamento de Engenharia Mecânica. ENG Fenômenos de Transporte I

Departamento de Engenharia Mecânica. ENG Fenômenos de Transporte I Departamento de Engenharia Mecânica ENG1011 - Fenômenos de Transporte I Aula 1: Introdução e Manometria O que é um fluido? Área de aplicação da Mecânica de Fluidos Formulação (leis de conservação; leis

Leia mais

Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular

Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular 1. (Petrobrás/2010) Um oleoduto com 6 km de comprimento e diâmetro uniforme opera com um gradiente de pressão de 40 Pa/m transportando

Leia mais

LOQ Fenômenos de Transporte I. FT I 03 Tensão e viscosidade. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL

LOQ Fenômenos de Transporte I. FT I 03 Tensão e viscosidade. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL LOQ 4083 - Fenômenos de Transporte I FT I 03 Tensão e viscosidade Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como

Leia mais

Fenômenos de Transporte Aula 1. Professor: Gustavo Silva

Fenômenos de Transporte Aula 1. Professor: Gustavo Silva Fenômenos de Transporte Aula 1 Professor: Gustavo Silva 1 Propriedades dos fluidos; teorema de Stevin; lei de Pascal; equação manométrica; número de Reynolds; equação da continuidade; balanço de massa

Leia mais

Disciplina : Termodinâmica. Aula 10 Análise da massa e energia aplicadas a volumes de controle

Disciplina : Termodinâmica. Aula 10 Análise da massa e energia aplicadas a volumes de controle Disciplina : Termodinâmica Aula 10 Análise da massa e energia aplicadas a volumes de controle Prof. Evandro Rodrigo Dário, Dr. Eng. Conservação da Massa A massa, assim como a energia, é uma propriedade

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 10 ESCOAMENTO INTERNO INCOMPRESSÍVEL PROF.: KAIO DUTRA Escoamento Interno e Externo Escoamentos internos ou em dutos: São escoamentos completamente envoltos por superfícies

Leia mais

W sen = v h A. Considerando o somatório das forças: Vamos calcular o número de Reynolds: F 2 Re=1264 5, Re=28

W sen = v h A. Considerando o somatório das forças: Vamos calcular o número de Reynolds: F 2 Re=1264 5, Re=28 Exercícios da lista do Módulo 1 [5] Na figura ao lado, se o fluido é a glicerina a ⁰ C e a largura entre as placas é 6 mm, qual a tensão de cisalhamento necessária (em Pa) para mover a placa superior a

Leia mais

ESTUDO DA EQUAÇÃO DE NAVIER-STOKES UTILIZADA NA EQUAÇÃO DA ENERGIA CINÉTICA TURBULENTA DA CLC. 1

ESTUDO DA EQUAÇÃO DE NAVIER-STOKES UTILIZADA NA EQUAÇÃO DA ENERGIA CINÉTICA TURBULENTA DA CLC. 1 ESTUDO DA EQUAÇÃO DE NAVIER-STOKES UTILIZADA NA EQUAÇÃO DA ENERGIA CINÉTICA TURBULENTA DA CLC. 1 1. INTRODUÇÃO Este trabalho é um estudo preliminar, através de uma bolsa de Iniciação à Pesquisa 1, das

Leia mais

Dinâmica da partícula fluida

Dinâmica da partícula fluida Dinâmica da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Dinâmica da partícula fluida 1 / 14 Sumário 1 Tipo de forças 2 Dinâmica da partícula

Leia mais

Fundamentos da Mecânica dos Fluidos

Fundamentos da Mecânica dos Fluidos Fundamentos da Mecânica dos Fluidos 1 - Introdução 1.1. Algumas Características dos Fluidos 1.2. Dimensões, Homogeneidade Dimensional e Unidades 1.2.1. Sistemas de Unidades 1.3. Análise do Comportamentos

Leia mais

Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014. Conservação de Quantidade de Movimento

Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014. Conservação de Quantidade de Movimento Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014 Conservação de Quantidade de Movimento 1. A componente de velocidade v y de um escoamento bi-dimensional,

Leia mais

AULA DO CAP. 15-2ª Parte Fluidos Ideais em Movimento DANIEL BERNOULLI ( )

AULA DO CAP. 15-2ª Parte Fluidos Ideais em Movimento DANIEL BERNOULLI ( ) AULA DO CAP. 15-2ª Parte Fluidos Ideais em Movimento DANIEL BERNOULLI (1700-1782) Radicada em Basiléia, Suíça, a família Bernoulli (ou Bernouilli) tem um papel de destaque nos meios científicos dos séculos

Leia mais

Mecânica dos Fluidos

Mecânica dos Fluidos Mecânica dos Fluidos Cinemática dos Fluidos: Escoamento e Balanços Prof. Universidade Federal do Pampa BA000200 Campus Bagé 27 e 28 de março de 2017 Cinemática dos Fluidos, Parte 1 1 / 35 Escoamento de

Leia mais

onde v m é a velocidade média do escoamento. O 2

onde v m é a velocidade média do escoamento. O 2 Exercício 24: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de 2 m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo

Leia mais

Análise Diferencial de Escoamentos de Fluidos

Análise Diferencial de Escoamentos de Fluidos 11ª aula PME 3222 2017 Análise Diferencial de Escoamentos de Fluidos Prof. Dr. Marcos Tadeu Pereira Equações com Volume de Controle (VC) para Leis de Conservação de Massa, de Energia e de Quantidade de

Leia mais

ASPECTOS MATEMÁTICOS DAS EQUAÇÕES

ASPECTOS MATEMÁTICOS DAS EQUAÇÕES ASPECTOS MATEMÁTICOS DAS EQUAÇÕES Classificações: Ordem: definida pela derivada de maior ordem Dimensão: em função de x, y e z (Ex. 1D, D ou 3D) Tipos de fenômenos 1. Transiente; e. Estacionário, ou permanente.

Leia mais

RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS

RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS RESUMO MECFLU P3 REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS Equação do Teorema do Transporte de Reynolds: : variação temporal da propriedade

Leia mais

Hidrodinâmica. Profª. Priscila Alves

Hidrodinâmica. Profª. Priscila Alves Hidrodinâmica Profª. Priscila Alves priscila@demar.eel.usp.br Objetivos Apresentar e discutir as equações básicas que regem a mecânica dos fluidos, tal como: Equações do movimento. Equação da continuidade.

Leia mais

AS LEIS DA CONSERVAÇÃO NA ABORDAGEM MACROSCÓPICA

AS LEIS DA CONSERVAÇÃO NA ABORDAGEM MACROSCÓPICA CENTRO DE ENSINO SUPERIOR DO MPÁ S LEIS D CONSERVÇÃO N BORDGEM MCROSCÓPIC Disciplina: Fenômenos de Transporte Professor: Dr. Jonathan Castro manajás MCPÁ - P - OUT/016 - Conservação da massa Especifica

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos

Leia mais

Conservação da energia em forma integral

Conservação da energia em forma integral Conservação da energia em forma integral J. L. Baliño Departamento de Engenharia Mecânica Escola Politécnica - Universidade de São Paulo Apostila de aula Conservação da energia em forma integral 1 / 19

Leia mais

Hidrodinâmica: Fluidos em Movimento

Hidrodinâmica: Fluidos em Movimento Hidrodinâmica: Fluidos em Movimento Renato Akio Ikeoka FLUIDOS EM MOVIMENTO Fluido subdivisão de elementos de volume suficientemente pequenos para que possamos tratar cada um deles como uma partícula e

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - Fenômenos de Transporte I FT I 09 Primeira Lei da Termodinâmica Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir

Leia mais

Disciplina: Sistemas Fluidomecânicos. Análise de Turbomáquinas

Disciplina: Sistemas Fluidomecânicos. Análise de Turbomáquinas Disciplina: Sistemas Fluidomecânicos Análise de Turbomáquinas Análise de Turbomáquinas O método empregado para a análise de turbomáquinas depende essencialmente dos dados a serem obtidos. Volume de controle

Leia mais

Disciplina: Sistemas Fluidomecânicos

Disciplina: Sistemas Fluidomecânicos Disciplina: Sistemas Fluidomecânicos Mecânica dos Fluidos: Revisão Definições, Propriedades dos Fluidos, Estática dos Fluidos, Cinemática dos Fluidos, Equação da Energia para Regime Permanente. Definição

Leia mais

Questões de Concursos Mecânica dos Fluidos

Questões de Concursos Mecânica dos Fluidos Questões de Concursos Mecânica dos Fluidos G I OVA N I ZABOT O conteúdo destes slides destina-se a estudantes que estão estudando para participarem de concursos na área de Engenharia. A exclusividade deste

Leia mais

Por isso, quem mata o tempo é suicida! Aula 3 de FT

Por isso, quem mata o tempo é suicida! Aula 3 de FT Por isso, quem mata o tempo é suicida! Aula 3 de FT Quais são os tipos de tensões? O quociente força pela área da superfície onde ela é exercida é denominado de tensão. Consequências! Na mecânica as principais

Leia mais

Campus de Ilha Solteira. Disciplina: Fenômenos de Transporte

Campus de Ilha Solteira. Disciplina: Fenômenos de Transporte Campus de Ilha Solteira CONCEITOS BÁSICOS B E VISCOSIDADE Disciplina: Fenômenos de Transporte Professor: Dr. Tsunao Matsumoto INTRODUÇÃO A matéria de Fenômenos de Transporte busca as explicações de como

Leia mais

MECÂNICA DOS FLUIDOS AED-01

MECÂNICA DOS FLUIDOS AED-01 MECÂNICA DOS FLUIDOS AED-01 BIBLIOGRAFIA parte 1 Fluid Mechanics Frank M. White Fundamentals of Aerodynamics John D. Anderson, Jr Boundary Layer Theory H. Schlichting TÓPICOS PRINCIPAIS Princípios e Equações

Leia mais

Física I 2010/2011. Aula 19. Mecânica de Fluidos II

Física I 2010/2011. Aula 19. Mecânica de Fluidos II Física I 2010/2011 Aula 19 Mecânica de Fluidos II Fluidos Capítulo 14: Fluidos 14-7 Fluidos Ideais em Movimento 14-8 A Equação da Continuidade 14-9 O Princípio de Bernoulli 2 Tipos de Fluxo ou Caudal de

Leia mais

FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1

FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1 FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1 PROF.: KAIO DUTRA Definição de Um Fluido Definição elementar: Fluido é uma substância que não tem uma forma própria, assume o formato do meio. Definição

Leia mais

Hidrodinâmica. dm dt. d dt FORMA INTEGRAL DA EQUAÇÃO DA CONTINUIDADE (CONSERVAÇÃO DE MASSA): Mecânica dos Fluidos - Professor Eduardo Loureiro

Hidrodinâmica. dm dt. d dt FORMA INTEGRAL DA EQUAÇÃO DA CONTINUIDADE (CONSERVAÇÃO DE MASSA): Mecânica dos Fluidos - Professor Eduardo Loureiro FORMA INTEGRAL DA EQUAÇÃO DA CONTINUIDADE (CONSERVAÇÃO DE MASSA): Considere um Volume de Controle indeformável (Região II) A Região I é definida de tal forma que sua massa entra no V.C. no intervalo de

Leia mais

Equações de Navier-Stokes

Equações de Navier-Stokes Equações de Navier-Stokes J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Equações de Navier-Stokes 1 / 16 Sumário 1 Relações constitutivas 2 Conservação do momento

Leia mais

ENADE /08/2017 FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE MASSA ESPECÍFICA ( )

ENADE /08/2017 FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE FENÔMENOS DE TRANSPORTE MASSA ESPECÍFICA ( ) ENADE 2017.2 MASSA ESPECÍFICA ( ) DENSIDADE (d) É definida como a razão entre a massa dividida por unidade de volume de um material contínuo e homogêneo. É definida como a razão entre a massa dividida

Leia mais

FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos

FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos Definição e Conceitos Fundamentais dos Fluidos Matéria Sólidos Fluidos possuem forma própria (rigidez) não possuem forma própria; tomam a forma do recipiente que os contém Fluidos Líquidos Gases fluidos

Leia mais

Regime Permanente. t t

Regime Permanente. t t Regime ermanente ω t t 0 0 t Regime Transiente ω t0 t 0 t Escoamento Uniforme/variado Escoamento Uniforme/variado Escoamento Variado Escoamentos Escoamento Irrotacional V V iˆ V ˆ j V kˆ campo vetorial

Leia mais

Introdução aos Fenômenos de Transporte

Introdução aos Fenômenos de Transporte aos Fenômenos de Transporte Aula 2 - Mecânica dos fluidos Engenharia de Produção 2012/1 aos Fenômenos de Transporte O conceito de fluido Dois pontos de vista: Macroscópico: observação da matéria do ponto

Leia mais

Objetivos. Escoamento de um fluido. O aluno deverá ser capaz de: Introduzir noções acerca do movimento dos fluidos.

Objetivos. Escoamento de um fluido. O aluno deverá ser capaz de: Introduzir noções acerca do movimento dos fluidos. Introdução à hidrodinâmica MÓDULO 1 - AULA 3 Aula 3 Introdução à hidrodinâmica Objetivos O aluno deverá ser capaz de: Introduzir noções acerca do movimento dos fluidos. Estabelecer critérios para o estudo

Leia mais

Capítulo 2 - Hidrodinâmica

Capítulo 2 - Hidrodinâmica Capítulo 2 - Hidrodinâmica Para se descrever o escoamento de um fluido usa-se, comumente, o método de Euler que fixa um ponto do fluido e acompanha a evolução da velocidade com o tempo Chamamos de linha

Leia mais

HIDROSTÁTICA. Priscila Alves

HIDROSTÁTICA. Priscila Alves HIDROSTÁTICA Priscila Alves priscila@demar.eel.usp.br OBJETIVOS Exemplos a respeito da Lei de Newton para viscosidade. Variação da pressão em função da altura. Estática dos fluidos. Atividade de fixação.

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Questão 1. O escoamento no tubo na figura abaixo enche um tanque de armazenagem cilíndrico conforme mostrado. No tempo t = 0, a profundidade da água é 30 cm. Calcule o tempo necessário

Leia mais

FENÔMENOS DE TRANSPORTES AULA 2 FLUIDOS PARTE 2

FENÔMENOS DE TRANSPORTES AULA 2 FLUIDOS PARTE 2 FENÔMENOS DE TRANSPORTES AULA 2 FLUIDOS PARTE 2 PROF.: KAIO DUTRA Fluido Como um Contínuo Se isolarmos um volume no espaço de ar de 0,001 mm³ (em torno do tamanho de um grão de areia), existirão em média

Leia mais

onde v m é a velocidade média do escoamento. O 2

onde v m é a velocidade média do escoamento. O 2 Exercício 41: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo de

Leia mais

CAPÍTULO VI: HIDRODINÂMICA

CAPÍTULO VI: HIDRODINÂMICA CAPÍTULO VI: HIDRODINÂMICA Aula 01 Equação de Euler Hipóteses Simplificadoras para a dedução da Equação de Bernoulli Equação de Bernoulli Significado dos termos da Equação de Bernoulli Representação gráfica

Leia mais

Fenômeno de Transportes A PROFª. PRISCILA ALVES

Fenômeno de Transportes A PROFª. PRISCILA ALVES Fenômeno de Transportes A PROFª. PRISCILA ALVES PRISCILA@DEMAR.EEL.USP.BR Proposta do Curso Critérios de Avaliação e Recuperação Outras atividades avaliativas Atividades experimentais: Será desenvolvida

Leia mais

ESTE Aula 2- Introdução à convecção. As equações de camada limite

ESTE Aula 2- Introdução à convecção. As equações de camada limite Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:

Leia mais

Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos

Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I Aula 4: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos A pressão gerada no interior de um fluido estático

Leia mais

1. BASES CONCEITUAIS PARA O ESTUDO DOS FENÔMENOS DE TRANSPORTE

1. BASES CONCEITUAIS PARA O ESTUDO DOS FENÔMENOS DE TRANSPORTE 1. BASES CONCEITUAIS PARA O ESTUDO DOS FENÔMENOS DE TRANSPORTE Duas placas paralelas Substância entre as placas (placa inferior fixa) Força aplicada na placa superior Tensão de cisalhamento F/A (A... área

Leia mais

MÓDULO 1 Equação da Quantidade de Movimento

MÓDULO 1 Equação da Quantidade de Movimento MÓDULO 1 Equação da Quantidade de Movimento A equação da quantidade de movimento é a 2ª Lei de Newton da dinâmica modificada funcionalmente para o estudo da Mecânica dos Fluidos. Segundo essa Lei a aceleração

Leia mais

F A. Existe um grande número de equipamentos para a medida de viscosidade de fluidos e que podem ser subdivididos em grupos conforme descrito abaixo:

F A. Existe um grande número de equipamentos para a medida de viscosidade de fluidos e que podem ser subdivididos em grupos conforme descrito abaixo: Laboratório de Medidas de Viscosidade Nome: n turma: Da definição de fluido sabe-se que quando se aplica um esforço tangencial em um elemento de fluido ocorre uma deformação. Considere a situação em que

Leia mais

CONCURSO PÚBLICO EDITAL Nº 03 / 2015

CONCURSO PÚBLICO EDITAL Nº 03 / 2015 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA Avenida Rio Branco, 50 Santa Lúcia 29056-255 Vitória ES 27 3357-7500 CONCURSO PÚBLICO EDITAL Nº 03 / 2015 Professor do Magistério do

Leia mais

Décima aula de FT. Segundo semestre de 2013

Décima aula de FT. Segundo semestre de 2013 Décima aula de FT Segundo semestre de 2013 Vamos eliminar a hipótese do fluido ideal! Por que? Simplesmente porque não existem fluidos sem viscosidade e para mostrar que isto elimina uma situação impossível,

Leia mais

SELEÇÃO DE BOMBAS HIDRÁULICAS

SELEÇÃO DE BOMBAS HIDRÁULICAS SELEÇÃO DE BOMBAS HIDRÁULICAS Prof. Jesué Graciliano da Silva https://jesuegraciliano.wordpress.com/aulas/mecanica-dos-fluidos/ 1- EQUAÇÃO DE BERNOULLI A equação de Bernoulli é fundamental para a análise

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO 1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB 047 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 3 ROTEIRO Tópicos da aula 3:

Leia mais

Fluidos - Dinâmica. Estudo: Equação da Continuidade Equação de Bernoulli Aplicações

Fluidos - Dinâmica. Estudo: Equação da Continuidade Equação de Bernoulli Aplicações Fluidos - Dinâmica Estudo: Equação da Continuidade Equação de Bernoulli Aplicações Dinâmica em Fluido Ideal Nosso fluido ideal satisfaz a quatro requisitos: 1. Escoamento laminar: a velocidade do fluido

Leia mais

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 3. Leandro Franco de Souza. Leandro Franco de Souza p.

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 3. Leandro Franco de Souza. Leandro Franco de Souza p. Leandro Franco de Souza lefraso@icmc.usp.br p. 1/2 0.5 setgray0 0.5 setgray1 Mecânica dos Fluidos Computacional Aula 3 Leandro Franco de Souza Leandro Franco de Souza lefraso@icmc.usp.br p. 2/2 Fluido

Leia mais

Estática dos Fluidos. PMC 3230 Prof. Marcos Tadeu Pereira

Estática dos Fluidos. PMC 3230 Prof. Marcos Tadeu Pereira Estática dos Fluidos PMC 3230 Prof. Marcos Tadeu Pereira Estática dos fluidos Objeto: estudo dos fluidos em repouso Objetivo: Análise das pressões e sua variação e distribuição no interior do fluido e

Leia mais

Laboratório de Engenharia Química I Aula Prática 05. Medidas de vazão em líquidos mediante o uso da Placa de Orifício, Venturi e Rotâmetro.

Laboratório de Engenharia Química I Aula Prática 05. Medidas de vazão em líquidos mediante o uso da Placa de Orifício, Venturi e Rotâmetro. Laboratório de Engenharia Química I Aula Prática 05 Medidas de vazão em líquidos mediante o uso da Placa de Orifício, Venturi e Rotâmetro. Prof. Dr. Gilberto Garcia Cortez - Introdução O experimento consiste

Leia mais

PME ª aula. Teorema de Transporte de Reynolds e Leis Integrais EQUAÇÃO DA QUANTIDADE DE MOVIMENTO

PME ª aula. Teorema de Transporte de Reynolds e Leis Integrais EQUAÇÃO DA QUANTIDADE DE MOVIMENTO PME3222 10ª aula Teorema de Transporte de Reynolds e Leis Integrais EQUAÇÃO DA QUANTIDADE DE MOVIMENTO Prof. Marcos Tadeu Pereira, 2017 Equação da Quantidade de Movimento na forma integral 2 a Lei de Newton:

Leia mais

LOQ Fenômenos de Transporte I. FT I 02 Conceitos básicos. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL

LOQ Fenômenos de Transporte I. FT I 02 Conceitos básicos. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL LOQ 4083 - Fenômenos de Transporte I FT I 02 Conceitos básicos Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como roteiro

Leia mais

+ MECÂNICA DOS FLUIDOS. n DEFINIÇÃO. n Estudo do escoamento de li quidos e gases (tanques e tubulações) n Pneuma tica e hidraúlica industrial

+ MECÂNICA DOS FLUIDOS. n DEFINIÇÃO. n Estudo do escoamento de li quidos e gases (tanques e tubulações) n Pneuma tica e hidraúlica industrial Mecânica Sólidos INTRODUÇÃO MECÂNICA DOS FLUIDOS FBT0530 - FÍSICA INDUSTRIAL PROFA. JULIANA RACT PROFA. MARINA ISHII 2018 Fluidos O que é um fluido? MECÂNICA DOS FLUIDOS PROPRIEDADE SÓLIDOS LÍQUIDOS GASES

Leia mais

Fluidodinâmica. Carlos Marlon Santos

Fluidodinâmica. Carlos Marlon Santos Fluidodinâmica Carlos Marlon Santos Fluidodinâmica Os fluidos podem ser analisados utilizando-se o conceito de sistema ou de volume de controle O sistema é definido quando uma certa quantidade de matéria

Leia mais

Estática dos Fluidos PME/EP/USP. Prof. Antonio Luiz Pacífico. PME Mecânica dos Fluidos I. 2 Semestre de 2016

Estática dos Fluidos PME/EP/USP. Prof. Antonio Luiz Pacífico. PME Mecânica dos Fluidos I. 2 Semestre de 2016 Estática dos Fluidos PME 3230 - Mecânica dos Fluidos I PME/EP/USP Prof. Antonio Luiz Pacífico 2 Semestre de 2016 PME 3230 - Mecânica dos Fluidos I (EP-PME) Estática 2 Semestre de 2016 1 / 23 Conteúdo da

Leia mais

Equações de Navier-Stokes

Equações de Navier-Stokes Equações de Navier-Stokes Para um fluido em movimento, a pressão (componente normal da força de superfície) é diferente da pressão termodinâmica: p " # 1 3 tr T p é invariante a rotação dos eixos de coordenadas,

Leia mais

Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA

Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA Introdução à Lubrificação Lubrificação É o fenômeno de redução do atrito entre duas superfícies em movimento relativo por meio

Leia mais

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 2: Hidrodinâmica

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 2: Hidrodinâmica UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 2: Hidrodinâmica Definições Escoamento laminar (ou constante). É quando cada partícula do fluido possui uma trajetória suave, de modo que as trajetórias

Leia mais

3.1. Conservação da Massa

3.1. Conservação da Massa 3 Modelo Matemático A mecânica dos fluidos é, no vasto campo da mecânica aplicada, a disciplina que se dedica ao estudo do comportamento dos fluidos, em repouso e em movimento. A disciplina da mecânica

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE ATIVIDADE SEGUNDA AVALIAÇÃO

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE ATIVIDADE SEGUNDA AVALIAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE ATIVIDADE SEGUNDA AVALIAÇÃO 1 1) Considere o escoamento de ar em torno do motociclista que se move em

Leia mais

ALGUNS FUNDAMENTOS MICROFLUÍDICA

ALGUNS FUNDAMENTOS MICROFLUÍDICA ALGUNS FUNDAMENTOS DE MICROFLUÍDICA INTRODUÇÃO TRANSFERÊNCIA DE MOMENTUM Estudo do movimento dos fluidos e das forças que produzem esse movimento. Fluido Definição: Fluido é uma substância que se deforma

Leia mais

Dinâmica dos Fluidos Elementar e Equação de Bernoulli

Dinâmica dos Fluidos Elementar e Equação de Bernoulli Dinâmica dos Fluidos Elementar e Equação de Bernoulli PME 3230 - Mecânica dos Fluidos I PME/EP/USP Prof. Antonio Luiz Pacífico 2 Semestre de 2016 PME 3230 - Mecânica dos Fluidos I (EP-PME) Bernoulli 2

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II 1 - Objetivos Gerais: Viscosidade Estudo da velocidade terminal de uma esfera num líquido; Determinação da viscosidade do líquido em estudo; *Anote a incerteza dos instrumentos de medida utilizados: ap

Leia mais

Disciplina : Mecânica dos fluidos. Aula 3: Conceitos fundamentais

Disciplina : Mecânica dos fluidos. Aula 3: Conceitos fundamentais Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos Aula 3: Conceitos fundamentais Prof. Evandro Rodrigo Dário, Dr. Eng. Campo de Tensão Cada partícula fluida pode sofrer a ação de dois tipos

Leia mais

Mas Da figura, temos:

Mas Da figura, temos: 1. Na tubulação da figura 1, óleo cru escoa com velocidade de 2,4 m/s no ponto A; calcule até onde o nível de óleo chegará no tubo aberto C. (Fig.1). Calcule também a vazão mássica e volumétrica do óleo.

Leia mais

A viscosidade 35 Grandeza física transporta e sentido da transferência 35 Experiência 03: o modelo do baralho 35 Modelo de escoamento em regime

A viscosidade 35 Grandeza física transporta e sentido da transferência 35 Experiência 03: o modelo do baralho 35 Modelo de escoamento em regime SUMÁRIO I. Introdução Portfolio de Fenômenos de Transporte I 1 Algumas palavras introdutórias 2 Problema 1: senso comum ciência 4 Uma pequena história sobre o nascimento da ciência 5 Das Verdades científicas

Leia mais

Escoamento interno viscoso e incompressível

Escoamento interno viscoso e incompressível Escoamento interno viscoso e incompressível Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de 200 Sumário o conceito de desenvolvimento

Leia mais

Introdução à Mecânica dos Fluidos

Introdução à Mecânica dos Fluidos Introdução à Mecânica dos Fluidos Definição de Fluido A mecânica dos fluidos lida com o comportamento dos fluidos em repouso e em movimento. Um fluido é uma substância que se deforma continuamente sob

Leia mais

MODELAGEM MATEMÁTICA DE UM PROLEMA DE INTERAÇÃO ESCOAMENTO-DEFLEXÃO

MODELAGEM MATEMÁTICA DE UM PROLEMA DE INTERAÇÃO ESCOAMENTO-DEFLEXÃO MODELAGEM MATEMÁTICA DE UM PROLEMA DE INTERAÇÃO ESCOAMENTO-DEFLEXÃO Resumo Hudison Loch Haskel (UNICENTRO) Marcia da Costa (UNICENTRO) Afonso Chimanski (UNICENTRO) Márcio André Martins (UNICENTRO) Maria

Leia mais

PROGRAMA DE ENSINO CRÉDITOS CARGA HORÁRIA DISTRIBUIÇÃO DA CARGA HORÁRIA TOTAL TEÓRICA PRÁTICA TEÓRICO- PRÁTICA

PROGRAMA DE ENSINO CRÉDITOS CARGA HORÁRIA DISTRIBUIÇÃO DA CARGA HORÁRIA TOTAL TEÓRICA PRÁTICA TEÓRICO- PRÁTICA PROGRAMA DE ENSINO UNIDADE UNIVERSITÁRIA: UNESP CÂMPUS DE ILHA SOLTEIRA CURSO: ENGENHARIA MECÂNICA (Resolução UNESP n O 74/2004 - Currículo: 4) HABILITAÇÃO: OPÇÃO: DEPARTAMENTO RESPONSÁVEL: Engenharia

Leia mais

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente.

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. RESUMO MECFLU P2 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. Hipóteses Fluido invíscido (viscosidade nula) não ocorre perda de energia. Fluido incompressível

Leia mais

Fenômenos de Transporte Departamento de Engenharia Mecânica Angela Ourivio Nieckele

Fenômenos de Transporte Departamento de Engenharia Mecânica Angela Ourivio Nieckele Fenômenos de Transporte 2014-1 Departamento de Engenharia Mecânica Angela Ourivio Nieckele sala 163- L ramal 1182 e-mail: nieckele@puc-rio.br Site: http://mecflu2.usuarios.rdc.puc-rio.br/fentran_eng1011.htm

Leia mais

FENÔMENOS DE TRANSPORTE

FENÔMENOS DE TRANSPORTE Universidade Federal Fluminense FENÔMENOS DE TRANSPORTE Aula 2 Campo de Velocidade e Propriedades Prof.: Gabriel Nascimento (Depto. de Eng. Agrícola e Meio Ambiente) Elson Nascimento (Depto. de Eng. Civil)

Leia mais

Resistência dos Materiais AULA 1-2: TENSÃO

Resistência dos Materiais AULA 1-2: TENSÃO Resistência dos Materiais AULA 1-2: TENSÃO PROF.: KAIO DUTRA Bibliografia Resistência dos Materiais HIBBELER, R.C. Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre

Leia mais

DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS

DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS Nome: unesp DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS Turma: Conservação da Massa e Quantidade de Movimento 1 - OBJETIVO Os principais objetivos desta aula prática é aplicar as equações

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Convecção Natural - Parte 1 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Arrasto viscoso e de pressão Arrasto total Campo de escoamento Linhas de corrente: definidas como a linha contínua que é tangente aos vetores velocidade ao

Leia mais

Escoamento em uma curva:

Escoamento em uma curva: Escoamento em uma curva: A vazão de ar nas condições padrões, num duto plano, deve ser determinada pela instalação de tomadas de pressão numa curva. O duto tem 0,3 m de profundidade por 0,1 m de largura.

Leia mais

Fenômenos de Transporte I Aula 01

Fenômenos de Transporte I Aula 01 Fenômenos de Transporte I Aula 01 O que são fluidos. Propriedades: tensão de cisalhamento, massa específica, peso específico, densidade relativa e viscosidade [1] BRUNETTI, F., Mecânica dos Fluidos, 2ª

Leia mais

Cinemática da partícula fluida

Cinemática da partícula fluida Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática

Leia mais