Telecomunicações 2 ( ) Exame de Recurso ( ) Resolução. ψ 1 (t) ψ 2 (t) k 2

Tamanho: px
Começar a partir da página:

Download "Telecomunicações 2 ( ) Exame de Recurso ( ) Resolução. ψ 1 (t) ψ 2 (t) k 2"

Transcrição

1 elecomunicaçõe (5-) Exame de Recuro (--) Reolução. a) a ) Seja b =. Um exemplo (ma não o único!) de funçõe-bae definidora de um epaço oronormado (o. n.) adequado à forma de onda dada é o eguine (o valore de k e k erão calculado abaixo): k ψ () ψ () k / / Ea dua funçõe-bae baam-no para exprimir a forma de onda dada (ver a eguir). O parâmero k e k devem er ai que ψ () e ψ () êm energia uniária: ψ d d k k k () = = = = k = ψ () = = = d kd k k = a ) Ea funçõe-bae ão orogonai, como devem: ψ () ψ () d = (é nulo porque a funçõe não e obrepõem) Repeindo a figura acima emo enão ψ () ψ () / / Facilmene confirmamo que o conjuno dado de quaro forma de onda (),, () é compleamene definido por apena ea dua funçõe-bae (o que mora que ee epaço o. n. em dua dimenõe): () = ψ() + ψ() = () = ψ() + ψ() = () = ψ() ψ() = SAM/

2 () =ψ() ψ() = Podemo ainda verificar que a funçõe-bae apreenada podem er exprea à cua da forma de onda i (): ψ () = [ () () ] (ou () [ () () ] ψ = ) ψ () = [ () + () ] (ou ψ () [ () () ] = + ) a ) Como no baam dua funçõe-bae ee epaço o. n. em dua dimenõe. b) endo em cona o vecore apreenado na alínea anerior a conelação pedida é a eguine: ψ () - ψ () i i i i i= i= c) Energia média: E = PE = P d, em que d i é a diância de cada pono à origem. Como odo o pono eão à mema diância da origem o inai êm a mema energia, ou eja, i i i i i i= i= E = P d = d P = d = ( ) = + = Noe-e que a energia média dea quaro forma de onda afinal não depende da ua probabilidade de ocorrência. Em alernaiva a energia de cada forma de onda poderia er calculada por inegração. Por exemplo: () d= () d+ () d= = + = d) Nea alínea queremo eabelecer a regra de deecção MAP (máxima probabilidade a poeriori), deerminar limiare de decião e deenhar a regiõe de decião correpondene. Em primeiro lugar, como e nem equer ocorrem (porque a ua probabilidade é nula) a eimação é implemene uma decião binária enre e. Em egundo lugar, como e êm a mema ordenada e apena diferem na abcia, e e receber o vecor r baa er em aenção o valor da ua projecção no eixo ψ (poi a projecção no eixo ψ não ajuda a decidir). Io quer dizer que a froneira da dua regiõe de decião é uma linha verical no epaço de inal. Podemo já anecipar que, vio er meno provável que, a linha de eparação e deve iuar no emiplano direio, mai próxima de do que de. SAM/

3 A projecção do vecor recebido no eixo ψ chamemo-lhe r é igual a + n e foi enviado r = + n e foi enviado em que n repreena o ruído gauiano N(, N /). Ou eja, emo dua fdp condicionai N(±, N /): ( r ) N (N(, N /)) fr ( r ) = e π N ( r + ) N (N(-, N /)) fr ( r ) = e π N A regra de decião MAP é P( r ) P( r ). Aplicando-lhe o eorema de Baye, fr ( r ) P( ) fr ( r ) P( ), f ( r ) f ( r ) r r chegamo à conhecida expreão f ( r ) P( ) f ( r ) P( ). r r Deenvolvendo e ubiuindo valore (P( ) = /, P( ) = / e N = ) obemo r r N N ( ) ( + ) e. e. πn πn e ( ) ( + ) r r e. Aplicando logarimo chegamo a r r ( ) ln ( + ) r r r r + ln donde e conclui que, endo ln,7, a regra de decião MAP procurada é ea: ln r,75. O limiar de decião iua-e, poi, na abcia,75, como e mora na figura eguine. Como e die ane, já era de conar que o limiar eivee mai próximo de do que de poi aquele ímbolo é meno provável. ψ () limiar de decião -,75 ψ () SAM/

4 . A repoa impulional (conínua) do filro adapado a v () é c() = kv (-). Para implificar vamo fazer k =. a) O valore da aída do filro adapado ópimo ão ±E, em que E é a energia do ímbolo v (): A d A d z ( ) = E= v ( d ) = = + = A = Subiuindo A pelo eu valor obemo z() = /. Se e ivee ranmiido v () o valor obido eria z() = -/. b) A relação inal-ruído ópima não depende do valor de k e vale Subiuindo valore: ( S N) ( S N) E =. N 8 = = ou, em db, log8 + log log 9 = 9 + 9,5 = 9,5 db., 9 c) A repoa impulional amorada do correpondene filro ranveral (FIR) adapado é c n = v (-n ), em que é o arao inroduzido por cada andar do filro FIR. Nee cao é = /, c = c = c = A e c = A/. Aim, emo o eguine: v ( A c n A / n / No inane ópimo de amoragem ( = ) o filro FIR enconra-e preenchido como e mora na figura eguine, e v () iver ido ranmiido: Filro adapado amorado v A A A A/ / / / A A A A/ / y() z() Nee inane = a aída do filro FIR é igual a A y ( ) = A + A + A + = A. emo de normalizar ee valor muliplicando-o por = /: Porquê? Não é ee filro uma aproximação de um inegrador? Logo SAM/

5 z ( ) = y ( ) = A z ( ) = (porque A= ) Cao e ivee ranmiido v () ober-e-ia o valor imérico, -. Oberíamo o memo reulado e em vez da muliplicação por ivéemo coniderado logo de início coeficiene de valor c n = v (-n ). O erro percenual relaivamene ao valor ideal é =,9%. Se o quiermo baixar emo de aumenar a frequência de amoragem f =, io é, aumenar o número de coeficiene do filro.. A aída yk = xk +,5xk + nk do canal depende do bi de enrada correne x k e do bi anerior, x k. Como ee úlimo repreena o eado do canal ignifica que emo doi eado poívei (+ e -, e x k- = ±). Podemo conruir a abela eguine: Enrada, x k Eado Eado Saída, y k acual, x k - eguine a) De acordo com a abela anerior o valore poívei de y k ão ± e ±. Aim, a conelação pedida é - - ψ () b) reliça do canal: Eado (-) - (-) bi de enrada - (+) - (+) bi de enrada + c) A eimaiva de máxima veroimilhança (ML) vai er obida à cua do algorimo de Vierbi. Para io, na reliça eguine foi colocada a mérica de cada ramo, io é, a diância euclidiana quadráica enre o valor recebido e o valor de aída do canal, bem como a mérica acumulada do percuro obrevivene. Sequência recebida - (-) ML (+) 9 SAM/ 5

6 O percuro de máxima veroimilhança (ML), ainalado a groo, em mérica acumulada. A equência eimada é d) Vamo coniderar o doi canai propoo: d) Canal anerior: yk = xk +,5xk + nk ; enrada: x k = (±, ±) ou eja, quaro pono no epaço bidimenional. O valore poívei de y k em ruído ão k [ ( ), ( ) ] y = ± i ± j, i, j = e (por exemplo: (,), (-,), (-,), (-,-), ec.). São dezaei pono dipoo como na figura eguine: ψ () ψ () d) Canal novo: yk = xk + xk + nk ; enrada: x k = (±, ±). O valore poívei de y k em ruído ão (, ) (, ) (, ) (, ) y k = ± ± ± ± pono pono pono Ao odo ão nove pono que deenham a conelação eguine: pono ψ () - ψ () -. Probabilidade de erro em vária modulaçõe. Eb N a) A probabilidade de bi errado em DPSK e em BFSK não-coerene ão, repecivamene, Pb = e e Eb N Pb = e. Queremo que P b (DPSK) = P b (BFSK)/, io é, E b N Eb N E b Eb E e = e = ln + b ln N N N = Daqui e ira que E b = ln = ln,7 ou, em db, N SAM/

7 Eb N ( db ) = log + log 7 log =, 5 db. 8,5 b) BFSK com deecção coerene neceia de mai db na relação E b /N para e ober a mema probabilidade de bi errado. Porano, e em BPSK e em E b /N = 8 db enão em BFSK é precio que E b /N = db. c) Conelação no pono de coordenada (±,± 5 ) 5 ψ () - ψ () 5 Probabilidade de ímbolo errado: = PP i e = (porque a probabilidade de erro P ei é igual para odo o i i i pono; como e vê, P e não depende da probabilidade de ocorrência do ímbolo). Porano, para calcular P e baa calcular a probabilidade de erro aociada a um do pono. O que faremo é calcular primeiro a probabilidade de decião correca, P c, que é a probabilidade de haver deciõe correca egundo cada eixo (com probabilidade P c I e P c Q ). Como a deciõe ão independene deverá er P = P P : c c c 5 Pc = Pc P I c = Q Q = Q N N = Q Q N N O numeradore da fracçõe da primeira linha repreenam a diância mínima egundo o doi eixo. omando N = fica Pc = Q( ) Q( ). A probabilidade de erro vem enão dada por c ( ) ( ) ( ) ( ) ( ) ( ) = P = Q Q = = Q + Q Q Q Vamo converer o número e em db para podermo uar o gráfico da função Q: db db Do gráfico iramo enão que Q( ) = 8. e Q( ) = 8. pelo que Q( ) Q( ). ( ) ( ) ( ) ( ) = Q + Q Q Q = =, 88 I Q =. Logo, SAM/ 7

8 5. Modulação QAM. E a) Sabemo que E = ( M ), logo, em -QAM é E E E = =. Ma como 5 E = enão N E E N = =. Subiuindo valore na expreão da probabilidade de ímbolo N errado, P e E = Q, obemo M N ( ) ( ) P e = Q = Q Para conularmo o gráfico da função Q emo primeiro que converer o radicando do eu argumeno em db: db. Para ee valor enconramo no gráfico Q( ) = 8.. Dee modo é P Q( ) e = =. =,. Como, com codificação de Gray, é Pb =, enão Pb =,. log M b) Na conelação de -QAM enconramo rê conjuno de pono, cada um com um deerminado número de vizinho mai próximo (pono à diância mínima): No cano emo quaro pono com vizinho mai próximo; O reane pono exeriore () êm vizinho mai próximo; odo o pono ineriore êm vizinho mai próximo. Aim, o número médio de vizinho mai próximo é igual a 7 N med = ( + + ) = =,5. c) O impulo de coeno elevado ão gerado à axa R ímbolo/ e ocupam a largura de banda B α = ( + α). Apó modulação o inal ocupa a largura de banda B QAM = B α, que não deve er uperior a B = khz: R B B BQAM = ( + α) B R + α,5 R A axa de ímbolo eá relacionada com a axa binária aravé de Rb R =, ou eja, log M Rb B, 5 9 R = log M,5 = =, log M, 5 B R b, M =, Concluímo aim que o valor mínimo de M é : deveremo uar -QAM.. emo o eguine: x = ± Canal AWGN y = x + n y = x + n a) O que vamo er não é propriamene regiõe de decião ma im um mapeameno exaco enre o par (y, y ) e o valor ranmiido de x. De y = x+ n iramo n = y x que, ubiuído na equação de y, no conduz a SAM/ 8

9 ( ) y = x+ n = x+ y x = = y xy + x + x Io ignifica que y é uma função quadráica de y. Como o inal x ó pode omar doi valore, ±, vamo er dua iuaçõe poívei: Se x = + Se x = - y = y y + (curva A na figura eguine) y = y + y (curva B na figura eguine) y 5 B x = - A x = / y - Cada par (y, y ) perence a uma da parábola: e eiver na curva A (exemplo: y =, y = ) ecolhemo x = +, e eiver na oura (exemplo: y =, y = ) ecolhemo x = -. b) Conhecendo o par (y, y ) e dede que y,5 (pono de inerecção da curva) idenificamo inequivocamene a parábola pelo que não há dúvida nenhuma obre o bi x ranmiido; logo, a probabilidade de erro é nula, independenemene do valor de σ. c) Com y =,5 já é diferene poi o par (y, y ) perence à dua curva. Podemo memo aim ecolher o bi mai provável. De faco, e y =,5 emo doi cao conoane x = + ou x = -: Se x = + n = y x =,5 =,5 Se x = - n = y x =,5 + =,5 Ora endo o ruído uma variável gauiana de média nula, o que é que é mai provável, n = -,5 ou n =,5? Claramene n = -,5. Porano, e y =,5 o mai cero é que enha ido ranmiido o bi x = +. Maemaicamene ea decião é omada porque p ( n =,5) > p ( n =,5), onde p n (n) é a função denidade de probabilidade do ruído AWGN. n n SAM/ 9

Telecomunicações 2 ( ) Exame de Época Normal ( ) Resolução. f m R b R s R α Cosseno 2B1Q elevado, α B m B PCM B s B α

Telecomunicações 2 ( ) Exame de Época Normal ( ) Resolução. f m R b R s R α Cosseno 2B1Q elevado, α B m B PCM B s B α elecomunicaçõe (5-6) Exame de Época Normal (--6) Reolução. Conideremo o eguinte diagrama de loco: Déito (it rate e ymol rate) Fonte analógica Largura de anda f m R R R α Coeno PCM B elevado, α B m B PCM

Leia mais

Modulações digitais. Espaços de sinal e regiões de decisão. Funções ortogonais. Ortogonalização de Gram-Schmidt

Modulações digitais. Espaços de sinal e regiões de decisão. Funções ortogonais. Ortogonalização de Gram-Schmidt Modulaçõe dga Epaço de nal e regõe de decão Funçõe orogona Orogonalzação de Gram-Schmd Uma perpecva geomérca do na e ruído (Koelnkov) Um epaço orogonal de dmenõe é caracerzado por um conjuno de ψ () funçõe

Leia mais

Exercícios de Comunicações Digitais

Exercícios de Comunicações Digitais Deparameno de Engenharia Elecroécnica e de Compuadores Exercícios de Comunicações Digiais Sílvio A. Abranes DEEC/FEUP Modulações digiais 3.. Considere as rês funções da figura seguine: S () S () S 3 ()

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 EXAME FINAL Nome Legível Turma RG CPF Repoa em juificaiva ou com fórmula prona

Leia mais

CONTROLABILIDADE E OBSERVABILIDADE

CONTROLABILIDADE E OBSERVABILIDADE Eduardo obo uoa Cabral CONTROABIIDADE E OBSERVABIIDADE. oiação Em um iema na forma do epaço do eado podem exiir dinâmica que não ão ia pela aída do iema ou não ão influenciada pela enrada do iema. Se penarmo

Leia mais

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

2 Caracterização de Canal

2 Caracterização de Canal Caraceriação de Canal Um grande problema que reringe a expanão da rede móei é o deanecimeno que afea o deempeno da mema. O uo de mobilidade no aceo a inerne banda larga como propõe WiMAX impõe a neceidade

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

CONCEITOS FUNDAMENTAIS

CONCEITOS FUNDAMENTAIS Projeo eenge - Eng. Elérica Apoila de Siema de Conrole I III- &$3Ì78/,,, CONCEITOS FUNDAMENTAIS 3.- INTODUÇÃO Inicialmene nee capíulo, euda-e o conceio de função de ranferência, o qual é a bae da eoria

Leia mais

Modulação de Amplitude de Pulso e Quantização

Modulação de Amplitude de Pulso e Quantização UnB - FT ENE Modulação de Ampliude de ulo e Quanização Inrodução A modulação por código de pulo em inglê, pule-code modulaion CM é a écnica báica de digialização de um inal analógico ou de converão analógico

Leia mais

Aula 7 de FT II. Prof. Gerônimo

Aula 7 de FT II. Prof. Gerônimo Aula 7 de FT II Prof. Gerônimo Condução Traniene Quando energia érmica é adicionada ou removida de um corpo (volume de conrole), eu eado não pode er conane e, aim, a emperaura do corpo variará em geral

Leia mais

MODULAÇÃO E CODIFICAÇÃO

MODULAÇÃO E CODIFICAÇÃO Intituto Superior de Ciência do rabalho e da Emprea Departamento de Ciência e ecnologia de Inormação MODULAÇÃO E CODIFICAÇÃO º ete Ano Lectivo 005/006 0 emetre 07/06/06 Ecreva o eu nome e número de aluno

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

SCC Laboratório de Algoritmos Avançados. Grafos: Fluxo Máximo. Fluxo Máximo. Fluxo Máximo. Fluxo Máximo 6/2/2009 5:33 PM

SCC Laboratório de Algoritmos Avançados. Grafos: Fluxo Máximo. Fluxo Máximo. Fluxo Máximo. Fluxo Máximo 6/2/2009 5:33 PM SCC-2 - Laboraório de Algorimo Avançado Grafo: Fluxo Máximo Guavo Baia Fluxo Máximo Podemo inerprear um grafo orienado como um fluxo em rede: Exie uma origem que produz um maerial em uma axa fixa; E um

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo 1 Razão de egmeno ara organizar

Leia mais

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores.

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores. Modelagem Maemáica MODELOS MATEMÁTICOS DE CIRCUITOS ELÉTRICOS O circuio equivalene à rede elérica com a quai rabalhamo coniem baicamene em rê componene lineare paivo: reiore, capaciore e induore. A Tabela

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo oral da OME 1 Razão de

Leia mais

2. senh(x) = ex e x. 3. cos(t) = eit +e it. 4. sen(t) = eit e it 5. cos(2t) = cos 2 (t) sen 2 (t) 6. sen(2t) = 2sen(t)cos(t) 7.

2. senh(x) = ex e x. 3. cos(t) = eit +e it. 4. sen(t) = eit e it 5. cos(2t) = cos 2 (t) sen 2 (t) 6. sen(2t) = 2sen(t)cos(t) 7. UFRGS INSTITUTO DE MATEMÁTICA Deparameno de Maemáica Pura e Aplicada MAT68 - Turma D - / Segunda avaliação - Grupo 3 4 Toal Nome: Carão: Regra a obervar: Seja ucino porém compleo. Juifique odo procedimeno

Leia mais

Física Geral Nos problemas abaixo, considere g = 9,8 m/s 2 e, salvo indicação em contrário, dê as suas respostas em unidades SI.

Física Geral Nos problemas abaixo, considere g = 9,8 m/s 2 e, salvo indicação em contrário, dê as suas respostas em unidades SI. Fíica Geral 21048 Inruçõe para elaboração dee e-fólio Documeno de exo,.doc,.pdf ou.ps; fone 11 ou 12; epaçameno livre; máximo 6 página. Pode incluir deenho, vária core e pode incluive junar elemeno ao

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + / G 6 a Aula 2006.09.25 AMIV! # & ' # # # * # + 6. Equações de Cauchy Riemann em coordenadas polares. Analiicidade e derivada do logarimo Com objecivo de deduzir a analiicidade do logarimo complexo, vamos

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Caderno de Prova CONTROLE DE PROCESSOS Edial Nº. 0/009-DIPE 0 de maio de 009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Ue apena canea eferográfica azul ou prea. Ecreva o eu nome compleo e o número do eu documeno

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

SEPS Sinais. s ( nt ) Os sinais podem ser: Amplitude não quantificada Amplitude quantificada. Contínuo em t. Sinais analógicos

SEPS Sinais. s ( nt ) Os sinais podem ser: Amplitude não quantificada Amplitude quantificada. Contínuo em t. Sinais analógicos SEPS Sinai () O inai podem er: Conínuo em Ampliude não quanificada Ampliude quanificada Sinai analógico Dicreo em Conínuo Ampliude não quanificada Ampliude quanificada Dicreo Sinai digiai () q( ) quanificação

Leia mais

Questões básicas sobre o M.U.V. Função horária dos espaços:

Questões básicas sobre o M.U.V. Função horária dos espaços: Queõe báica obre o MUV Função horária do epaço: (MUV) (MU) Um foguee é lançado ericalmene a parir do repouo com aceleração ecalar conane, em módulo, igual a 6, m/, qual é a diância por ele percorrida apó

Leia mais

Resumindo e concluindo

Resumindo e concluindo Reumndo e conclundo eleexo de bolo e de razer por caa, uavemene, uavemene Conelaçõe no Epaço (em modulaçõe dga) Sílvo A. Abrane Deparameno de Engenhara Elecroécnca e de Compuadore Faculdade de Engenhara,

Leia mais

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim Cálculo Diferencial e Inegral II - Tagus Park o. Semesre 5/6 o. Tese 7/Novembro/5 JUSTIFIQUE AS SUAS RESPOSTAS RESOLUÇÃO..5+.5 vals.) Calcule ou mosre que não eise: a) a) + b) + + 4 + + Como, não eise.

Leia mais

FÍSICA FUNDAMENTAL 1 o Semestre de 2011 Prof. Maurício Fabbri 1. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA

FÍSICA FUNDAMENTAL 1 o Semestre de 2011 Prof. Maurício Fabbri 1. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA 5 5 FÍSICA FUNDAMENTAL o Seere de Prof. Maurício Fabbri a Série de Exercício - Cineáica Pare I Moieno unidienional. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA (I) O oieno de u corpo é regirado

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

Fundamentos de Telecomunicações 2002/03

Fundamentos de Telecomunicações 2002/03 INSTITUTO SUPERIOR TÉCNICO Número: Fundamenos de Telecomunicações 22/3 EXAME Janeiro 25, 23 Duração: 2 minuos Nome: Preende conabilizar as noas dos eses? sim não Assinaura A resolução do exame é feia no

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

Tabela: Variáveis reais e nominais

Tabela: Variáveis reais e nominais Capíulo 1 Soluções: Inrodução à Macroeconomia Exercício 12 (Variáveis reais e nominais) Na abela seguine enconram se os dados iniciais do exercício (colunas 1, 2, 3) bem como as soluções relaivas a odas

Leia mais

O modelo de ponto material. 1. Referencial. Exemplo 1:

O modelo de ponto material. 1. Referencial. Exemplo 1: modelo de pono maerial No eudo de ário fenômeno fíico, pode não er imporane o fao de o corpo erem dimenõe, ma pode er imporane o fao de erem maa. Nee cao, podemo uar o modelo de pono maerial, ou parícula,

Leia mais

P IBpm = C+ I+ G+X F = = b) Despesa Nacional. PNBpm = P IBpm+ RF X = ( ) = 59549

P IBpm = C+ I+ G+X F = = b) Despesa Nacional. PNBpm = P IBpm+ RF X = ( ) = 59549 Capíulo 2 Soluções: Medição da Acividade Económica Exercício 24 (PIB pelaópica da despesa) i. Usando os valores da abela que consa do enunciado, a solução das várias alíneas é imediaa, basando para al

Leia mais

6.1: Transformada de Laplace

6.1: Transformada de Laplace 6.: Tranformada de Laplace Muio problema práico da engenharia envolvem iema mecânico ou elérico ob ação de força deconínua ou de impulo. Para ee ipo de problema, o méodo vio em Equaçõe Diferenciai I, ão

Leia mais

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO:

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO: UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: Prova sem consula

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

MODELOS DE SISTEMAS DINÂMICOS. Função de transferência Resposta transiente

MODELOS DE SISTEMAS DINÂMICOS. Função de transferência Resposta transiente MODELOS DE SISTEMS DINÂMICOS Função de ranferência epoa raniene Função de Tranferência Deenvolveremo a função de ranferência de um iema de primeira ordem coniderando o comporameno não eacionário de um

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

1.Equações do Modelo de Estado de Sistemas Lineares Contínuos

1.Equações do Modelo de Estado de Sistemas Lineares Contínuos 3.Equaçõe do Modelo de Eado de Siema Lineare Conínuo Objecivo: Morar que há um conjuno diverificado de iema que podem er modelado aravé da equaçõe de eado. 4 Eemplo: Supenão magnéica imple u y Um modelo

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

5 Proposta de um método de ajuste sazonal

5 Proposta de um método de ajuste sazonal 5 Propoa de um méodo de ajue azonal 5.1 Inrodução A generalização do procedimeno em 4.3 moivou a conrução de um filro exraor de endência que poa er aplicado direamene em uma érie independene de er azonal

Leia mais

3 Revisão Teórica dos principais modelos de previsão

3 Revisão Teórica dos principais modelos de previsão Revião Teórica do principai modelo de previão 18 3 Revião Teórica do principai modelo de previão Denre o divero méodo e modelo de previão eine, enconramo aqui o modelo univariado e o modelo com variávei

Leia mais

Conidere uma rampa plana, inclinada de um ângulo em relação à horizonal, no início da qual enconra-e um carrinho. Ele enão recebe uma pancada que o fa

Conidere uma rampa plana, inclinada de um ângulo em relação à horizonal, no início da qual enconra-e um carrinho. Ele enão recebe uma pancada que o fa Onda acúica ão onda de compreenão, ou eja, propagam-e em meio compreívei. Quando uma barra meálica é golpeada em ua exremidade, uma onda longiudinal propaga-e por ela com velocidade v p. A grandeza E é

Leia mais

Acção da neve: quantificação de acordo com o EC1

Acção da neve: quantificação de acordo com o EC1 Acção da neve: quanificação de acordo com o EC1 Luciano Jacino Iniuo Superior de Engenharia de Liboa Área Deparamenal de Engenharia Civil Janeiro 2014 Índice 1 Inrodução... 1 2 Zonameno do erriório...

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

2 Para o traçado da curva hipsométrica de determinada bacia hidrográfica obtiveram- -se os seguintes elementos:

2 Para o traçado da curva hipsométrica de determinada bacia hidrográfica obtiveram- -se os seguintes elementos: Tee de Hidrologia e Recuro Hídrico Licenciaura em Eng.ª do Amiene 3º Ano - 2º Semere 29 de Aril de 2005 Reponda ucina e concreamene à eguine queõe: 1 Saendo que a precipiação anual média gloal é 1120 mm

Leia mais

CDI II - TP Esboço de Resolução 1o. Semestre 17/18 1o. Teste 11/Novembro/2017 JUSTIFIQUE AS SUAS RESPOSTAS. = lim. s t2

CDI II - TP Esboço de Resolução 1o. Semestre 17/18 1o. Teste 11/Novembro/2017 JUSTIFIQUE AS SUAS RESPOSTAS. = lim. s t2 CDI II - TP Esboço de Resolução o Semesre 7/8 o Tese /Novembro/7 JUSTIFIQUE AS SUAS RESPOSTAS + 5 vals) Calcule ou mosre que não eise: i) a) b) sin) sin sin ) sin ) ii),,) +,,) + sin) sin,,) + sin) sin,,)

Leia mais

Curvas e Superfícies Paramétricas

Curvas e Superfícies Paramétricas Curvas e Superfícies araméricas Eemplo de superfícies NURBS Curvas e Superfícies ara aplicações de CG normalmene é mais conveniene adoar a forma paramérica Independene do sisema de coordenadas Represenação

Leia mais

O processo de escolha de uma amostra da população é denominado de amostragem.

O processo de escolha de uma amostra da população é denominado de amostragem. O proeo de eolha de uma amora da população é deomiado de amoragem Méodo de e iferir obre uma população a parir do oheimeo de pelo meo uma amora dea população Eudo da relaçõe eória exiee ere uma população

Leia mais

Física D Extensivo V. 1

Física D Extensivo V. 1 GABARIO Fíica D Eenivo V Eercício 0) 08) () B A 5 0 0) 5 03) y 6 y= 6 coef linear coef angular poiivo X A = 0 + 0 Condição de enconro X A = X B 0 + 0 = 5 + 0 = () X B = 5 + 0 0) 09) 05) pv = n R V = n

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

Total. UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área IIA

Total. UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área IIA UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Deparameno de Maemáica Pura e Aplicada MAT68 - Turma C - 7/ Prova da área IIA - 5 6 7 Toal Nome: Regra Gerai: Não é permiido o uo de calculadora, elefone ou

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

APÊNDICE A. Rotação de um MDT

APÊNDICE A. Rotação de um MDT APÊNDICES 7 APÊNDICE A Roação de um MDT 8 Os passos seguidos para a realização da roação do MDT foram os seguines: - Deerminar as coordenadas do cenro geomérico da região, ou pono em orno do qual a roação

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Log Soluções Reforço escolar M ae máica Dinâmica 4 2ª Série 1º Bimesre DISCIPLINA SÉRIE CAMPO CONCEITO Maemáica 2ª do Ensino Médio Algébrico simbólico Função Logarímica Primeira Eapa Comparilhar Ideias

Leia mais

1 ANO COMENTÁRIO DOS PROBLEMAS COMENTÁRIO: RESPOSTA: A

1 ANO COMENTÁRIO DOS PROBLEMAS COMENTÁRIO: RESPOSTA: A AO COMEÁRIO DOS PROBEMAS P en ' ' P en P co Inicialene, a iuação da fiura exprea iinência de oieno ao iea de aa iuai a. Idenificando oda a força auane nee iea, incluindo a hae, eja: a P co Uilizando a

Leia mais

Análise Matemática IV

Análise Matemática IV Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a

Leia mais

Caracterização da informação digital ( ) = ( )

Caracterização da informação digital ( ) = ( ) Caracterização da informação digital A repreentação de uma menagem digital em banda de bae toma normalmente a forma de uma equência de impulo modulada em amplitude: ( ) ( ) x t a r t KT K K - a K repreenta

Leia mais

CINEMÁTICA. CONCEITOS BÁSICOS DO CÁLCULO INTEGRAL E DIFENRENCIAL

CINEMÁTICA. CONCEITOS BÁSICOS DO CÁLCULO INTEGRAL E DIFENRENCIAL Aula 3 CINEMÁTICA. CONCEITOS BÁSICOS DO CÁLCULO INTEGRAL E DIFENRENCIAL META Siuar a cinemáica denro da definiçõe maemáica do cálculo inegral e diferencial. Morar a múua inerdependência do doi auno; por

Leia mais

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Alexandrino Diógenes

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Alexandrino Diógenes Professor: Alexandrino Diógenes EXERCÍCIOS DE SALA 4 5 6 7 8 9 0 E C D D A D E D A D 4 5 6 7 8 9 0 C E D B A B D C B A QUESTÃO Seja a função N : R R, definida por N(n) = an + b, em que N(n) é o número

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Transformada de Laplace

Transformada de Laplace Sinai e Sitema - Tranformada de Laplace A Tranformada de Laplace é uma importante ferramenta para a reolução de equaçõe diferenciai. Também é muito útil na repreentação e análie de itema. É uma tranformação

Leia mais

PROVA DE ENGENHARIA GRUPO II

PROVA DE ENGENHARIA GRUPO II Quesão 34 PROVA DE ENGENHARIA GRPO II Resposa esperada a) (Alernaiva 1) Ober inicialmene o equivalene elérico do corpo umano e depois monar o circuio elérico equivalene do sisema. Assim, pela Figura, noa-se

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

TRANSFORMADA DE LAPLACE Conceitos e exemplos

TRANSFORMADA DE LAPLACE Conceitos e exemplos TRANSFORMADA DE LAPLACE Conceio e exemplo Diciplina MR7 A finalidade dea apoila é dar o conceio da ranformada de Laplace, eu uo na olução de problema e por fim um aprendizado do méodo de reoluçõe. Muia

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

QUESTÃO 21 ITAIPU/UFPR/2015

QUESTÃO 21 ITAIPU/UFPR/2015 QUTÃO TAPU/UFPR/5. Um gerador com conexão etrela-aterrado etá prete a er conectado a um itema elétrico atravé de um tranformador elevador ligado com conexão delta-etrela aterrado, tal como repreentado

Leia mais

Um exemplo de TCM (Trellis Coded Modulation) - versão draft

Um exemplo de TCM (Trellis Coded Modulation) - versão draft Um exemplo de TCM (Trelli Coded Modulation) - verão draft Introdução A concepção inicial do TCM remonta à época da publicação da ref [1] coniderada como o marco inicial do etudo obre o tema Seja uma contelação

Leia mais

4.10. Noção de potência e rendimento de máquina hidráulica

4.10. Noção de potência e rendimento de máquina hidráulica 4.10. oção de poência e rendieno de áquina hidráulica 4.10.1. oba hidráulica Evocando a finalidade da boba: é o dipoiivo que fornece carga para o, denoinada de carga anoérica (H). H E E energia fornecida

Leia mais

apresentado: B 10cm 5 cm , (x, y, z) em cm Pede-se: onde elas

apresentado: B 10cm 5 cm , (x, y, z) em cm Pede-se: onde elas 1) Para a peça primáica indeformada da figura abaio foi admiido o campo de deformaçõe apreenado: 5 cm 1cm A B 1cm C ij a b b c,a, (,, ) em cm Para ajuar o modelo, ainda na configuração inicial indeformadaa

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA. TRANSFORMADA DE LAPLACE: uma introdução com aplicações.

UNIVERSIDADE FEDERAL DE SANTA CATARINA. TRANSFORMADA DE LAPLACE: uma introdução com aplicações. UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA CURSO DE ESPECIALIZAÇÃO EM MATEMÁTICA FORMAÇÃO DE PROFESSOR TRANSFORMADA DE LAPLACE: uma inrodução

Leia mais

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível Turma RG CPF Resposas sem

Leia mais

5. ANÁLISE DE RESÍDUOS

5. ANÁLISE DE RESÍDUOS 5. ANÁLISE DE RESÍDUOS No Capíulo 4 fora propoa eodologia para eiar o volue de óleo recuperável. Poré, apó inveigar o odelo que elhor e ajua ao dado hiórico, deve-e analiar ainda o reíduo, que é a diferença

Leia mais

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 013 ªFASE 1. 1.1. Aplicando o método de Hondt, o quociente calculado ão o eguinte: Lita A B C D Número de voto 13 1035

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Por Ponto. Por intervalo

Por Ponto. Por intervalo rof Lorí Viali, Dr viali@maufrgbr hp://wwwufrgbr/~viali/ Uma A eimação em por objeivo foreer iformaçõe obre parâmero populaioai, edo omo bae uma amora aleaória eraída da população de ieree θ ETIMAÇÃO AMOTRA

Leia mais

Aula 20. Efeito Doppler

Aula 20. Efeito Doppler Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento

Leia mais

Total. UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT Turma D /2 Prova da área IA

Total. UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT Turma D /2 Prova da área IA UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Deparameno de Maemáica Pura e Aplicada MAT6 - Turma D - 6/ Prova da área IA - 5 6 7 Toal Nome: Gabario Regra Gerai: Não é permiido o uo de calculadora, elefone

Leia mais

Exigências de Propriedades de Material

Exigências de Propriedades de Material pg.1 CPÍTULO IX OUTROS CRITÉRIOS DE VLIÇÃO 1 DESCONTINUIDDES VOLUMÉTRICS deconinuidade que apreenam caraceríica volumérica devem er avaliada conforme o criério definido nee Iem. Conideram-e como deconinuidade

Leia mais

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos CAPÍTULO Eercícios.. a) Ï f( ), onde f( ) Ó f é inegrável em [, ], pois é limiada e desconínua apenas em. Temos f( ) f( ) f( ) Em [, ], f() difere de apenas em. Daí, f ( ) [ ] Em [, ], f(). Logo, f( )

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

8.6 A corrente de deslocamento e as equações de Maxwell

8.6 A corrente de deslocamento e as equações de Maxwell 8.6 A correne de delocameno e a equaçõe de Maxwell Michael Faraday decobriu uma da dua lei báica que regem o fenômeno não eacionário do eleromagneimo. Nela aparece uma derivada emporal do campo magnéico.

Leia mais

Teoria das Comunicações Prof. André Noll Barreto Prova 2

Teoria das Comunicações Prof. André Noll Barreto Prova 2 Prova Aluno: Marícula: Quesão 1 ( ponos) Dado um sinal m = 1 deermine as expressões dos sinais modulados para as seguines modulações (0,5 ponos cada): a)am, com índice de modulação = m p A = 1 b)dsb-sc

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

CINEMÁTICA ESCALAR. AULAS 1 a 3 I) CONCEITOS BÁSICOS II) DEFINIÇÕES III) CLASSIFICAÇÃO DOS MOVIMENTOS IV) MOVIMENTO UNIFORME.

CINEMÁTICA ESCALAR. AULAS 1 a 3 I) CONCEITOS BÁSICOS II) DEFINIÇÕES III) CLASSIFICAÇÃO DOS MOVIMENTOS IV) MOVIMENTO UNIFORME. 1 www.curoanglo.com.br Treinameno para Olimpíada de Fíica 1 ª- / ª- é r i e E M AULAS 1 a 3 CINEMÁTICA ESCALAR I) CONCEITOS BÁSICOS Moimeno/ repouo Trajeória Localização: epaço () empo () II) DEFINIÇÕES

Leia mais

Comunicações Digitais Prof. André Noll Barreto Prova /2 (28/11/2013)

Comunicações Digitais Prof. André Noll Barreto Prova /2 (28/11/2013) Prova 3 013/ (8/11/013) Aluno: Matrícula: Instruções A prova consiste de três questões discursivas A prova terá a duração de h00 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Como o Intervalo de Confiança para a média é bilateral, teremos uma situação semelhante à da figura abaixo:

Como o Intervalo de Confiança para a média é bilateral, teremos uma situação semelhante à da figura abaixo: INE66 Méodo Eaíico Exercício Prova - Semere 15.1 O poo de fuão (medido em C) é um apeco crucial em maeriai cerâmico, epecialmee o uado em reaore ucleare, como a ória. Receemee um fabricae apreeou dua ova

Leia mais