Física IV Poli Engenharia Elétrica: 15ª Aula (07/10/2014)

Tamanho: px
Começar a partir da página:

Download "Física IV Poli Engenharia Elétrica: 15ª Aula (07/10/2014)"

Transcrição

1 Física V Poi Egeharia Eétrica: 15ª Aua (7/1/14) Prof. Avaro Vaucci Na útima aua vimos: Partícua presa a um poço de potecia ifiito (1D) Equação de Schrödiger (U = ): d dx m E K ; K me ikx Soução:. A' e B' e part ivre ikx Apicado as codições de cotoro ( x ) ( xl) obtivemos: B' A' = h K (subst K) E ; 1,,3,... L 8mL Auto-Vaores de Eergia Fução de oda correspodete: (x) Asi x L (ormaizado) (x) si x ; L L 1,,3... (Auto-Fuções do poço ifiito) Equato que as distribuições de probabiidades de se ecotrar a partícua em uma posição x (quado o sistema ecotra-se em um determiado estado quâtico) são dadas por: (x) si x L L

2 Vejamos agora o probema do poço de potecia fiito U, de argura L, sedo E ( E U) a eergia tota da partícua. Resover este probema (como todos os outros) sigifica ecotrar as auto-fuções e os respectivos autovaores de eergia E quâticos permitidos para a partícua. correspodetes aos vários estados Em particuar, a região temos que U e, portato, a soução da equação de Schrödiger será a mesma já obtida a situação aterior do poço de potecia ifiito: Ae A e ikx 1 ikx Porém, as regiões e, peo fato do potecia ser U U, a equação de Schrödiger agora tora-se: d U E m dx costate De ode vemos ovamete que a fução que satisfaz esta equação diferecia deve ser ta que, em derivado-a duas vezes, temos como resutado ea mesma! Cosiderado etão uma fução expoecia do tipo: Kx d Kx d Kx ' " e Ke K e dx dx Substituido e " a equação de oda acima: Note: as codições de cotoro de ates ão mais servem para este caso Kx K e U m E e Kx K m U E Ou seja, obtivemos a soução particuar: ( x) e, sedo a costate K dada acima (Note que se U < E, o expoete tora-se compexo!) Porém, da mesma forma, observa-se que ( x) e também é uma soução (particuar). De forma que a soução gera será a combiação iear destas souções particuares: Kx Kx

3 ( x) B e e kx B kx 1 e ( ) 1 kx C kx x C e e ; sedo que K váido tato para as regiões () e () m U E Verifiquemos agora quais são as codições que a fução de oda do sistema deve satisfazer, ou seja, vamos idetificar as codições de cotoro do probema. Se a partícua ecotra-se circuscrita ao poço de potecia, certamete a probabiidade dea ser ecotrada em regiões muito afastadas deve ser ua, ou seja: apicado a equação acima C1 e, portato, Ce (i) x (x positivos e, portato, decaimeto expoecia) apicado a equação acima B e, portato, B1 e (ii) x (x egativos e, portato, ovamete decaimeto expoecia) Note que sobraram aida quatro costates para serem determiadas. Três deas são obtidas impodo a cotiuidade das fuções de oda e suas derivadas: x x e x L x L x x e ' x L ' x L ' ' A útima costate será fiamete determiada impodo a ormaização da fução de oda. A soução fia, após todos os cácuos serem reaizados, são mostrados a figura abaixo. kx kx Note, da figura (b), que há uma probabiidade diferete de zero da partícua ser ecotrada fora do poço! Observe que há também posições x, o iterior do poço, as quais a partícua uca será ecotrada!

4 Este resutado também coduz ao caso muito especia de uma partícua atigido uma barreira de potecia de atura fiita U e argura L, sedo a eergia da partícua E U. Do poto de vista cássico, a partícua sempre será refetida ao atigir a posição x ; mas resovedo o probema quaticamete, obtedo as souções correspodetes da Equação de Schrödiger (de maeira semehate ao que fizemos ateriormete), observa-se que haverá uma probabiidade diferete de zero da partícua ser detectada em posições x L! Esta "probabiidade de tueameto" deve ser ta que a soma dos coeficietes de trasmissão (probabiidade de atravessar) e refexão (probabiidade de ão atravessar) tem que ser igua a um: T R 1 Uma expressão aproximada para T, bastate úti, é: CL T ~ e ; C m( U E) Vamos agora resover o átomo de hidrogêio correspodete ao poço de potecia atrativo represetado por Ke U r, sedo que r correspode à distâcia próto-próto e 1 K. 4 Este poço de potecia atrativo é mostrado a figura ao ado e o probema deve ser resovido em 3D, utiizado-se as coordeadas esféricas (devido à geometria do probema). Desta forma, a equação de Schrödiger correspodete será: Ke E m r, Ode devemos utiizar o operador apaciao em coordeadas esféricas: r si r r r r si r si Esta equação diferecia pode ser resovida apicado o Método de Separação de Variáveis, que assume ser possíve fazer: r,, R( r) ( ) ( )

5 Este processo resuta em três equações difereciais distitas (uma para cada coordeada) de forma que as souções (para cada uma deas) correspoderão a: R ( r) e G, G Poiômios de Laguerre m Zr a m ( ) se F s Zr Zr a a m co, F m Poiômios de Legedre im ( ) e apeas, devido à simetria do probema Nestas equações, a,53å Raio cássico de Bohr mke ( estado fudameta ), e m correspodem aos úmeros quâticos pricipa azimuta (ou orbita) e magético, respectivamete, de forma que os vaores que ees podem assumir são: 1,,3,...,1,,3,..., 1 m, 1,,...,,1,,...,, 1, associado ao mometo de dipoo magético do eétro em órbita ao redor do próto Note que pode ter vaores possíveis, equato que o vaores permitidos. m pode assumir 1 Resovedo o probema, obtém-se que as eergias dos estados permitidos do hidrogêio são dados por: E Ke a 1 13,6 ( ev ) cocorda com a equação obtida por Bohr! Por razões históricas, os estados quâticos represetados por formam uma camada eetrôica ao redor do úceo, idetificada peas etras maiúscuas K 1, L, M m 1,... Equato que as subcamadas, represetadas por vaores específicos de são desigadas por etras miúscuas (veja ao ado). Por exempo, o estado quâtico 3s correspode a 3, 1. O estado quâtico s correspode a, e o estado d ão pode existir, já que o maior vaor possíve de é 1 1!

6 Exempo: detifique os estados possíveis do hidrogêio correspodetes a, e cacue as eergias destes estados. Resoução: m m 1 1 m m 1 e como a eergia: E 13,6 ( ev ) só depede de todos estes estados têm E 3,4 ev Apêdice: Osciador Harmôico Simpes Outro sistema muito iteressate trata-se do Osciador Harmôico Simpes: sedo que: F Kx e U Kx m x 1/ 1/ ; com Km. Cassicamete, desocado-se e sotado a partícua presa à moa, ea oscia etre x A e x A, com E K U KA m A 1/ 1/. Também, quaquer vaor de E é permitido e pode-se icusive ter E (repouso) em x. Abordagem quâtica: Equação de Schrödiger: d 1 d me m x m x E m dx dx Só apresetado, as autofuções serão: m x C H xe m x bastate compicada de ser resovida! C Costates de Normaização ( x ) dx 1, p/ cada estado H H 1 H1 x m x Poiômios de 4 ;,1,... Hermite : H x... Agus vaores:

7 1 Equato que os auto-vaores de eergia são: E ;,1,, Note que, para íve mais baixo de eergia: E ; E1 ;... eergia do poto zero Diagrama dos íveis de eergia de um osciador harmôico simpes. Observe que os íveis estão iguamete espaçados, com uma separação igua a. A eergia do poto zero é. A figura abaixo mostra o para os três primeiros estados do osciador harmôico simpes juto com a previsão cássica. Observe que, coforme o vaor de aumeta, maior é a cocordâcia etre as duas previsões (Pricípio da Correspodêcia):

8 Exercício: Mostre que a fução de oda correspodete ao estado fudameta do Osciador Harmôico Simpes (o estado U Kx m x 1/ 1/. Resoução: ) é Be m x ; embrado que Para mostrar isso, precisamos mostrar que essa fução satisfaz a equação de Schrödiger com U 1/ Kx (sabedo que a eergia do poto zero deve ser E ): Derivado a fução: d m dx 1 K x E. m Be x m x x m m x m Be Bxe x m x x Substituido: m m x Be m m x 1 K x E Be m x m 1 iguaado os coeficietes do poiômio x K x E correspodetes aos mesmos expoetes de x E k m k / m

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS 3 MOMENTOS

VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS 3 MOMENTOS TECNOLOGIA EM CONSTRUÇÃO DE EDIFÍCIOS CONSTRUÇÕES EM CONCRETO ARMADO VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS MOMENTOS Apostia orgaizada peo professor: Ediberto Vitorio de Borja 6. ÍNDICE CÁLCULO DE MOMENTOS

Leia mais

Capítulo 39: Mais Ondas de Matéria

Capítulo 39: Mais Ondas de Matéria Capítulo 39: Mais Odas de Matéria Os elétros da superfície de uma lâmia de Cobre foram cofiados em um curral atômico - uma barreira de 7,3 âgstros de diâmetro, imposta por 48 átomos de Ferro. Os átomos

Leia mais

Dentro, a/2 < x < a/2: com: Ondas com a mesma amplitude nos 2 sentidos. Elas se combinam formando uma onda estacionária. Então podemos fazer A = B:

Dentro, a/2 < x < a/2: com: Ondas com a mesma amplitude nos 2 sentidos. Elas se combinam formando uma onda estacionária. Então podemos fazer A = B: Poços de potecial: E < V Detro a/ < < a/: ψ com: i i Ae + Be me p Odas com a mesma amplitude os setidos. Elas se combiam formado uma oda estacioária. Etão podemos fazer A B: ψ ψ i i + e B e Bʹ cos e Bʹ

Leia mais

Aula-10 Mais Ondas de Matéria II

Aula-10 Mais Ondas de Matéria II http://www.bugma3.com/physics/ Aula-0 Mais Odas de Matéria II Física Geral F-48 Partícula em uma Caixa ( poço ) Vamos resolver a equação de Schrödiger para uma partícula cofiada a uma caixa de paredes

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Egeharia de Lorea EEL LOB101 - FÍSICA IV Prof. Dr. Durval Rodrigues Juior Departameto de Egeharia de Materiais (DEMAR) Escola de Egeharia de Lorea (EEL) Uiversidade

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Instituto de Física USP. Física Moderna. Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna. Aula 25. Professora: Mazé Bechara Istituto de Física USP Física Modera Aula 5 Professora: Mazé Bechara Aula 5 A equação de Schroediger para estados estacioários ligados. Aplicação o movimeto uidimesioal. 1. Aplicação : os auto estados

Leia mais

Método dos Mínimos Quadrados. Julia Sawaki Tanaka

Método dos Mínimos Quadrados. Julia Sawaki Tanaka Método dos Míimos Quadrados Julia Sawaki Taaka Diagrama de Dispersão iterpolação ajuste ou aproximação O Método dos Míimos Quadrados é um método de aproximação de fuções. É utilizado quado: Cohecemos potos

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eletromagetismo 1 o Semestre de 7 Noturo - Prof. Alvaro Vaucci 1 a aula 7/fev/7 ivros-texto: eitz-milford Griffiths Vamos relembrar as 4 equações básicas do Eletromagetismo 1 a ) ei de Gauss: O Fluxo do

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

FÍSICA MODERNA I AULA 14

FÍSICA MODERNA I AULA 14 Uiversidade de São Paulo Istituto de Física FÍSICA MODERNA I AULA 14 Profa. Márcia de Almeida Rizzutto Pelletro sala 114 rizzutto@if.usp.br 1o. Semestre de 014 Moitor: Gabriel M. de Souza Satos Págia do

Leia mais

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral IV para Engenharia 2a. Prova - 2o. Semestre /10/2014

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral IV para Engenharia 2a. Prova - 2o. Semestre /10/2014 Turma A a Questão: Istituto de Matemática e Estatística da USP MAT455 - Cálculo Diferecial e Itegral IV para Egeharia a. Prova - o. Semestre 4-3//4 a, poto Seja fx + x 3. Calcule f 3. b Obteha uma expressão

Leia mais

Aula 5 Teorema central do limite & Aplicações

Aula 5 Teorema central do limite & Aplicações Diâmica Estocástica Aula 5 Teorema cetral do limite & Aplicações Teorema cetral do limite Se x é tal que: x 0 e ( xv é fiita,,..., x x, x,...,, 3 x variáveis aleatórias idepedetes com a mesma distribuição

Leia mais

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula U UL L 41 Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na armação do tehado os tipos diferentes

Leia mais

Prof. Celso Módulo 12 Resposta em freqüência-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST

Prof. Celso Módulo 12 Resposta em freqüência-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST Prof. Celso Módulo Resposta em freqüêcia-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST O diagrama de Nyquist ou diagrama polar é um gráfico do módulo de G pelo âgulo de fase de G em coordeadas

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de:

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de: U UL L cesse: http://fuvestibuar.com.br/ Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na

Leia mais

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA Capítulo 5. CASO 5: EQUAÇÃO DE POISSON No presete capítulo, é abordado um problema difusivo uidimesioal com absorção de calor (Icropera e DeWitt, 199, o que resulta uma equação de Poisso, que é uma equação

Leia mais

O Átomo de Hidrogênio

O Átomo de Hidrogênio Física IV Poli geharia létrica: 11ª Aula (3/08/014) Pro. Alvaro Vaucci Na última aula vimos: h eito Compto: ' 0 (1 cos ) ( Lei decompto) mc e Ou seja, um óto (comportameto corpuscular), além de possuir

Leia mais

A linguagem matemática

A linguagem matemática A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema do texto, ou seja, sobre o que o

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 5 Professora: Mazé Bechara Paulo Vazolii - cietista e compositor Aula 5 Aida o átomo de H. A proposta de de Broglie de caráter dual das partículas materiais 1. Aida

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

A linguagem matemática

A linguagem matemática Acesse: http://fuvestibuar.com.br/ A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema

Leia mais

A desigualdade de Jensen

A desigualdade de Jensen A desiguadade de Jese Emaue Careiro - emauec@baydeet.com.br 5 de março de 004 Preimiares de Cácuo Coheceremos este capítuo uma das mais poderosas armas para o combate aos probemas de oimpíada: a desiguadade

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Virgílio Mendonça da Costa e Silva

Virgílio Mendonça da Costa e Silva UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA VIBRAÇÕES DOS SISTEMAS MECÂNICOS VIBRAÇÕES LIVRES COM AMORTECIMENTO DE SISTEMAS DE GL NOTAS DE AULAS Virgílio Medoça

Leia mais

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 5 Professora: Mazé Bechara Aula 5 Aida o átomo de H. A proposta de de Broglie de caráter dual das partículas materiais 1. Aida o átomo de hidrogêio, a procura do

Leia mais

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA. Gabarito da Prova 2 a fase de 2008 Nível 3

UNIVERSIDADE FEDERAL DE SANTA CATARINA OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA. Gabarito da Prova 2 a fase de 2008 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA XI OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA OLIMPÍADA REGIONAL DE MATEMÁTICA SANTA CATARINA - UFSC Gabarito da Prova a fase de 008 Nível 3. Seja N a a a a

Leia mais

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara Istituto de Física USP Física V - Aula Professora: Mazé Bechara Aula O Modelo Atômico de Bohr. Determiações das velocidades o movimeto de um elétro iteragido com o úcleo o modelo de Bohr.. Os estados atômicos

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Sistemas periódicos e teorema de Bloch

Sistemas periódicos e teorema de Bloch Uiversidade de São Paulo Escola de Egeharia de Lorea Departameto de Egeharia de Materiais Sistemas periódicos e teorema de Bloch Luiz T. F. Eleo Escola de Egeharia de Lorea da Uiversidade de São Paulo

Leia mais

Física Moderna II

Física Moderna II Física Modera II - 4300376 http://disciplias.stoa.usp.br/course/view.php?id=666 Sala 08, Ala ; Segudas, 1 3 h; Quartas, 19 1 h. º Semestre 01 - Noturo Prof. Marcos Nogueira Martis Ed. Basílio Jafet, sala

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8.

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8. MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de 6 - a Lista de exercícios. Obter uma expressão das somas das séries abaixo e os respectivos raios de covergêcia, usado derivação e itegração

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Sequências Reais e Seus Limites

Sequências Reais e Seus Limites Sequêcias Reais e Seus Limites Sumário. Itrodução....................... 2.2 Sequêcias de Números Reais............ 3.3 Exercícios........................ 8.4 Limites de Sequêcias de Números Reais......

Leia mais

Gabarito do Simulado da Primeira Fase - Nível Beta

Gabarito do Simulado da Primeira Fase - Nível Beta Gabarito do Simulado da Primeira Fase - Nível Beta Questão potos Serão laçados dois dados: um dado azul de 4 faces, umeradas de a 4, e um dado vermelho de 8 faces, umeradas de a 8 a Determie a probabilidade

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

Como se decidir entre modelos

Como se decidir entre modelos Como se decidir etre modelos Juliaa M. Berbert Quado uma curva é lei de potecia? O procedimeto amplamete usado para testar movimetação biológica a fim de ecotrar padrões de busca como Voos de Levy tem

Leia mais

-0,4-0,6 -0,9 -1,5 -3,4 -13,6 EXERCÍCIOS

-0,4-0,6 -0,9 -1,5 -3,4 -13,6 EXERCÍCIOS EXERCÍCIOS FÍSICA MODERNA ÁTOMO DE BOHR PROF. MARENGÃO. (UFRN) Um átomo de hidrogêio, ao passar de um estado quâtico para outro, emite ou absorve radiação eletromagética de eergias bem defiidas. No diagrama

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara Istituto de Física USP Física V - Aula Professora: Mazé Bechara AVISO 1. Já se ecotra a págia da disciplia o TEC 3 para ser etregue até 9/5. Aula O Modelo Atômico de Bohr 1. As hipóteses do modelo de Bohr

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treiameto 5

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos.

Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos. VARIÁVEIS DE ESTADO Defiições MODELAGEM E DINÂMICA DE PROCESSOS Profa. Ofélia de Queiroz Ferades Araújo Estado: O estado de um sistema diâmico é o cojuto míimo de variáveis (chamadas variáveis de estado)

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS

ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS WWWCONVIBRAORG ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS ANDRÉA F RODRIGUES 1, WILTON P SILVA 2, JOSIVANDA P GOMES 3, CLEIDE M D P S SILVA 4, ÍCARO CARVALHO RAMOS

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

CIRCUITOS MAGNÉTICOS LINEARES E NÃO LINEARES

CIRCUITOS MAGNÉTICOS LINEARES E NÃO LINEARES 7 3 CIRCUITO MAGNÉTICO LINEARE E NÃO LINEARE Circuitos maéticos são usados para cocetrar o efeito maético de uma correte em uma reião particuar do espaço. Em paavras mais simpes, o circuito direcioa o

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS rof Me Arto Barboi SUMÁRIO INTRODUÇÃO EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO) Ordem de uma Equação Diferecial Ordiária Grau de uma Equação Diferecial Ordiária Solução geral e particular

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

Instituto de Física USP. Física V - Aula 23. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 23. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 3 Professora: Mazé Bechara Aula 3 Alicações de Wilso-Sommerfeld. A roosta de de Broglie de caráter dual das artículas materiais 1. Alicações de Wilso-Sommerfeld:

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Numeração de funções computáveis. Nota

Numeração de funções computáveis. Nota Numeração de fuções computáveis 4.1 Nota Os presetes acetatos foram baseados quase a sua totalidade os acetatos realizados pela Professora Teresa Galvão da Uiversidade de Porto para a cadeira Teoria da

Leia mais

Eletromagnetismo II. 15 a Aula. Professor Alvaro Vannucci

Eletromagnetismo II. 15 a Aula. Professor Alvaro Vannucci Eletromagetismo II 5 a Aula Professor Alvaro Vaucci Na última aula, vimos... Icidêcia oblíqua: ( meios dielétricos) θi θr siθi (Lei da eflexão) siθ t (Lei de Sell) Obtivemos os Coeficietes de Fresel (

Leia mais

O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO

O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO Sérgio Ferado Mayerle, Dr. UFSC / CTC / EPS - mayerle@eps.ufsc.br - Floriaópolis - SC Thiago Dedavid de Almeida Bastos

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

Algoritmos de Iluminação Global

Algoritmos de Iluminação Global Sistemas Gráficos/ Computação Gráfica e Iterfaces Objectivo: calcular a cor de cada poto a partir da ilumiação directa de uma fote de luz, mais a soma de todas as reflexões das superfícies próximas. Nos

Leia mais

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo:

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo: PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ COQ 897- OIIZAÇÃO DE PROCESSOS- II/ FORAS QUADRÁICAS Em a epressão geral das formas quadráticas é: a a f (, ) cbb a, cujas derivadas parciais são: f(, ) b a a f(,

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

Curso:... Prova de Computação Numérica (21021) Data: 2 de Fevereiro de Classificação: ( )... Prof. que classificou a prova:...

Curso:... Prova de Computação Numérica (21021) Data: 2 de Fevereiro de Classificação: ( )... Prof. que classificou a prova:... Miistério da Ciêcia, Tecoogia e Esio Superior Curso:... Prova de Computação Numérica (101) Data: de Fevereiro de 010 Nome:... Nº de Estudate:... B. I. º... Turma:... Assiatura do Vigiate:... RESERVADO

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matemática A Etesivo V. 6 Eercícios 0) B Reescrevedo a equação: 88 00 8 0 8 8 0 6 0 0 A raiz do umerador é e do deomiador é zero. Fazedo um quadro de siais: + + + Q + + O que os dá como solução R 0

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais