Prof. Márcio Nascimento. 22 de julho de 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prof. Márcio Nascimento. 22 de julho de 2015"

Transcrição

1 Núcleo e Imagem Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Linear de julho de / 31

2 Sumário 1 Núcleo e Imagem 2 / 31

3 Sumário 1 Núcleo e Imagem 3 / 31

4 A toda transformação linear T : E F estão associados dois subespaços vetoriais que ajudam a compreender o comportamento de T : 1 Imagem de T : Im(T ), que é um subespaço de F ; 2 Núcleo de T : N(T ) ou ker(t ), que é um subespaço de E. 4 / 31

5 Imagem de uma Transformação Linear A Imagem de uma Transformação Linear T : E F é o subconjunto de F formado por todas as imagens dos elementos de E. Isto é: Im(T ) = {w F ; w = T (v), para algum v E} 5 / 31

6 Im(T ) é subespaço vetorial de F A Imagem Im(T ) de uma Transformação Linear T : E F é sempre subespaço vetorial do espaço vetorial de chegada, isto é, de F. Sejam w 1, w 2 Im(T ). Então w 1 + w 2 Im(T )? Veja que w 1, w 2 Im(T ) implica que w 1 = T (v 1 ) e w 2 = T (v 2 ) para v 1, v 2 E. Daí, w 1 + w 2 = T (v 1 ) + T (v 2 ) = T (v 1 + v 2 ). Como v 1 + v 2 E, segue que w 1 + w 2 Im(T ). Sejam α R e w Im(T ). Então α.w Im(T )? α.w = α.t (v) = T (α.v). Como α.v E, segue que α.w Im(T ). 6 / 31

7 Transformação Sobrejetiva Seja T : E F uma transformação linear. Sempre que Im(T ) = F dizemos que T é sobrejetiva. 7 / 31

8 Teorema Seja X = {u 1, u 2,..., u n } um conjunto de geradores do espaço vetorial E. Então, T : E F é sobrejetiva se, e somente se, {T (u 1 ), T (u 2 ),..., T (u n )} é um conjunto de geradores de F. Prova (= ) Suponha T sobrejetiva. Devemos mostrar que todo elemento de F se escreve como uma combinação linear de T (u 1 ), T (u 2 ),..., T (u n ). Seja w F. Então existe v E tal que T (v) = w. Sendo X um conjunto de geradores de E, podemos escrever: Portanto, v = α 1 u 1 + α 2 u α n u n w = T (v) = T (α 1 u 1 + α 2 u α n u n ) = = α 1 T (u 1 ) + α 2 T (u 2 ) α n T (u n ) 8 / 31

9 Teorema Seja X = {u 1, u 2,..., u n } um conjunto de geradores do espaço vetorial E. Então, T : E F é sobrejetiva se, e somente se, {T (u 1 ), T (u 2 ),..., T (u n )} é um conjunto de geradores de F. Prova ( ) Suponha que {T (u 1 ), T (u 2 ),..., T (u n )} é um conjunto de geradores para F. Mostremos que T é sobrejetiva: Im(T ) = F. Por definição, Im(T ) F. Portanto, resta mostrar que F Im(T ). Tomemos w F e mostremos que w Im(T ). Sendo {T (u 1 ), T (u 2 ),..., T (u n )} um conjunto de geradores para F, temos que w = β 1 T (u 1 ) + β 2 T (u 2 ) β n T (u n ) Sendo T uma transformação linear, podemos escrever: w = T (β 1 u 1 + β 2 u β n u n ) = T (v) para algum v E. Portanto, w Im(T ) e F Im(T ). 9 / 31

10 Núcleo ou Kernel de uma Transformação Linear Seja T : E F uma transformação linear. O núcleo (ou kernel) de T é definido por: N(T ) = {v E ; T (v) = 0 F } N(T ) ou Ker(T) 10 / 31

11 Teorema Seja T : E F uma transformação linear. O núcleo de T é um subespaço vetorial de E. Prova Sejam u, v N(T ). Devemos mostrar que u + v N(T ), isto é, T (u + v) = 0 F. Sejam α R e u N(T ). Devemos mostrar que α.u N(T ), isto é, que T (α.v) = 0 F. 11 / 31

12 Injetividade Uma transformação linear T : E F é injetiva quando elementos diferentes no domínio têm imagens diferentes. Isto é: u v = T (u) T (v) 12 / 31

13 Exemplo Considere T : R 3 R 3 definida por T (x, y, z) = (2y, 3z, x). T é injetiva? 13 / 31

14 Teorema Uma transformação linear T : E F é injetiva se, e somente se, N(T ) = { 0 E }. Prova ( ) Suponha T injetiva e mostremos que N(T ) se resume ao vetor nulo de E. Lembre que T ( 0 E ) = 0 F. Portanto, 0 E N(T ). Se T é injetiva, nenhum outro elemento de E pode ter imagem igual a imagem de 0 E. Logo, o único elemento que tem imagem igual a 0 F é 0 E. Conclusão: N(T ) = { 0 E }. 14 / 31

15 Teorema Uma transformação linear T : E F é injetiva se, e somente se, N(T ) = { 0 E }. Prova ( ) Reciprocamente, suponha N(T ) = { 0 E } e mostremos que T é injetiva. Sejam u, v E com u v. Então u v 0 E Com isso, T (u v) 0 F, isto é, T (u) T (v) 0 E e T (u) T (v). Conclusão: u v = T (u) T (v) e portanto T é injetiva. 15 / 31

16 Exemplo Considere T : R 2 2 R 2 2 definida por T (A) = 2.A T. T é injetiva? 16 / 31

17 Teorema Uma transformação linear T : E F é injetiva se, e somente se, transforma vetores LI em vetores LI. Prova ( ) Suponha T injetiva e seja u 1, u 2,..., u n um conjunto de vetores LI em E. Devemos mostrar que T (u 1 ), T (u 2 ),..., T (u n ) são LI em F. Tomemos a seguinte combinação linear em F : β 1 T (u 1 ) + β 2 T (u 2 ) +...β n T (u n ) = 0 F Então T (β 1 u 1 + β 2 u β n u n ) = T ( 0 E ) Pela injetividade de T, a única opção é: β 1 u 1 + β 2 u β n u n = 0 E Sendo u 1, u 2,..., u n LI, a única solução é β 1 = β 2 =... = β n = 0 17 / 31

18 Teorema Uma transformação linear T : E F é injetiva se, e somente se, transforma vetores LI em vetores LI. Prova ( ) Reciprocamente, suponha que T transforma vetores LI em vetores LI. Mostremos que T é injetiva. Procuremos N(T ). Seja v E tal que T (v) = 0 F. Se {e 1, e 2,..., e m } é uma base de E, então v = α 1 e 1 + α 2 e α m e m Portanto, 0 F = T (v) = α 1 T (e 1 ) + α 2 T (e 2 ) α m T (e m ) Sendo T (e 1 ), T (e 2 ),..., T (e m ) LI em F, segue que a equação acima tem como única solução α 1 = α 2 =... = α m = 0. Portanto, v = 0 E. 18 / 31

19 Exemplo É possível que exista uma Transformação Linear injetiva T : P 5 R 5? 19 / 31

20 Observação Do Teorema anterior, podemos concluir que se T : E F é injetiva, então dim F dim E Prova Suponha T : E F injetiva. Então T transforma vetores LI em vetores LI. Seja n = dim E e considere B = {v 1, v 2,..., v n } uma base para E. Do Teorema, T (B) é um conjunto LI. Portanto, dim F não pode ser menor do que n pois, como sabemos, qualquer quantidade de vetores maior do que a dimensão do espaço, sempre será LD. Conclusão: dim F dim E. 20 / 31

21 Teorema da Dimensão Seja T : E F uma transformação linear. Então: dim E = dim N(T ) + dim Im(T ) Prova Como sabemos, N(T ) é um subespaço de E. Seja v 1, v 2,..., v k uma base para N(T ). Sendo v 1, v 2,..., v k LI, este conjunto pode ser completado de modo a obtermos uma base para o espaço vetorial E. Digamos, v 1, v 2,..., v k, w 1, w 2,..., w r Objetivo: mostrar que T (w 1 ), T (w 2 ),..., T (w r ) é uma base para Im(T ); daí, dim Im(T ) = r. 21 / 31

22 Teorema da Dimensão Seja T : E F uma transformação linear. Então: dim E = dim N(T ) + dim Im(T ) Prova Seja w Im(T ). Então existe v E tal que w = T (v). Além disso, podemos escrever: v = α 1 v 1 + α 2 v α k v k + β 1 w 1 + β 2 w β r w r Daí, T (v) = α 1 T (v 1 ) + α 2 T (v 2 ) α k T (v k )+ +β 1 T (w 1 ) + β 2 T (w 2 ) β r T (w r ) Como v i N(T ), temos T (v i ) = 0 F e: T (v) = β 1 T (w 1 ) + β 2 T (w 2 ) β r T (w r ) Conclusão: [T (w 1 ), T (w 2 ),..., T (w r )] = Im(T ) 22 / 31

23 Teorema da Dimensão Seja T : E F uma transformação linear. Então: dim E = dim N(T ) + dim Im(T ) Prova Resta provar que T (w 1 ), T (w 2 ),..., T (w r ) são LI. Tomando ξ 1 T (w 1 ) + ξ 2 T (w 2 ) ξ r T (w r ) = 0 F devemos concluir que ξ i = 0 para cada i {1, 2,..., r}. A igualdade acima equivale a T (ξ 1 w 1 + ξ 2 w ξ r w r ) = 0 F Conclusão: z = ξ 1 w 1 + ξ 2 w ξ r w r N(T ) 23 / 31

24 Teorema da Dimensão Seja T : E F uma transformação linear. Então: dim E = dim N(T ) + dim Im(T ) Prova Escrevendo z = ξ 1 w 1 + ξ 2 w ξ r w r como combinação linear da base de N(T ), temos: Ou seja, ξ 1 w 1 + ξ 2 w ξ r w r = γ 1 v 1 + γ 2 v γ k v k ξ 1 w 1 + ξ 2 w ξ r w r γ 1 v 1 γ 2 v 2... γ k v k = 0 E Ora, mas v 1,..., v k, w 1,..., w r são LI (base de E). Portanto, ξ i = 0 γ j = 0 Conclusão: T (w 1 ), T (w 2 ),..., T (w n ) é LI. 24 / 31

25 Corolário Seja T : E F uma transformação linear com dim E = dim F. T é injetora se, e somente se, é sobrejetora. Prova Suponha T injetora. Então N(T ) = { 0 E }, ou seja, dim N(T ) = 0. Por hipótese, dim E = dim F e pelo Teorema da Dimensão, dim E = dim Im(T ). Logo, dim Im(T ) = dim F. Reciprocamente, se T é sobrejetora, então do Teorema da Dimensão e da hipótese, temos: dim E = dim N(T )+dim E = dim N(T ) = 0 = N(T ) = { 0 E } 25 / 31

26 Corolário Seja T : E F uma transformação linear injetora. Se dim E = dim F então T leva base em base. Prova Seja {v 1, v 2,..., v n } uma base para E. Devemos mostrar que {T (v 1 ), T (v 2 ),..., T (v n )} é uma base para F. Tomando uma combinação linear nula dos vetores em F, temos: α 1 T (v 1 ) + α 2 T (v 2 ) α n T (v n ) = 0 F Sendo T linear, podemos escrever: T (α 1 v 1 + α 2 v α n v n ) = 0 F Por hipótese, T é injetora, ou seja, N(T ) = { 0 E }. Daí, α 1 v 1 + α 2 v α n v n = 0 E e como v 1, v 2,.., v n são LI, segue que α 1 = α 2 =... = α n = 0, ou seja, T (v 1 ), T (v 2 ),..., T (v n ) são LI. 26 / 31

27 ISOMORFISMO Seja T : E F uma transformação linear. Quando T for injetora e sobrejetora, diremos que tal transformação é um isomorfismo entre os espaços E e F e que tais espaços são isomorfos. 27 / 31

28 Exemplo Mostrar que o espaço das matrizes de ordem 2 2 é isomorfo ao R 4. Prova Devemos definir uma transformação T : R 2 2 R 4 e mostrar que esta é injetora e sobrejetora. Por exemplo, definamos ([ ]) x y T = (x, y, z, w) z w [ ] 0 0 Claramente, N(T ) = e, portanto, dim N(T ) = 0, ou 0 0 seja, dim R 2 2 = dim Im(T ) Como bem sabemos, dim R 4 também é 4. Logo, dim Im(T ) = dim F e T é um isomorfismo. 28 / 31

29 Exemplo Seja T : E E um operador linear. Para quaisquer vetores u N(T ) e v Im(T ), mostre que T (u) N(T ) e que T (v) Im(T ). Prova Se u N(T ), então u E. Além disso, T (u) = 0 E (E = F neste caso). Daí, T (T (u)) = T ( 0 E ) = 0 E, ou seja, T (u) N(T ). Por outro lado, se v Im(T ), então v E. Assim, T (v) = w com w também pertencente a E, pois se trata de um operador linear. Daí, T (T (v)) = T (w) com w E, isto é, T (w) = T (T (v)) Im(T ). 29 / 31

30 Exemplo Encontre números a, b, c e d de modo que o operador A : R 2 R 2 definido por A(x, y) = (ax + by, cx + dy) tenha como núcleo a reta y = 3x. Prova Por definição, N(T ) = {(x, y) R 2 ; A(x, y) = (0, 0)}. No nosso caso, (ax + by, cx + dy) = (0, 0), ou seja, ax + by = 0 e cx + dy = 0. Para que y = 3x, devemos ter: ax + b(3x) = 0 e cx + d(3x) = 0, isto é, a + 3b = 0 e c + 3d = 0. Tomando, por exemplo, b = 1 e d = 2 teremos a = 3 e c = 6, isto é, A(x, y) = ( 3x + y, 6x 2y) é um operador cujo núcleo é a reta y = 3x. 30 / 31

31 Exemplo Encontre números a, b, c e d de modo que o operador A : R 2 R 2 definido por A(x, y) = (ax + by, cx + dy) tenha como imagem a reta y = 3x. Prova Por definição, Im(T ) = {(r, 2r) R 2 ; (r, 2r) = A(x, y) para r R}. No nosso caso, (ax + by, cx + dy) = (r, 2r), ou seja, ax + by = r e cx + dy = 2r. Daí, cx + dy = 2(ax + by) e podemos escrever c = 2a e d = 2b. Tomando, por exemplo, a = 1 e b = 2 teremos c = 2 e d = 4, isto é, A(x, y) = (x + 2y, 2x + 4y) é um operador cuja imagem é a reta y = 2x. 31 / 31

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo. Prof. Susie C. Keller ÁLGEBRA LINEAR Núcleo e Imagem de uma Transformação Linear, Teorema da Dimensão, Isomorfismo Prof. Susie C. Keller Núcleo de uma Definição: Chama-se núcleo de uma transformação linear T: V W ao conjunto

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

Álgebra Linear Volume 2

Álgebra Linear Volume 2 MATEMÁTICA Graduação Álgebra Linear Volume 2 Luiz Manoel Figueiredo Marisa Ortegoza da Cunha Módulo Volume 3 2ª edição 2 Luiz Manoel Figueiredo Marisa Ortegoza da Cunha I SBN 85-7648 - 315-7 Álgebra Linear

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Transformações Lineares 1 Definição e Exemplos 2 Núcleo e Imagem

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto \por N(f) ou Ker (f).

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga TRANSFORMAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Estudaremos um tipo especial de função, onde o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto

Leia mais

Álgebra Linear I Solução da 5ª Lista de Exercícios

Álgebra Linear I Solução da 5ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Engenharia de Produção Curso de Graduação em Engenharia Ambiental e Sanitária

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais

Leia mais

Uma e.d.o. de segunda ordem é da forma

Uma e.d.o. de segunda ordem é da forma Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear

Leia mais

1 Base de um Espaço Vetorial

1 Base de um Espaço Vetorial Disciplina: Anéis e Corpos Professor: Fernando Torres Membros do grupo: Blas Melendez Caraballo (ra143857), Leonardo Soriani Alves (ra115465), Osmar Rogério Reis Severiano (ra134333) Ramon Códamo Braga

Leia mais

Aula 9 Plano tangente, diferencial e gradiente

Aula 9 Plano tangente, diferencial e gradiente MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para

Leia mais

2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior

2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior 2 Extensão do Produto Vetorial Sobre uma Álgebra Exterior Seja R 3 o espaço euclidiano tridimensional, chamamos de álgebra exterior de R 3 a álgebra Λ(R 3 ) gerada pela base canônica {e 1, e 2, e 3 } satisfazendo

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

ESPAÇOS MUNIDOS DE PRODUTO INTERNO

ESPAÇOS MUNIDOS DE PRODUTO INTERNO ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Transformações Lineares

Transformações Lineares Transformações Lineares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

Gobooks.com.br. PucQuePariu.com.br

Gobooks.com.br. PucQuePariu.com.br ÁLGEBRA LINEAR todos os conceitos, gráficos e fórmulas necessárias, em um só lugar. Gobooks.com.br PucQuePariu.com.br e te salvando de novo. Agora com o: RESUMO ÁLGEBRA LINEAR POR: Giovanni Tramontin 1.

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Notas Para um Curso de Cálculo. Daniel V. Tausk

Notas Para um Curso de Cálculo. Daniel V. Tausk Notas Para um Curso de Cálculo Avançado Daniel V. Tausk Sumário Capítulo 1. Diferenciação... 1 1.1. Notação em Cálculo Diferencial... 1 1.2. Funções Diferenciáveis... 8 Exercícios para o Capítulo 1...

Leia mais

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com;

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com; Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 26 GRUPOS DE PERMUTAÇÕES E ALGUMAS DE PROPOSIÇÕES Thiago Mariano Viana 1, Marco Antônio Travasso 2 & Antônio Carlos

Leia mais

TRANSFORMAÇÃO LINEAR. Álgebra Linear - Prof a Ana Paula

TRANSFORMAÇÃO LINEAR. Álgebra Linear - Prof a Ana Paula Álgebra Linear - Prof a na Paula TRNSFORMÇÃO LINER Definição: T é uma transformação do espaço vetorial V no espaço vetorial W, T : V W, se cada vetor v V tem um só vetor imagem w W, que será indicado por

Leia mais

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v. Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5.

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5. UFPB/PRAI/CCT/DME - CAMPUS II DISCIPLINA: Álgebra Linear ALUNO (A): 2 a LISTA DE EXERCÍCIOS 1 a PARTE: QUESTÕES TIPO VERDADEIRO OU FALSO COM JUSTI- FICATIVA. 1. O conjunto dos polinômios de grau m com

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

2.2 Subespaços Vetoriais

2.2 Subespaços Vetoriais 32 CAPÍTULO 2. ESPAÇOS VETORIAIS 2.2 Subespaços Vetoriais Sejam V um espaço vetorial sobre R e W um subconjunto de V. Dizemos que W é um subespaço (vetorial) de V se as seguintes condições são satisfeitas:

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

ÁLGEBRA LINEAR ISBN 978-85-915683-0-7

ÁLGEBRA LINEAR ISBN 978-85-915683-0-7 . ÁLGEBRA LINEAR ISBN 978-85-915683-0-7 ROBERTO DE MARIA NUNES MENDES Professor do Departamento de Matemática e Estatística e do Programa de Pós-graduação em Engenharia Elétrica da PUCMINAS Belo Horizonte

Leia mais

Discussão de Sistemas Teorema de Rouché Capelli

Discussão de Sistemas Teorema de Rouché Capelli Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema

Leia mais

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em

Leia mais

UNIVERSIDADE ESTADUAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA RENATO DOS SANTOS DINIZ

UNIVERSIDADE ESTADUAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA RENATO DOS SANTOS DINIZ UNIVERSIDADE ESTADUAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA RENATO DOS SANTOS DINIZ O TEOREMA DE CAYLEY - HAMILTON Campina Grande/PB 2011 RENATO DOS SANTOS

Leia mais

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Segunda Prova. Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 2006 Segunda Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Questão 1. A matriz de mudança da base ordenada

Leia mais

Códigos Reed-Solomon CAPÍTULO 9

Códigos Reed-Solomon CAPÍTULO 9 CAPÍTULO 9 Códigos Reed-Solomon Um dos problemas na Teoria de Códigos é determinar a distância mínima de um dado código. Tratando-se de códigos cíclicos, por vezes conseguimos controlar a distância mínima

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Projeção e Anaglifos

Projeção e Anaglifos Projeção e Anaglifos Renato Paes Leme Nosso problema básico é o seguinte: temos uma coleção de pontos (x i, y i, z i ) em um conjunto de vértices, e um conjunto de polígonos. Queremos representar esses

Leia mais

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa 1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

pontuação Discursiva 02 questões 15 pontos 30 pontos Múltipla escolha 25 questões 2,8 pontos 70 pontos

pontuação Discursiva 02 questões 15 pontos 30 pontos Múltipla escolha 25 questões 2,8 pontos 70 pontos Caderno de Provas CÁLCULO DIFERENCIAL E INTEGRAL E ÁLGEBRA LINEAR Edital Nº. 36/2011 REITORIA/IFRN 29 de janeiro de 2012 INSTRUÇÕES GERAIS PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Domínio, Contradomínio e Imagem

Domínio, Contradomínio e Imagem Domínio, Contradomínio e Imagem (domínio, contradomínio e imagem de função) Seja f : X Y uma função. Dizemos que: f (X) X Y X é o domínio; Y é o contra-domínio e {y B; y = f (x) para algum x X} é a imagem,

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17.

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17. Prova Teoria de Números 23/04/203 Nome: RA: Escolha 5 questões.. Mostre que 2 67 + 3 34 é múltiplo de 7. Solução: Pelo teorema de Fermat 2 6 (mod 7 e 3 7 3 (mod 7. Portanto, 2 67 = 2 64+3 = ( 2 6 4 8 8

Leia mais

A B C F G H I. Apresente todas as soluções possíveis. Solução

A B C F G H I. Apresente todas as soluções possíveis. Solução 19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura

Leia mais

ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}.

ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}. ESPAÇOS QUOCIENTES DANIEL SMANIA 1. Relações de equivalência Seja uma relação de equivalência sobre um conjunto X, isto é, uma rel ção binária que satisfaz as seguintes propriedades i. (Prop. Reflexiva.)

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Conceitos Fundamentais

Conceitos Fundamentais Capítulo 1 Conceitos Fundamentais Objetivos: No final do Capítulo o aluno deve saber: 1. distinguir o uso de vetores na Física e na Matemática; 2. resolver sistema lineares pelo método de Gauss-Jordan;

Leia mais

1 A Integral por Partes

1 A Integral por Partes Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,

Leia mais

Fundamentos de Matemática Elementar (MAT133)

Fundamentos de Matemática Elementar (MAT133) Fundamentos de Matemática Elementar (MAT133) Notas de aulas Maria Julieta Ventura Carvalho de Araújo (Colaboração: André Arbex Hallack) Março/2010 i Índice 1 Conjuntos 1 1.1 A noção de conjunto e alguns

Leia mais

O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO

O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO João Cesar Guirado Universidade Estadual de Maringá E-mail: jcguirado@gmail.com Márcio Roberto da Rocha Universidade Estadual de Maringá E-mail:

Leia mais

Realizando cálculos para o aparelho divisor (I)

Realizando cálculos para o aparelho divisor (I) Realizando cálculos para o aparelho divisor (I) A UU L AL A Você já estudou como fazer os cálculos para encontrar as principais medidas para a confecção de uma engrenagem cilíndrica de dentes retos. Vamos

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Capítulo 7. Topologia Digital. 7.1 Conexidade

Capítulo 7. Topologia Digital. 7.1 Conexidade Capítulo 7 Topologia Digital A Topologia Digital estuda a aplicação das noções definidas em Topologia sobre imagens binárias. Neste capítulo vamos introduzir algumas noções básicas de Topologia Digital,

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica

Cálculo. Álgebra Linear. Programação Computacional. Metodologia Científica UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL Cálculo Álgebra Linear Programação Computacional Metodologia Científica Realização: Fortaleza, Fevereiro/2012 UNIVERSIDADE

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana Parte 2 esigualdade Triangular Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto 1 desigualdade triangular Iniciamos

Leia mais

Testedegeradoresde. Parte X. 38 Testes de Ajuste à Distribuição. 38.1 Teste Chi-Quadrado

Testedegeradoresde. Parte X. 38 Testes de Ajuste à Distribuição. 38.1 Teste Chi-Quadrado Parte X Testedegeradoresde números aleatórios Os usuários de uma simulação devem se certificar de que os números fornecidos pelo gerador de números aleatórios são suficientemente aleatórios. O primeiro

Leia mais

Aula 19 Teorema Fundamental das Integrais de Linha

Aula 19 Teorema Fundamental das Integrais de Linha Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

A ideia de coordenatização (2/2)

A ideia de coordenatização (2/2) 8 a : aula (1h) 12/10/2010 a ideia de coordenatização (2/2) 8-1 Instituto Superior Técnico 2010/11 1 o semestre Álgebra Linear 1 o ano das Lics. em Engenharia Informática e de Computadores A ideia de coordenatização

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::;

Leia mais

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

O Estudo da Polar de uma Curva Algebróide Plana Reduzida

O Estudo da Polar de uma Curva Algebróide Plana Reduzida O Estudo da Polar de uma Curva Algebróide Plana Reduzida Catiana Casonatto Centro de Ciências Exatas Universidade Estadual de Maringá Programa de Pós-Graduação em Matemática (Mestrado) Orientador: Marcelo

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais