Capítulo 06. Raízes: Métodos Abertos

Tamanho: px
Começar a partir da página:

Download "Capítulo 06. Raízes: Métodos Abertos"

Transcrição

1 Capítulo 06 Raízes: Métodos Abertos

2 Objetivos do capítulo Reconhecer a diferença entre os métodos intervalares e os métodos abertos para localização de raízes. Compreender o método de iteração de ponto fio e como se pode avaliar suas características de convergência. Aprender como resolver um problema de raízes com o método de Newton-Raphson e apreciar o conceito de convergência quadrática. Saber como implementar os métodos da secante e da secante modificada. Entender o método de Brent. Aprender como usar a função fzero do MATLAB.

3 Introdução Métodos intervalares: A raiz era localizada dentro de um intervalo. Tais métodos são ditos convergentes porque sempre se aproimam do valor verdadeiro da raiz a medida que os cálculos prosseguem.

4 Introdução Métodos Abertos: São baseados em fórmulas que eigem apenas um único valor inicial de ou dois valores que não delimitam necessariamente a raiz. Algumas vezes divergem ou se afastam da raiz verdadeira à medida que os cálculos prosseguem. Entretanto, quando os métodos abertos convergem, em geral o fazem muito mais rapidamente que os métodos intervalares.

5 Iteração de ponto fio simples A iteração de ponto fio simples consiste em reescrever a função f() = 0 de forma que esteja isolado no lado esquerdo da equação. g Isso pode ser feito por manipulação algébrica ou simplesmente somando em ambos os lados da equação. Desta forma, para encontrar um novo valor para faremos: i1 g i O erro aproimado será calculado da mesma maneira. a i1 i1 i 100%

6 Eemplo Use a iteração de ponto fio simples para localizar a raiz de: Isolando temos: f e i 1 Começando com o = 0 temos: e i i i a %

7 Determinação Gráfica da Raiz Temos dois métodos alternativos para visualizar graficamente as raízes. 1. Raiz em um ponto onde o gráfico cruza o eio. f e 2. (Método das duas curvas) Raiz na intersecção das funções componentes. f 1 2 f e

8 Convergência No método das duas curvas traçadas separadamente as raízes de f 0 correspondem aos valores da abscissa na intersecção das curvas: f ( ) y 1 1 f y g 2 2 Esse método pode ser usado para ilustrar a convergência ou divergência do método do ponto fio

9 Convergência Eemplo de convergência da iteração por ponto fio simples. Observe que g () < 1.

10 Convergência Eemplo de convergência da iteração por ponto fio simples. Observe que g () < 1.

11 Convergência Eemplo de divergência da iteração por ponto fio simples. Observe que g () > 1.

12 Convergência Eemplo de convergência da iteração por ponto fio simples. Observe que g () > 1.

13 Variáveis Simbólicas no MATLAB No MATLAB para trabalhar com variáveis simbólicas devemos defini-las antecipadamente com o comando: syms Esse comando permite realizarmos cálculos usando letras como variáveis. Eemplos: >> syms y >> 2* + 3*y + 5* - 4*y ans = 7* - y >> diff(^2-2*) ans = 2* 2 >> diff(cos() + 5*^6) ans = 5 -sin() + 30* Esta técnica será necessária pois o método de Newton-Rapshon necessita da derivada de f.

14 Método de Newton-Raphson Método mais utilizado para encontrar raízes. A partir da aproimação 1 traçamos uma reta tangente. A nova aproimação é o ponto onde esta reta cruza o eio das abscissas. i 1 i ' f( ) f i ( ) i

15 Newton-Raphson - Eemplo Use o método de Newton-Raphson para estimar a raiz da função abaio. 0 0 f e Temos: Logo: f ' e 1 e i i e i 1 i1 i

16 Newton-Raphson - Eemplo Use o método de Newton-Raphson para estimar a raiz da função abaio. 0 0 f e Temos: i i Erro , % 2 0, ,7% 3 0, ,147% 4 0, ,000%

17 Newton-Raphson - Eemplo Em geral o método de Newton-Raphson é muito eficiente. Há situações nas quais tem um desempenho fraco. Use o método de Newton-Raphson para estimar a raiz da função abaio. 10 f 1 0,5 9 Temos: f ' 10 0 Logo: 10 i i1 i 10 9 i 1

18 Newton-Raphson - Eemplo Use o método de Newton-Raphson para estimar a raiz da função abaio. 10 f 1 Que pode ser usada para calcular: Por que isso acontece? i i Erro 0 0,5 1 51,65 99,032% 2 46,485 11,111% 3 41, ,111% 4 37, ,111% , ,130% 41 1, ,229% ,002%

19 Newton-Raphson - Eemplo Descrição gráfica do método de Newton-Raphson para um caso com convergência lenta. A seta na aproimação inicial (o = 0,5) mostra como uma inclinação próima de zero inicialmente joga a solução para longe da raiz. Depois disso, a solução converge muito lentamente para a raiz. f 10 1

20 Newton-Raphson Eemplo de convergência insatisfatória 01 Ocorre um ponto de infleão, isto é, f () = 0 na vizinhança de uma raiz. As iterações começam em o e se afastam progressivamente da raiz.

21 Newton-Raphson Eemplo de convergência insatisfatória 02 Ilustra a tendência da técnica de Newton-Raphson em oscilar em torno de uma posição de máimo ou mínimo. Tais oscilações podem persistir, ou, como na figura, atingir uma inclinação próima de zero, em que a solução é afastada da área de interesse.

22 Newton-Raphson Eemplo de convergência insatisfatória 03 Mostra uma aproimação inicial perto da raiz pular para uma posição longe de diversas raízes. Isso ocorre porque foram encontradas inclinações próimas de zero.

23 Newton-Raphson Eemplo de convergência insatisfatória 04 Uma inclinação nula (f () = 0) é um desastre, porque provoca a divisão por zero na fórmula. Isso significa geometricamente que a solução dispara horizontalmente e nunca atinge o eio.

24 Newton-Raphson Não eiste nenhum critério para garantir a convergência do método de Newton-Raphson. Sua convergência depende da natureza da função e do ponto inicial escolhido. A única solução é ter um aproimação inicial que esteja suficientemente perto da raiz. Para algumas funções, nenhuma aproimação funcionará.

25 Newton-Raphson - MATLAB function NewtonRaphson( f, df, r, es, mait ) %NewtonRaphson : Localização de Raízes através de Newton-Raphson %Entradas: % f: função (Função InLine) % df: Derivada da funçao f ( Função Inline) % r : Aproimação inicial % es : Erro relativo desejado ( padrão = 0,0001%) % mait : Número Máimo de Iterações Permitidas ( padrão = 50) if nargin < 3 error('são necessário no mínimo 3 parâmetros'); end if nargin < 4 es = ; end if nargin < 5 mait = 50; end end

26 Newton-Raphson - MATLAB function NewtonRaphson( f, df, r, es, mait ) it = 0; ea = 100; disp('*************************************************'); fprintf('iteração r Erro \n'); fprintf('%2d %8.4f %8.4f \n', it, r, ea); while (ea > es) && ( it < mait) it = it + 1; anterior = r; r = r - f(r)/df(r); if r ~= 0 ea = abs((r-anterior)/r*100); end fprintf('%2d %8.4f %8.4f \n', it, r, ea); end disp('*************************************************'); end

27 Newton-Raphson - Eemplo >> 10*^9, 0.5) Iteração r Erro Iteração r Erro Iteração r Erro

28 Método da Secante Um grande problema na implementação do método de Newton-Raphson é o cálculo de sua derivada. Para esses cálculos, a derivada pode ser aproimada pela fórmula: f ' f f i1 i1 Essa aproimação transforma o método de Newton-Raphson no método da secante com a seguinte equação: i1 i Observe que a fórmula eige duas estimativas iniciais de mas não é eigido que f() mude se sinal entre as estimativas. i i1 i f f f i1 i i i

29 Método da Secante Use o método da secante para f e i i Erro % % % %

30 Método da Secante Modificado Ao invés de usar dois valores arbitrários para estimar a derivada, uma alternativa envolve uma pequena perturbação da variável independente para estimar f (). f ' f f i i i Essa aproimação transforma o método da secante no método da secante modificado com a seguinte equação: i f i i1 i f i i f i Observe que a fórmula eige duas estimativas iniciais de mas não é eigido que f() mude se sinal entre as estimativas. i

31 Método da Secante Modificado A escolha do valor de δ não é automática. Se for muito pequeno, o método pode ser sobrecarregado por erros de arredondamento. Se for muito grande a técnica pode tornar-se ineficiente e mesmo divergente. Ele fornece uma alternativa para os casos nos quais o cálculo da derivada é difícil e encontrar duas aproimações é inconveniente.

32 Secante Modificado - Eemplo Use o método da secante modificado para determinar a massa do saltador de bungee-jumping com coeficiente de arrastre de 0,25 kg/m a fim de atingir uma velocidade de 36 m/s após 4 s de queda livre. Use g = 9,81. Use aproimação inicial o = 50 e uma valor de 10^(-6) para a fração de perturbação. 9.81m f( m) tanh m i f i i1 i f i i f i

33 Secante Modificado - Eemplo 9.81m f( m) tanh m i f i i1 i f i i f i o , I Xi Erro 0 50, , ,438% 2 124, ,762% 3 140, ,706% 4 142,7072 1,517% 5 142,7376 0,021% 6 142,7376 0,000%

34 Função do MATLAB - fzero A função fzero é projetada para encontrar uma raiz real de uma equação. Sua sintae básica é fzero(função, 0) Onde função é o nome ou a função a ser avaliada e 0 é a aproimação inicial. Observe que duas aproimações que delimitam a raiz podem ser passadas como um vetor. fzero(função, [0 1])

35 Função do MATLAB - fzero Eemplo: Calcular a raiz de uma equação quadrática simples f 2 ( ) 9 Claramente, eistem duas raízes, uma em -3 e outra em 3. >> = ^2-9, -4) = -3 >> = ^2-9, 4) = 3 >> = ^2-9, 0) = -3 >> = ^2-9, [0 4]) = 3 >> = ^2-9, [-4 4]) Error using fzero (line 274) The function values at the interval endpoints must differ in sign.

36 Função do MATLAB - fzero

37 Função do MATLAB - fzero Considere que se deseja utilizar um tolerância menor que a tolerância padrão que é de >> opcoes = optimset('tol', 0.001); >> ^2-9, 4, opcoes) ans =

38 Polinômios : roots Um polinômio é um tipo especial de epressão algébrica na forma: P a a... a a a n n 1 2 n n Os polinômios tem muitas aplicações na engenharia e na ciência:

39 Polinômios : roots O MATLAB possui uma função chamada roots que permite encontrar todas as raízes de um polinômio. A função roots tem a sintae = roots(c) Onde é um vetor coluna que contém as raízes e c é um vetor linha que contém os coeficientes do polinômio.

40 Polinômios : poly A função poly possui uma função inversa chamada poly que retorna os coeficientes de um polinômio quando passados os valores das raízes. A sintae é: c = poly(r) Onde r é um vetor coluna que contém as raízes e c é um vetor linha que contém os coeficientes do polinômio.

41 Trabalhando com Polinômios Dado o polinômio: P 3,5 2, 75 2,125 3,875 1, 25 Inserindo o polinômio no MATLAB >> a=[ ] Calcular o valor de P(1) >> polyval(a,1) ans =

Métodos Numéricos Zeros Newton-Raphson e Secante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros Newton-Raphson e Secante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros Newton-Raphson e Secante Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Método Newton Raphson 2 Método Newton-Raphson Dada uma função f( contínua num intervalo fechado

Leia mais

Capítulo 05. Raízes: étodos Intervalares

Capítulo 05. Raízes: étodos Intervalares Capítulo 05 Raízes: étodos Intervalares Objetivos do capítulo Entender o que são problemas de raízes e onde eles ocorrem m engenharia. Aprender como determinar uma raiz graficamente. Entender o método

Leia mais

Prof. MSc. David Roza José 1/37

Prof. MSc. David Roza José 1/37 1/37 Métodos Abertos Objetivos: Reconhecer as diferenças entre os métodos intervalados e abertos para a localização de raízes; Compreender o método da iteração de ponto-fixo e avaliar suas características

Leia mais

Pretende-se calcular uma aproximação para a menor raiz positiva da equação

Pretende-se calcular uma aproximação para a menor raiz positiva da equação 1 Prete-se calcular uma aproimação para a menor raiz positiva da equação, pelos métodos de Newton-Raphson e ponto fio. a) Localize um intervalo que contenha a menor raiz positiva da equação dada Determinar

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAIS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Equações Não Lineares 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Um tipo de problema bastante comum é o de achar raízes de equações da forma f() = 0, onde f() pode ser um

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Métodos Numéricos Professor Tenani - 3 / 42

Métodos Numéricos Professor Tenani -  3 / 42 Métodos Numéricos Professor Tenani - www.professortenani.com.br 1 / 42 Métodos Numéricos Professor Tenani - www.professortenani.com.br 2 / 42 Introdução Objetivos da Seção Entender o que são problemas

Leia mais

Semana 5 Zeros das Funções_2ª parte

Semana 5 Zeros das Funções_2ª parte 1 CÁLCULO NUMÉRICO Semana 5 Zeros das Funções_2ª parte Professor Luciano Nóbrega UNIDADE 1 2 LOCALIZAÇÃO DAS RAÍZES PELO MÉTODO GRÁFICO Vejamos dois procedimentos gráficos que podem ser utilizados para

Leia mais

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante Matemática Computacional 4) Equações e Sistemas Não Lineares Carlos Alberto Alonso Sanches Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson, Secante Introdução Ponto Fio Introdução Ponto Fio Raízes

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 4) Equações e Sistemas Não Lineares Biss ã P si ã F ls P nt Fi Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson,

Leia mais

Interpretação Geométrica

Interpretação Geométrica .. Método da Iteração Linear MIL Seja uma unção contínua em [a, com α [ a, tal que α. O Método de Iterações Lineares consiste em: a transormar a equação numa unção de iteração ϕ ; b adotar um valor inicial

Leia mais

Método de Newton. 1.Introdução 2.Exemplos

Método de Newton. 1.Introdução 2.Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:

Leia mais

Prof. MSc. David Roza José 1/35

Prof. MSc. David Roza José 1/35 1/35 Métodos Iterativos Objetivos: Compreender a diferença entre os métodos de Gauss-Seidel e Jacobi; Saber analisar a dominância diagonal e entender o quê significa; Reconhecer como a relaxação pode ser

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 Voltando ao eemplo da aula anterior, vemos que o ponto médio da primeira iteração 1 = 2,5

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

Parte 1: Exercícios Teóricos

Parte 1: Exercícios Teóricos Cálculo Numérico SME0104 ICMC-USP Lista 5: Zero de Funções Lembrete (informação que vai estar disponível na prova) Método de Newton Método da Secante x k+1 = x k f(x k) f (x k ), x k+1 = x k J 1 F (x k

Leia mais

Método da Secante Para Resolução de equações do tipo f(x)=0

Método da Secante Para Resolução de equações do tipo f(x)=0 Método da Secante Para Resolução de equações do tipo 0 Narã Vieira Vetter Guilherme Paiva Silva Santos Raael Pereira Marques naranvetter@walla.com guilherme.pss@terra.com.br rp_marques5@yahoo.com.br Associação

Leia mais

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

Aula 4 Derivadas _ 1ª Parte

Aula 4 Derivadas _ 1ª Parte 1 CÁLCULO DIFERENCIAL E INTEGRAL I Aula 4 Derivadas _ 1ª Parte Professor Luciano Nóbrega UNIDADE 1 DERIVADA CONHECIMENTOS PRÉVIOS 2 y y 0 INCLINAÇÃO DA RETA A inclinação de uma reta ou, em outras palavras,

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Proa. Dra. Yara de Souza Tadano yaratadano@utpr.edu.br Revisão Zeros de Funções A ideia central dos métodos que iremos aprender é partir de uma aproimação inicial para a raiz e em seguida

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA TÓPICOS A SEREM ABORDADOS O que é cinemática? Posição e Deslocamento

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 EXEMPLO 6 Aula anterior Aplicação do método da bissecção para: f ( ) = log 1, em[ 2,3] com

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Raízes de Equações não Lineares. Computação 2º Semestre 2016/2017

Raízes de Equações não Lineares. Computação 2º Semestre 2016/2017 Raízes de Equações não Lineares Computação º Semestre 01/017 Caso de Estudo Efeito de Estufa Efeito de Estufa Tem-se observado ao longo dos anos um aumento da pressão parcial do dióxido de carbono na atmosfera

Leia mais

Capítulo 04. Erros de arredondamento e Truncamento (Parcial)

Capítulo 04. Erros de arredondamento e Truncamento (Parcial) Capítulo 04 Erros de arredondamento e Truncamento (Parcial) Objetivos do capítulo Entender a diferença entre acurácia e precisão. Aprender como quantificar o erro. Aprender a usar estimativas de erros

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO

Leia mais

PROFESSOR: JARBAS 4 2 5

PROFESSOR: JARBAS 4 2 5 PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas

Leia mais

Resolução Numérica de Equações Parte I

Resolução Numérica de Equações Parte I Cálculo Numérico Resolução Numérica de Equações Parte I Prof Reinaldo Haas Cálculo Numérico Objetivos 2 Estudar métodos numéricos para a resolução de equações não lineares (determinar a(s) raiz(es) de

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Métodos Numéricos. Professor Tenani - 9 de Agosto de 2015

Métodos Numéricos. Professor Tenani -  9 de Agosto de 2015 Métodos Numéricos Professor Tenani - www.professortenani.com.br 9 de Agosto de 2015 Métodos Numéricos Professor Tenani - www.professortenani.com.br 1 / 51 Índice Métodos Numéricos Professor Tenani - www.professortenani.com.br

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Capítulo 19. Fórmulas de Integração Numérica

Capítulo 19. Fórmulas de Integração Numérica Capítulo 19 Fórmulas de Integração Numérica Você tem um problema Lembre-se que a velocidade de um saltador de bungee jumping em queda livre como uma função do tempo pode ser calculada como: v t gm gc.

Leia mais

Resolução Numérica de Equações (Parte II)

Resolução Numérica de Equações (Parte II) Cálculo Numérico Módulo III Resolução Numérica de Equações (Parte II) Prof: Reinaldo Haas Cálculo Numérico Bissecção Métodos Iterativos para a Obtenção de Zeros Reais de Funções Bissecção Newton-Raphson

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná Cálculo Numérico - Zeros de Funções Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Zeros de Funções 1/81 Problema Velocidade do pára-quedista

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais

Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taas de Variação:

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Equações Algébricas e Transcendentes

Equações Algébricas e Transcendentes Notas de aula de Cálculo Numérico c Departamento de Computação/ICEB/UFOP Equações Algébricas e Transcendentes Marcone Jamilson Freitas Souza, Departamento de Computação, Instituto de Ciências Eatas e Biológicas,

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Laboratório de Física III

Laboratório de Física III 1APÊNDICE Neste apêndice apresentamos um resumo da discussão contida na apostila de Lab. de Física I. Trata-se apenas de um formulário para uso rápido durante a prática. Sugerimos ao leitor consultar o

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

MATEMÁTICA A - 11o Ano. Propostas de resolução

MATEMÁTICA A - 11o Ano. Propostas de resolução MATEMÁTICA A - o Ano Funções racionais Propostas de resolução Eercícios de eames e testes intermédios. Como o conjunto solução da condição f 0 é o conjunto das abcissas dos pontos do gráfico da função

Leia mais

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández Lista 3: Introdução à Derivada, Limites e continuidade. Ano 207. Determine a função derivada e seu domínio para a função

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

pontos: f(1)=2, f(2)=3, f(3)=5, f(5)=10 e f(6)=30.

pontos: f(1)=2, f(2)=3, f(3)=5, f(5)=10 e f(6)=30. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: SEGUNDO BIMESTRE: EDGARD JAMHOUR Eemplo A: Interpolação polinomial Funções de interpolação: fa() = 2 - /2 + 2 /2 fb() = 5/2-17/12 + 2-3 /12 fc() = 23/2-1183/60 +133

Leia mais

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes Raízes de Equações métodos delimitados Aula 5 (16/0/07) Métodos Numéricos Aplicados à Engenharia Licenciatura em Engenharia Alimentar Escola Superior Agrária de Coimbra qual o problema? Podemos calcular

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade 1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Prof. MSc. David Roza José 1/27

Prof. MSc. David Roza José 1/27 1/27 Splines e Interpolação por Partes - A Objetivos: Compreender que splines minimizam oscilações ao ajustar polinômios de menor ordem a partições do domínio; Aprender a desenvolver um código para procurar

Leia mais

Capítulo 5 Retas Tangentes 5.1 Conceituação No Capítulo Alguns Problemas do Cálculo, vimos que a reta tangente tem um importante significado físico e geométrico e que portanto, é necessário saber defini-la

Leia mais

Polinômios e Funções Racionais

Polinômios e Funções Racionais Capítulo 7 Polinômios e Funções Racionais 7. Polinômios Ao iniciarmos nosso estudo sobre funções, consideramos o problema de construir uma caia sem tampa a partir de um pedaço quadrado de plástico maleável

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão

Leia mais

para: (a) f(x) = 3 (b) f(x) = c, c

para: (a) f(x) = 3 (b) f(x) = c, c MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DESEMPENHO CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a. Dayse Batistus, Dr a.

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Lista de Exercícios 1 MAT 01169 - Cálculo Numérico 2 de Agosto de 2015 As respostas de alguns exercícios estão no final da lista. Exercício 1. Converta para binário os números abaixo: (a) (102) 10 = (b)

Leia mais

Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como

Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites

Leia mais

Aula 12. Interpolação Parte 1

Aula 12. Interpolação Parte 1 CÁLCULO NUMÉRICO Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura: Temperatura ( o C) 20 25 30 35 40 Densidade (g/m

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)

Leia mais