Singularidades de Funções de Variáveis Complexas

Tamanho: px
Começar a partir da página:

Download "Singularidades de Funções de Variáveis Complexas"

Transcrição

1 Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir singularidades de funções de variáveis complexas e analisar as singularidades de algumas funções de variáveis complexas. PRÉ-REQUISITOS Aula10 de Variáveis Complexas e os conhecimentos básicos, da disciplina Cálculo II.

2 Singularidades de Funções de Variáveis Complexas 11.1 Introdução Caros alunos o tema dessa nossa aula é Singularidades de Funções de Variáveis Complexas. O objetivo é usar séries de Laurent para estudar e classificar pontos de singularidades de funções complexas Pontos Singulares de Funções Complexas Começaremos por estudar pontos singulares de funções complexas. Definição Sejam D C um aberto conexo, f : D C C uma função complexa e z 0 D. Dizemos que z 0 é um ponto singular de f( ) se, somente se f (z 0 ) = 0 ou não existe. Definição Sejam D C um aberto conexo, f : D C C uma função complexa e z 0 D um ponto singular de f( ). Dizemos que z 0 é um ponto singular isolado se, somente se existe uma bola aberta B r (z 0 ) de centro em z 0 tal que z 0 é o único ponto singular de f( ) que pertence a B r (z 0 ). Caso contrario z 0 é dito um ponto singular não isolado. OBS Pontos singulares são extremamente importantes na análise complexas pois, dizem muito do comportamento local de funções complexas Classificação de Pontos Singulares Isolados Estaremos, aqui, interessado em estudar e classificar pontos singulares isolados. Para isso usaremos a representação em série de 164

3 Variáveis Complexas Laurent da função a ser estudada. AULA 11 Definição Sejam D C um aberto conexo, f : D C C uma função complexa representada em série de Laurent por: b m (z z 0 ) m + a n (z z 0 ) n m=1 e z 0 D um ponto singular isolado de f( ). Se: i) b m = 0, m = 1, 2,... dizemos que z 0 é uma singularidade removível. ii) b k 0 e b m = 0, m = k + 1, k + 2,... dizemos que z 0 é um polo de ordem k. iii) m N, k > m b k 0 dizemos que z 0 é uma singularidade essencial. OBS Se z 0 é uma singularidade removível f( ) é holomorfa sendo representada por uma série de Taylor em torno de z 0 i.e. a n (z z 0 ) n OBS Se z 0 é um polo de ordem k a representação de f( ) em série de Laurent fica reduzida a: k b m (z z m=1 0 ) m + a n (z z 0 ) n OBS Se z 0 é uma singularidade essencial os coeficiente b m da representação de f( ) são não nulos para uma infinidade de valores de m N. Vejamos alguns exemplos de funções complexas e suas singularidades. 165

4 Singularidades de Funções de Variáveis Complexas Exemplo Seja f : C {0} C dada por sin(z). z Como sin(z) = ( 1) n z2n+1 então: 1 ( 1) n z2n+1 z = ( 1) n 1 z 2n+1 z = ( 1) n z 2n = 1 z2 3! + z4 5! z6 7! + Portanto z = 0 é uma singularidade removível de f( ). Exemplo Seja f : C {0} C dada por sin(z) z 3. Como sin(z) = ( 1) n z2n+1 então: 1 z 3 = = z2n+1 ( 1) n ( 1) n 1 z 2n+1 z 3 ( 1) n z2n 2 = 1 z 2 + ( 1) k+1 z 2k (2k + 3)! = 1 z 2 1 3! + z2 5! z4 7! + Portanto z = 0 é um polo de ordem 2 de f( ). Exemplo Seja f : C {0} C dada por sin(1/z). 166

5 Como sin(z) = Variáveis Complexas ( 1) n z2n+1 então: AULA 11 = ( 1) n (1/z)2n+1 ( 1) n 1/z2n+1 = ( 1) n 1 1 = 1 + ( 1) n 1 n=1 z 2n 2 1 z 2n 2 = 1 7!z !z 5 1 3!z Portanto z = 0 é uma singularidade essencial de f( ). Teorema Sejam D C um aberto conexo, f : D C C uma função complexa e z 0 D. As seguintes proposições são equivalentes: i) z 0 é uma singularidade removível de f( ). ii) Existe lim f(z). iii) f(z) é limitado em alguma bola aberta B r (z 0 ). PROVA: Dividiremos a prova em três partes: Parte 1: de f(z) é da forma: i) implica ii). Supondo que i) vale a série de Laurent a n (z z 0 ) n Logo lim a 0 e portanto existe lim f(z) e ii) vale. Parte 2: ii) implica iii). Supondo que existe lim L, da definição de limite existe δ > 0 tal que se z B δ (z 0 ) {z 0 } 167

6 Singularidades de Funções de Variáveis Complexas então f(z) B 1 (L). De outra forma. Se z B δ (z 0 ) {z 0 } então f(z) L < 1 ou seja: z B δ (z 0 ) {z 0 }, f(z) < L + 1 isto é vale iii). Parte 3: iii) implica i). Suponhamos que vale iii) então existe K > 0 e uma bola B r (z 0 ) tal que z B r (z 0 ), f(z) < K. por outro lado, os coeficientes b m da série de Laurent são dados por: b m = 1 f(z)(z z 0 ) m 1 dz, m = 1, 2,... 2πı Γ onde Γ(t) = z 0 + εe ıt, t [0, 2π) e ε < r. Daí, temos: b m 1 f(z)(z z 0 ) m 1 dz 2πı Γ 1 f(z). z z 0 m 1 dz 2π Γ 1 2π Kεm 1 2πε Kε m Fazendo ε 0 temos: b m 0 e portanto b m = 0, m = 1, 2,.... Logo z 0 é uma singularidade removível de f( ) e i) vale. Teorema Sejam D C um aberto conexo, f : D C C uma função complexa e z 0 D, então z 0 é um polo de ordem k de f( ) se, somente se existe L 0 tal que L = lim (z z 0 ) k f(z). PROVA: Dividimos a prova em duas partes: Parte 1 (Necessidade) Suponhamos que z 0 é um polo de ordem k de f( ) então a representação por série de Laurent de f(z) é da forma: k m=1 b m (z z 0 ) m + Logo, fazendo o produto por (z z 0 ) k temos: a n (z z 0 ) n (z z 0 ) k b k + + b 1 (z z 0 ) k 1 + a n (z z 0 ) n+k 168

7 Passando o limite z z 0 temos: Variáveis Complexas lim (z z 0 ) k b k 0 e temos nosso candidato L = b k. z z 0 Parte 2 (Suficiência) Suponhamos que existe o limite lim (z z 0 ) k L 0. Definindo a função g(z) = (z z 0 ) k f(z), temos: lim g(z) = L 0. Logo da parte ii) do teorema 12.1 g(z) tem z z 0 uma singularidade removível em z 0 e pode ser dada por uma série de Taylor centrada em z 0 em alguma bola aberta B r (z 0 ). AULA 11 g(z) = a n (z z 0 ) n Daí, como g(z) = (z z 0 ) k f(z) podemos escrever para f(z). L (z z 0 ) k + + a k 1 + a n+k (z z 0 ) n z z 0 E portanto z 0 é um polo de ordem k de f( ). Vamos agora enunciar um último teorema sem demonstra-lo. Teorema Sejam D C um aberto conexo, f : D C C uma função complexa e suponhamos que z 0 D é uma singularidade essencial de f( ) e que f(z) é holomorfa em B ϱ (z 0 ) {z 0 } D então dados 0 < r ϱ, ε > 0 e α C, existe um número complexo β tal que β B r (z 0 ) {z 0 } e f(β) α < ε Conclusão Na aula de hoje, vimos que algumas funções de variáveis complexas são não-holomorfas pois apresentam pontos singulares (pontos onde a derivada da função é zero ou não existe). Também vimos que as singularidades isoladas são classificadas como removíveis, pólos ou singularidades essenciais. 169

8 Singularidades de Funções de Variáveis Complexas RESUMO No nosso resumo da Aula 11 constam os seguintes tópicos: Pontos Singulares de Funções Complexas Definição complexa e z 0 D. Dizemos que z 0 é um ponto singular de f( ) se, somente se f (z 0 ) = 0 ou não existe. Definição complexa e z 0 D um ponto singular de f( ). Dizemos que z 0 é um ponto singular isolado se, somente se existe uma bola aberta B r (z 0 ) de centro em z 0 tal que z 0 é o único ponto singular de f( ) que pertence a B r (z 0 ). Caso contrario z 0 é dito um ponto singular não isolado. Classificação de Pontos Singulares Isolados Definição complexa representada em série de Laurent por: b m (z z 0 ) m + a n (z z 0 ) n m=1 e z 0 D um ponto singular isolado de f( ). Se: i) b m = 0, m = 1, 2,... dizemos que z 0 é uma singularidade removível. ii) b k 0 e b m = 0, m = k + 1, k + 2,... dizemos que z 0 é um polo de ordem k. 170

9 Variáveis Complexas iii) m N, k > m b k 0 dizemos que z 0 é uma singularidade essencial. AULA 11 Teorema 1 complexa e z 0 D. As seguintes proposições são equivalentes: i) z 0 é uma singularidade removível de f( ). ii) Existe lim f(z). iii) f(z) é limitado em alguma bola aberta B r (z 0 ). Teorema 2 complexa e z 0 D, então z 0 é um polo de ordem k de f( ) se, somente se existe L 0 tal que L = lim (z z 0 ) k f(z). Teorema 3 complexa e suponhamos que z 0 D é uma singularidade essencial de f( ) e que f(z) é holomorfa em B ϱ (z 0 ) {z 0 } D então dados 0 < r ϱ, ε > 0 e α C, existe um número complexo β tal que β B r (z 0 ) {z 0 } e f(β) α < ε. PRÓXIMA AULA Em nossa próxima aula veremos o cálculo de resíduos que nos permitirá um teorema semelhante a integral d Cauchy para funções não-holomorfas com singularidades isoladas tipo polo. 171

10 Singularidades de Funções de Variáveis Complexas ATIVIDADES Deixamos como atividades as seguintes questões: ATIV Seja f : D C C dada por tan(zı). Determine todas as singularidades de f( ) e estabeleça o seu domínio. Comentário: Volte ao texto e reveja com calma e atenção os exemplos, eles lhe servirão de guia. ATIV Seja f : C {0} C dada por 1 cos(z) z 3. Classifique as singularidades de f( ). Comentário: Volte ao texto e reveja com calma e atenção os exemplos, eles lhe servirão de guia. LEITURA COMPLEMENTAR SPIEGEL, Murray R., Variáveis Complexas, Coleção Schaum, Editora McGraw-Hill do Brasil, SOARES, Márcio G., Cálculo em uma Variável Complexa, Coleção Matemática Universitária, Editora SBM, BROWN, James W. and CHURCHILL, Ruel R., Complex Variables and Applications Editora McGraw Hill, FERNANDEZ, Cecília S. e BERNARDES Jr, Nilson C. Introdução às Funções de uma Variável Complexa. Editora SBM,

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Cálculo de Resíduos AULA 12

Cálculo de Resíduos AULA 12 AULA 2 META: Apresentar cálculo de resíduos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir resíduo de uma função de variáveis complexas em um ponto dado e calcular o resíduo de uma

Leia mais

Convergência de Séries de Números Complexos

Convergência de Séries de Números Complexos Convergência de Séries de Números Complexos META: Apresentar o conceito de convergência de séries de números complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir convergência

Leia mais

13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos

13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos 3 a Aula 2004.0.3 AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 3. Singularidades isoladas Para na prática podermos aplicar o teorema dos resíduos com eficiência, precisamos de conhecer

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 205/206 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ). Considere a função u : R 2 R dada por onde a e b são duas constantes reais. 09 de Abril

Leia mais

Introdução às equações diferenciais

Introdução às equações diferenciais Introdução às equações diferenciais Professor Leonardo Crochik Notas de aula 1 O que é 1. é uma equação:... =... 2. a incógnita não é um número x R, mas uma função x(t) : R R 3. na equação estão presentes,

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

Uma e.d.o. de segunda ordem é da forma

Uma e.d.o. de segunda ordem é da forma Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra Aparecida de Amo Lista de Exercícios n o 2 Exercícios sobre Modelos de Máquinas de Turing

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

Um jogo de preencher casas

Um jogo de preencher casas Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Prof. Márcio Nascimento. 22 de julho de 2015

Prof. Márcio Nascimento. 22 de julho de 2015 Núcleo e Imagem Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Linear

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

1 A Integral por Partes

1 A Integral por Partes Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

META: Introduzir o conceito de derivada de funções de variáveis complexas.

META: Introduzir o conceito de derivada de funções de variáveis complexas. AULA 3 META: Introduzir o conceito de derivada de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir derivada de funções de variáveis complexas e determinar

Leia mais

Limites de Funções de Variáveis Complexas

Limites de Funções de Variáveis Complexas Limites de Funções de Variáveis Complexas AULA 2 META: Introduzir o conceito de limite de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir limites de

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Mais Alguns Aspectos da Derivação Complexa

Mais Alguns Aspectos da Derivação Complexa Mais Alguns Aspectos da Derivação Complexa META: Introduzir o conceito de funções holomorfas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir funções holomorfas e determinar se uma

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Capítulo 8 Equações Diferenciais Ordinárias Vários modelos utilizados nas ciências naturais e exatas envolvem equações diferenciais. Essas equações descrevem a relação entre uma função, o seu argumento

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa 1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora

Leia mais

Matemática para Engenharia

Matemática para Engenharia Matemática para Engenharia Profa. Grace S. Deaecto Faculdade de Engenharia Mecânica / UNICAMP 13083-860, Campinas, SP, Brasil. grace@fem.unicamp.br Segundo Semestre de 2013 Profa. Grace S. Deaecto ES401

Leia mais

Transformações Conformes: 15 Aplicações

Transformações Conformes: 15 Aplicações AULA Transformações Conformes: 15 Aplicações META: Aplicar transformações conformes. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar transformações conformes na determinação da distribuição

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

Aula 9 Plano tangente, diferencial e gradiente

Aula 9 Plano tangente, diferencial e gradiente MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

A trigonometria do triângulo retângulo

A trigonometria do triângulo retângulo A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e

Leia mais

Notas de aula: MTM 5186 - Cálculo IV

Notas de aula: MTM 5186 - Cálculo IV Departamento de Matemática - MTM Universidade Federal de Santa Catarina - UFSC Notas de aula: MTM 5186 - Cálculo IV Prof. Matheus Cheque Bortolan Florianópolis - SC 2015/1 ii Sumário 1 Introdução 5 2 O

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Aula 2 - Cálculo Numérico

Aula 2 - Cálculo Numérico Aula 2 - Cálculo Numérico Erros Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 2 - Cálculo Numérico 1 / 41 Sumário Sumário 1 Sumário 2 Erros Modelagem Truncamento Representação

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

Discussão de Sistemas Teorema de Rouché Capelli

Discussão de Sistemas Teorema de Rouché Capelli Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema

Leia mais

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

Realizando cálculos para o aparelho divisor (I)

Realizando cálculos para o aparelho divisor (I) Realizando cálculos para o aparelho divisor (I) A UU L AL A Você já estudou como fazer os cálculos para encontrar as principais medidas para a confecção de uma engrenagem cilíndrica de dentes retos. Vamos

Leia mais

5 A Metodologia de Estudo de Eventos

5 A Metodologia de Estudo de Eventos 57 5 A Metodologia de Estudo de Eventos 5.1. Principais Conceitos Introduzido em 1969 pelo estudo de Fama, Fisher, Jensen e Roll, o estudo de evento consiste na análise quanto à existência ou não de uma

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

Comprimentos de Curvas e Coordenadas Polares Aula 38

Comprimentos de Curvas e Coordenadas Polares Aula 38 Comprimentos de Curvas e Coordenadas Polares Aula 38 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Lista de Exercícios - Potenciação

Lista de Exercícios - Potenciação Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 14 - Potenciação ou Exponenciação - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=20lm2lx6r0g Gabaritos

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle

Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle Hector Bessa Silveira e Daniel Coutinho 2012/2 1 Objetivos Neste próximos laboratórios, utilizar-se-á

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 06 Este é o 6º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Me todos de Ajuste de Controladores

Me todos de Ajuste de Controladores Me todos de Ajuste de Controladores Recapitulando aulas passadas Vimos algumas indicações para a escolha do tipo de controlador feedback dependendo da malha de controle que está sendo projetada. Vimos

Leia mais

Como erguer um piano sem fazer força

Como erguer um piano sem fazer força A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

ESPAÇOS MUNIDOS DE PRODUTO INTERNO

ESPAÇOS MUNIDOS DE PRODUTO INTERNO ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.

Leia mais

CONTROLO DE SISTEMAS

CONTROLO DE SISTEMAS UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS Lugar Geométrico das Raízes PROJECTO E ANÁLISE DA RESPOSTA TRANSITÓRIA E ESTABILIDADE Parte 1/3 - Compensação

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Prof. José Carlos Fogo Departamento de Estatística - UFSCar Outubro de 2014 Prof. José Carlos Fogo (DEs - UFSCar) Material Didático

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:

Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo: Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE. Prof. Dr. Daniel Caetano 2012-1

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE. Prof. Dr. Daniel Caetano 2012-1 ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE Prof. Dr. Daniel Caetano 2012-1 Objetivos Compreender o que é notação em ponto flutuante Compreender a

Leia mais

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com;

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com; Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 26 GRUPOS DE PERMUTAÇÕES E ALGUMAS DE PROPOSIÇÕES Thiago Mariano Viana 1, Marco Antônio Travasso 2 & Antônio Carlos

Leia mais

Prof. Rossini Bezerra Faculdade Boa Viagem

Prof. Rossini Bezerra Faculdade Boa Viagem Sistemas de Coordenadas Polares Prof. Rossini Bezerra Faculdade Boa Viagem Coordenadas Polares Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Introdução à Topologia Resoluções de exercícios. Capítulo 1

Introdução à Topologia Resoluções de exercícios. Capítulo 1 Introdução à Topologia Resoluções de exercícios Exercício nº5 (alíneas 3. e 4.) Capítulo 1 É imediato, directamente a partir da definição, que, dados r, s Q, d p (r, s) e que d p (r, s) = se e só se r

Leia mais

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica. Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.

Leia mais

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130 Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:

Leia mais

Minicurso Aula 3: Técnicas de Demonstração Matemática. Anliy Natsuyo Nashimoto Sargeant Curso de Verão 2009 DEX - UFLA

Minicurso Aula 3: Técnicas de Demonstração Matemática. Anliy Natsuyo Nashimoto Sargeant Curso de Verão 2009 DEX - UFLA Minicurso Aula 3: Técnicas de Demonstração Matemática Anliy Natsuyo Nashimoto Sargeant Curso de Verão 2009 DEX - UFLA Bibliografia Garbi, Gilberto G., O romance das equações algébricas. Ed Makron Books,

Leia mais

Sistema de Numeração

Sistema de Numeração META: Apresentar os sistemas de numeração egípcio e babilônico. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Entender a dificuldade encontrada pelos antigos para representar quantidades.

Leia mais

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado

EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Aula 28 EA616 - Análise Linear de Sistemas Aula 28 - Estabilidade do Estado Prof. Ricardo C.L.F. Oliveira Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre

Leia mais

PP 301 Engenharia de Reservatórios I 11/05/2011

PP 301 Engenharia de Reservatórios I 11/05/2011 PP 301 Engenharia de Reservatórios I 11/05/2011 As informações abaixo têm como objetivo auxiliar o aluno quanto à organização dos tópicos principais abordados em sala e não excluem a necessidade de estudo

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar 3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento

Leia mais

Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens

Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens APRESENTAÇÃO Olá, prezados concursandos! Sejam bem-vindos à resolução de questões de Raciocínio Lógico preparatório para o INSS. Mais uma vez, agradeço ao convite do prof. Francisco Júnior pela oportunidade

Leia mais

A B C F G H I. Apresente todas as soluções possíveis. Solução

A B C F G H I. Apresente todas as soluções possíveis. Solução 19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Circuitos de 2 ª ordem: RLC. Parte 1

Circuitos de 2 ª ordem: RLC. Parte 1 Circuitos de 2 ª ordem: RLC Parte 1 Resposta natural de um circuito RLC paralelo Veja circuito RLC paralelo abaixo: A tensão é a mesma e aplicando a soma de correntes que saem do nó superior temos: v R

Leia mais

Capítulo 7. Topologia Digital. 7.1 Conexidade

Capítulo 7. Topologia Digital. 7.1 Conexidade Capítulo 7 Topologia Digital A Topologia Digital estuda a aplicação das noções definidas em Topologia sobre imagens binárias. Neste capítulo vamos introduzir algumas noções básicas de Topologia Digital,

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

Transformações Conformes

Transformações Conformes META: Introduzir o conceito de transformações conforme. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir transformações conformes e exemplificar transformações conformes. PRÉ-REQUISITOS

Leia mais