Mecânica dos Fluidos I

Tamanho: px
Começar a partir da página:

Download "Mecânica dos Fluidos I"

Transcrição

1 Mecânica dos Fluidos I Apontamentos sobre Análise Dimensional (complementares das semanas 8 9 das aulas de problemas) 1 Introdução A Análise Dimensional explora as consequências da homogeneidade dimensional das equações físicas, que se expressava na escola primária com máximas do tipo somar peras com peras; somar distâncias com distâncias; nunca peras com distâncias. Em virtude desta propriedade estrutural das equações físicas, uma equação com n variáveis v 1, v 2,... v n, pode ser reorganizada na forma f(v 1, v 2,...v n ) = 0, (1) F (Π 1, Π 2,...Π k ) = 0, (2) em que as novas variáveis, Π 1, Π 2... Π k, são grupos adimensionais constituídos por combinação das variáveis primitivas. 2 O teorema de Buckingham O lorde do condado de Buckingham descobriu, no início do século XX, uma relação de enorme valor: não apenas é possível reescrever as equações físicas na forma adimensional 2 como o número k mínimo de grupos adimensionais é k = n p, em que p é o número de dimensões físicas independentes contidas no conjunto das variáveis primitivas. Lorde Buckingham usou a letra grega Π para designar os grupos adimensionais e por isso o seu teorema ficou conhecido como o teorema dos Πs, que em inglês soa a teorema das empadas. 3 Formação dos grupos adimensionais Existem infinitas formas de combinar os k grupos adimensionais necessários para representar um problema físico. Quaisquer combinações das variáveis primitivas são possíveis desde que: 1. o conjunto contenha k grupos Π; 2. cada grupo Π seja adimensional;

2 3. o conjunto dos Πs não deixe de fora nenhuma das variáveis primitivas; 4. os grupos Π sejam independentes uns dos outros. A primeira propriedade é redundante, porque se deduz das outras (teorema de Buckingham). A última condição é necessária para se verificar a primeira. Se o conjunto dos Πs incluísse grupos trivialmente dependentes, esse conjunto não seria mínimo e, portanto, tinha de conter mais de k grupos adimensionais. Ou seja, se um grupo Π se pode construir directamente a partir dos outros, por exemplo, Π 1 = v 1 /v 2 e Π 2 = v 2 /v 1, de modo que Π 2 = 1/Π 1, isso significa que este conjunto de Πs tem elementos redundantes. Neste exemplo, bastaria Π 1 ou Π 2. 4 Dimensões físicas independentes sistemas de unidades Quando as grandezas físicas se definem a partir de outras, as respectivas unidades ficam dependentes. Por exemplo, a velocidade pode definir-se como sendo a derivada da distância em ordem ao tempo. Então, a unidade de velocidade deve ser igual ao quociente da unidade de comprimento pela unidade de tempo. A definição de uma nova grandeza tem evidentemente uma motivação física, não meramente convencional. Por exemplo, é em virtude da Lei de Newton que vale a pena definir a massa de um corpo como quociente entre a força resultante aplicada sobre ele e a aceleração que ele adquire. Naturalmente, desta definição resulta uma relação necessária entre as unidades de massa, de força e de aceleração. Num sistema de unidades consistente, como é o caso do Sistema Internacional de unidades, são escolhidas algumas unidades base, a partir das quais se constroem coerentemente todas as outras. Por exemplo, é possível escolher como dimensões físicas fundamentais da Mecânica o comprimento L, o tempo T, a massa M e a temperatura Θ. De acordo com esta opção, a área terá dimensões L 2, a velocidade terá dimensões L T 1, a aceleração terá dimensões L T 2, a força terá dimensões M L T 2, a pressão terá dimensões M L 1 T 2, etc. Outras escolhas seriam igualmente legítimas, tais como escolher a força F, o comprimento L, a velocidade V e a temperatura Θ como dimensões físicas fundamentais. Nesse caso, o tempo teria dimensões L V 1, a aceleração teria dimensões V 2 L 1, a massa teria dimensões F L V 2, etc. Há grandezas que podem ter unidades ou ser consideradas adimensionais, consoante se definam de um modo ou de outro. O exemplo mais conhecido são os ângulos. É possível medir os ângulos com um padrão angular, como o grau, mas também é possível definir os ângulos pelo comprimento do respectivo arco a dividir pelo raio: ao medir o arco em raios (em radianos), os ângulos constituem, 2

3 por si mesmos, números adimensionais (razões de comprimentos). Os sistemas modernos não incluem uma unidade específica ângulos. 5 Como os grupos adimensionais surgem nas equações e nas condições de fronteira Quando se conhecem as equações que regem um determinado fenómeno, é possível identificar os respectivos números adimensionais nas equações e isso projecta uma nova luz sobre elas. Na exposição anterior, consideraram-se principalmente problemas em que as variáveis são números reais (um período, um comprimento, uma viscosidade, etc.), mas muitas vezes, na Mecânica dos Fluidos, as variáveis são campos de propriedades. Nesse caso, a adimensionalização implica escolher um valor particular da propriedade e representar todo o campo nessa unidade de referência. Por exemplo, ao estudar o escoamento em torno de um avião, pode usar-se como referência a velocidade da atmosfera não perturbada em relação ao avião e representar nessa unidade todas as componentes da velocidade em todos os pontos. O campo adimensional fica v(x, t)/u, se designarmos a velocidade de referência por U. Para exemplificar, consideremos um escoamento incompressível praticamente isotérmico. Esta última característica significa que a viscosidade é constante (porque a viscosidade depende sobretudo da temperatura e pouco da pressão). As equações deste escoamento são as equações de transporte de massa e de quantidade de movimento: v = 0 ρ v t + ρ v v = p + µ 2 v + ρ g. Escolhamos uma determinada velocidade V e dimensão L, juntamente com a massa volúmica ρ, para adimensionalizar todas as respectivas grandezas. Indiquemos as grandezas e operadores adimensionais com um asterisco. De momento, deixemos de fora a viscosidade e, como a aceleração gravítica é constante, escreva-se g = g g, em que g é um versor vertical negativo e g o módulo da aceleração gravítica. Assim, x = x L; v = v V ; ρ = ρ ρ; v = ( v) (V/L), v = ( v) (V/L) e v v = v ( v) (V 2 /L); 2 v = ( 2 v) (V/L 2 ). A escala de pressão correspondente ao conjunto de dimensões fundamentais escolhido ( ) ρ V é ρ V 2, pelo que p = p (ρ V 2 ) e o gradiente da pressão é p = ( p) 2. L A escala de tempo é L/V, pelo que v/ t = ( v/ t) (V 2 /L). Substituindo no (3) 3

4 sistema 3, obtém-se ( v) (V/L) = 0 ( ) ( ) ( ) v ρ V ρ 2 + ρ v ( v) ρ V 2 = t L L ( ) ρ V = ( p) 2 + µ( 2 v) (V/L 2 ) + ρ g (ρ g). L Rearranjando, fica: ( v) = 0 ( ) v ρ + ρ v ( v) = ( p) + t (4) ( ( ) 1 1 (5) ( Re) 2 v) + Fr 2 ρ g com 1 Re = µ ρ V L e 1 Fr 2 = g L. O número Re é conhecido como número de V 2 Reynolds e Fr como número de Froude (lê-se Frude ). A condição para que a solução do sistema adimensional 5 seja a exactamente a mesma para dois escoamentos geometricamente semelhantes, com condições de fronteira adimensionais semelhantes, é que os números adimensionais Re e Fr sejam os mesmos. O sistema 5 permite tirar algumas conclusões interessantes acerca da função dos números adimensionais. Por exemplo, se o número de Reynolds for muito grande, o termo viscoso fica multiplicado por um factor 1/Re muito pequeno e, em igualdade de outras condições, a contribuição do termo viscoso para o escoamento será reduzida, e eventualmente desprezável. Se o escoamento for monofásico, a parcela hidrostática da pressão pode eliminar-se, juntamente com o termo gravítico, em 3. Nessa altura, só o número de Reynolds aparece na equação de transporte de quantidade de movimento adimensionalizada: ρ ( v t ) + ρ v ( v) = ( p rel) + ( 1 Re) ( 2 v). A adimensionalização das equações, desde 3 a 5, mostra que os números adimensionais são razões de escalas. Por exemplo, ρ V L é uma escala de viscosidade absoluta e, portanto o inverso do número de Reynolds, 1 Re = µ ρ V L = µ, é a viscosidade adimensional do fluido. Analogamente, o inverso do quadrado número de Froude 1 Fr 2 = g V 2 /L = g 4

5 é o módulo da aceleração gravítica adimensional. Nalgumas circunstâncias, as condições de fronteira do escoamento são variáveis com uma frequência f. Nesse caso, nas condições de fronteira adimensionais aparecerá um número adimensional f V/L, associado às duas escalas de tempos 1/f e (L/V ). Se o escoamento envolver mais do que uma fase, ou for compressível, surgem novos números adimensionais no sistema de equações (que incluirá equações de estado e outras). E podem ainda aparecer mais números adimensionais nas condições de fronteira. 6 Os grupos adimensionais como relações de escalas Os números adimensionais podem considerar-se relações de escalas e, normalmente, essas relações têm um significado físico útil. Por exemplo, o período de oscilação, τ, de um pêndulo depende do seu comprimento, l, e obviamente da aceleração gravítica, g. O comprimento e o período definem uma escala de aceleração (l/τ 2 ) e a aceleração gravítica define uma outra. Em consequência, um número adimensional deste problema (por acaso, o único) é l/τ 2 g. Uma maneira de identificar os números adimensionais que governam um problema físico é examinar as escalas independentes de uma determinada grandeza. Por exemplo, se um problema tiver duas escalas de tensão, haverá um número adimensional relacionado com a razão entre elas. A escala de tensão viscosa de um fluido newtoniano é µ V/l e a força de inércia por unidade de área ρ V 2 constitu outra escala de tensão. Resulta que um número adimensional para escoamentos de fluido viscoso é Re = ρ V 2 = ρ V l/µ. Este número é conhecido como número de Reynolds, em homenagem ao lorde do condado µ V/l de Reynolds. A interpretação física do número de Reynolds é clara: quanto maior ele for, mais importantes são, comparativamente, as forças de inércia e menos relevantes, comparativamente, as forças viscosas. Não se pode confundir uma razão de escalas, como o número de Reynolds, com um quociente entre as grandezas correspondentes. Por um lado, um escoamento não tem apenas velocidade num ponto, nem apenas um ponto, de modo que o módulo da velocidade que aparece no número de Reynolds não representa todas as velocidades do escoamento nem o comprimento de referência representa todas as dimensões do escoamento. Por outro lado, só por acaso o módulo da tensão viscosa será, nalgum ponto, µ V/l, ou o módulo da força de inércia por unidade de área será, nalgum ponto, ρ V 2. A comparação dos números adimensionais só pode ser feita para situações análogas: se dois escoamentos tiverem idêntica geometria, e se os números de Reynolds forem calculados com base em valores homólogos, as forças viscosas serão mais importantes naquele escoamento que tiver um nú- 5

6 mero de Reynolds mais baixo. A comparação dos números de Reynolds de dois escoamentos completamente diferentes, ou calculados com base em dimensões ou velocidades não comparáveis, não permite tirar conclusões. 7 Teoria dos modelos Quando determinados números adimensionais são iguais, as soluções adimensionalizadas ficam iguais (vejam-se, por exemplo, as equações adimensionalizadas 5) e, medindo as propriedades num escoamento, é possível não só determinar a solução adimensional como, mediante as razões de escalas entre os dois escoamentos, calcular os valores homólogos no outro escoamento. 7.1 Semelhança incompleta Com certa frequência, é impossível, por razões práticas, realizar ensaios em que todos os números adimensionais relevantes sejam iguais no modelo e no protótipo. Contudo, mesmo assim pode chegar-se a resultados úteis, se se conseguirem identificar os números adimensionais mais importantes e, eventualmente, compensar a diferença nos outros números adimensionais. 8 Alguns grupos adimensionais da Mecânica dos Fluidos Entre outros, os seguintes números adimensionais são muito utilizados: Número relaciona as escalas: de Reynolds Re = ρ V L/µ de inércia e de tensões viscosas de Froude Fr = V/ g L de aceleração gravítica e de inércia de Mach Ma = V/c de velocidade e de celeridade, c, do som de Strouhal Str = f/(v/l) de frequência f e a escala geral de frequência de pressão C p = p/( 1 2 ρ V 2 ) de pressão estática (ou diferença de pressão) e de pressão dinâmica de atrito C f = τ/( 1 2 ρ V 2 ) de tensão de corte e de pressão dinâmica de resistência C D = D/(d ρ V 2 ) de resistência, D, e de pressão dinâmica vezes área, d 2 de sustentação C L = L/(d ρ V 2 ) de sustentação, L, e de pressão dinâmica vezes área, d 2 de momento C M = m/(d ρ V 2 ) de momento, m, e de pressão dinâmica vezes volume No capítulo de perdas de carga encontram-se outros números adimensionais, tais como um coeficiente de atrito diferente do referido acima, coeficientes de perda de carga concentrada, rugosidade equivalente adimensional, etc. Em asas, é costume usar o ângulo de ataque. Em turbomáquinas, há diversos números adimensionais, relacionados com o caudal, com a altura de elevação ou a altura de queda, com a potência, a cavitação, etc. 6

PME Análise Dimensional, Semelhança e Modelos

PME Análise Dimensional, Semelhança e Modelos PME 3230 Análise Dimensional, Semelhança e Modelos Alberto Hernandez Neto PME 3230 - MECÂNICA DOS FLUIDOS I - Alberto Hernandez Neto Análise Dimensional /53 Aplicação da análise dimensional: Desenvolvimento

Leia mais

MECÂNICA DOS FLUIDOS AULA 2.1

MECÂNICA DOS FLUIDOS AULA 2.1 MECÂNICA DOS FLUIDOS AULA 2.1 Teorema de Vashy-Buckingham- Riabouchinsky ou TEOREMA DOS Um procedimento bastante difundido para obtenção dos adimensionais é aquele que se baseia no teorema de Vashy-Buckingham-

Leia mais

ALVARO ANTONIO OCHOA VILLA

ALVARO ANTONIO OCHOA VILLA UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PÓS-GRADUAÇÃO. DOUTORADO EM ENERGIA. ANÁLISE DIMENSIONAL E SEMELHANÇA ALVARO ANTONIO OCHOA VILLA

Leia mais

Análise Dimensional e Semelhança

Análise Dimensional e Semelhança Análise Dimensional e Semelhança PME3222 - Mecânica dos Fluidos Para Eng. Civil PME/EP/USP Prof. Antonio Luiz Pacífico 2 Semestre de 2017 PME3222 - Mecânica dos Fluidos Para Eng. Civil (EP-PME) Análise

Leia mais

Elementos de Engenharia Civil 2009/2010. Enunciados dos problemas *

Elementos de Engenharia Civil 2009/2010. Enunciados dos problemas * DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA SECÇÁO DE HIDRÁULICA E RECURSOS HÍDRICOS E AMBIENTAIS Elementos de Engenharia Civil 2009/2010 2 SEMESTRE Enunciados dos problemas * (módulo de Hidráulica)

Leia mais

Princípios de Modelagem Matemática Aula 04

Princípios de Modelagem Matemática Aula 04 Princípios de Modelagem Matemática Aula 04 Prof. José Geraldo DFM CEFET/MG 09 de abril de 2014 1 Análise dimensional Análise dimensional A análise dimensional permite encontrar relações entre variáveis

Leia mais

Mecânica dos Fluidos. Análise Dimensional AULA 18. Prof.: Anastácio Pinto Gonçalves Filho

Mecânica dos Fluidos. Análise Dimensional AULA 18. Prof.: Anastácio Pinto Gonçalves Filho Mecânica dos Fluidos AULA 18 Análise Dimensional Prof.: Anastácio Pinto Gonçalves Filho Análise Dimensional Muitos problemas práticos de escoamento de fluidos são muitos complexos, tanto geometricamente

Leia mais

Mecânica dos Fluidos Formulário

Mecânica dos Fluidos Formulário Fluxo volúmétrico através da superfície Mecânica dos Fluidos Formulário Fluxo mássico através da superfície Teorema do transporte de Reynolds Seja uma dada propriedade intensiva (qtd de por unidade de

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 9 ANÁLISE DIMENSIONAL E SEMELHANÇA PROF.: KAIO DUTRA Grandezas Físicas De forma simples, pode-se definir grandeza física como uma propriedade observável que pode ser expressa

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 212/13 Exame de 2ª época, 2 de Fevereiro de 213 Nome : Hora : 8: Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

Mecânica dos Fluidos I

Mecânica dos Fluidos I Mecânica dos Fluidos I Aula prática 6 (Semana de 26 a 30 de Outubro de 2009) EXERCÍCIO 1 Um jacto de ar, escoando-se na atmosfera, incide perpendicularmente a uma placa e é deflectido na direcção tangencial

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Introdução à Convecção Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de

Leia mais

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Tubo de Pitot Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Desvantagem: Diversas tecnologias, o que dificulta a calibração do equipamento (de

Leia mais

ESTE Aula 2- Introdução à convecção. As equações de camada limite

ESTE Aula 2- Introdução à convecção. As equações de camada limite Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 4/5 Exame de ª época, 3 de Janeiro de 5 Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Exame de 3ª época, 19 de Julho de 2013 Nome : Hora : 15:00 Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

FENÔMENOS DE TRANSPORTE

FENÔMENOS DE TRANSPORTE Universidade Federal Fluminense Escola de Engenharia Disciplina: FENÔMENOS DE TRANSPORTE Aula 8 Análise Dimensional e Semelhança Prof.: Gabriel Nascimento (Dep. de Eng. Agrícola e Meio Ambiente) Elson

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2016/17

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2016/17 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 6/ Exame de ª época, 4 de Janeiro de Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : Consulta limitada a livros

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 5/6 Exame de ª época, 9 de Julho de 6 Nome : Hora : 4: Número: Duração : horas ª Parte : Sem consulta ª Parte : Consulta limitada a livros

Leia mais

Curso Básico. Mecânica dos. Fluidos. Unidade 4

Curso Básico. Mecânica dos. Fluidos. Unidade 4 1 Curso Básico de Mecânica dos luidos Curso Básico de Mecânica dos luidos Unidade 4 Raimundo erreira Ignácio Curso Básico de Mecânica dos luidos Unidade 4 - Análise Dimensional e Semelhança Mecânica. Objetivos:

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

PREFÁCIO À PRIMEIRA EDIÇÃO NOTA DOS AUTORES NOTA DOS AUTORES À TERCEIRA EDIÇÃO CAPÍTULO 1 - INTRODUÇÃO. CONCEITOS FUNDAMENTAIS

PREFÁCIO À PRIMEIRA EDIÇÃO NOTA DOS AUTORES NOTA DOS AUTORES À TERCEIRA EDIÇÃO CAPÍTULO 1 - INTRODUÇÃO. CONCEITOS FUNDAMENTAIS PREFÁCIO À PRIMEIRA EDIÇÃO NOTA DOS AUTORES NOTA DOS AUTORES À TERCEIRA EDIÇÃO CAPÍTULO 1 - INTRODUÇÃO. CONCEITOS FUNDAMENTAIS 1.1 - Noções preliminares. O conceito de fluido 1.2 - Da natureza discreta

Leia mais

Plano de Aula da disciplina PEF 794 Aula n º Transdutores de deslocamentos - Medidas de deslocamentos; 2 - Grandezas a serem medidas - resumo

Plano de Aula da disciplina PEF 794 Aula n º Transdutores de deslocamentos - Medidas de deslocamentos; 2 - Grandezas a serem medidas - resumo Plano de Aula da disciplina PEF 794 Aula n º. 2 1 - Transdutores de deslocamentos - Medidas de deslocamentos; 2 - Grandezas a serem medidas - resumo dos 5 primeiros capítulos da Ref. 2 ; 3 - Medidas do

Leia mais

CONTEÚDOS PROGRAMADOS (Aerodinâmica de Turbomáquinas - EEK 511) Pás e escoamentos, trabalho, escalas. 2

CONTEÚDOS PROGRAMADOS (Aerodinâmica de Turbomáquinas - EEK 511) Pás e escoamentos, trabalho, escalas. 2 (Aerodinâmica de Turbomáquinas - EEK 511) N 0 DE AULAS Princípios básicos Considerações gerais de projeto Escoamento através da carcaça e aspectos de escoamentos tridimensionais Escoamento ao redor de

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 05/6 Exame de ª época, 5 de Janeiro de 06 Nome : Hora : :30 Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : Consulta limitada

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14 Mestrado Integrado em Engenhia Mecânica Aerodinâmica 1º Semestre 13/14 Exame de ª época, 9 de Janeiro de 14 Nome : Hora : 8: Número: Duração : 3 horas 1ª Pte : Sem consulta ª Pte : onsulta limitada a livros

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4 O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um

Leia mais

FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos

FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos Definição e Conceitos Fundamentais dos Fluidos Matéria Sólidos Fluidos possuem forma própria (rigidez) não possuem forma própria; tomam a forma do recipiente que os contém Fluidos Líquidos Gases fluidos

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2017/18

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2017/18 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 217/18 Exame de 1ª época, 2 de Janeiro de 218 Nome : Hora : 8: Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta livre

Leia mais

Mecânica dos Fluidos I

Mecânica dos Fluidos I Mecânica dos Fluidos I Aula prática 5 (Semana de 19 a 23 de Outubro de 2009) EXERCÍCIO 1 Um reservatório de água, A, cuja superfície livre é mantida a 2 10 5 Pa acima da pressão atmosférica, descarrega

Leia mais

Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds

Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Disciplina: Fenômeno de AULA 01 unidade 2 Transporte Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Prof. Ednei Pires Definição: Cinemática dos fluidos É a ramificação da mecânica

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 5/6 Exame de ª época, 8 de Janeiro de 6 Nome : Hora : 8:3 Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a

Leia mais

Disciplina: Sistemas Fluidomecânicos. Análise Dimensional - Semelhança

Disciplina: Sistemas Fluidomecânicos. Análise Dimensional - Semelhança Disciplina: Sistemas Fluidomecânicos Análise Dimensional - Semelhança Introdução A solução de muitos problemas da Mecânica dos Fluidos por métodos analíticos é em geral trabalhosa, e por vezes, impossível,

Leia mais

Mecânica dos Fluidos I

Mecânica dos Fluidos I Mecânica dos Fluidos I Apontamentos sobre perdas de carga (complementares das semanas 0 das aulas de problemas) Introdução A equação de Bernoulli, stricto sensu, foi deduzida, para uma linha de corrente,

Leia mais

Fundamentos da Mecânica dos Fluidos

Fundamentos da Mecânica dos Fluidos Fundamentos da Mecânica dos Fluidos 1 - Introdução 1.1. Algumas Características dos Fluidos 1.2. Dimensões, Homogeneidade Dimensional e Unidades 1.2.1. Sistemas de Unidades 1.3. Análise do Comportamentos

Leia mais

2 Fundamentos Teóricos

2 Fundamentos Teóricos Fundamentos Teóricos.1.Propriedades Físicas dos Fluidos Fluidos (líquidos e gases) são corpos sem forma própria; podem se submeter a variações grandes da forma sob a ação de forças; quanto mais fraca a

Leia mais

RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS

RESUMO MECFLU P3. REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS RESUMO MECFLU P3 REVER A MATÉRIA DA P2!!!!! Equação da continuidade Equação da energia 1. TEOREMA DO TRANSPORTE DE REYNOLDS Equação do Teorema do Transporte de Reynolds: : variação temporal da propriedade

Leia mais

1. Camada limite atmosférica

1. Camada limite atmosférica Meteorologia 1. Camada limite atmosférica Equações da dinâmica Num referencial em rotação, a atmosfera satisfaz as equações de Navier-Stokes para um fluido newtoniano: (1-1) (1-2) (1-3) onde é o operador

Leia mais

Primeira aula curso semestral de Mecânica dos Fluidos

Primeira aula curso semestral de Mecânica dos Fluidos Primeira aula curso semestral de Mecânica dos Fluidos Conceitos e propriedades básicas dos fluidos Projeto de uma instalação hidráulica básica de bombeamento unidade 7 unidade 1 Cálculo da perda de carga

Leia mais

Associação Catarinense das Fundações Educacionais ACAFE PARECER DOS RECURSOS

Associação Catarinense das Fundações Educacionais ACAFE PARECER DOS RECURSOS 11) A análise dimensional tem a sua devida importância na solução de problemas do Ensino Médio onde, na Mecânica, qualquer grandeza pode ser expressa em função das grandezas fundamentais como a massa (M),

Leia mais

Perda de Carga. Representa a Energia Mecânica convertida em Energia Térmica; Expressa como a perda de pressão

Perda de Carga. Representa a Energia Mecânica convertida em Energia Térmica; Expressa como a perda de pressão Perda de Carga Representa a Energia Mecânica convertida em Energia Térmica; Expressa como a perda de pressão h lt h ld h lm Perdas Distribuídas devido ao efeito de atrito (parede do tubo) Perdas Localizadas

Leia mais

Mecânica dos Fluidos I 2013/2014

Mecânica dos Fluidos I 2013/2014 1. INSTALAÇÃO Mecânica dos Fluidos I 2013/2014 Trabalho Prático «Estudo Experimental de um Jacto Livre» O escoamento é produzido por um jacto de ar com simetria circular e 14 milímetros de diâmetro interior

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2013/14 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 013/14 Exame de 3ª época, 15 de Julho de 014 Nome : Hora : 9:00 Número: Duração : 3 horas 1ª Parte : Sem consulta ª Parte : onsulta limitada

Leia mais

Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014. Conservação de Quantidade de Movimento

Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014. Conservação de Quantidade de Movimento Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014 Conservação de Quantidade de Movimento 1. A componente de velocidade v y de um escoamento bi-dimensional,

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Arrasto viscoso e de pressão Arrasto total Campo de escoamento Linhas de corrente: definidas como a linha contínua que é tangente aos vetores velocidade ao

Leia mais

Mecânica dos Fluidos I

Mecânica dos Fluidos I Mecânica dos Fluidos I Revisão dos primeiros capítulos (Setembro Outubro de 2008) EXERCÍCIO 1 Um êmbolo de diâmetro D 1 move-se verticalmente num recipiente circular de diâmetro D 2 com água, como representado

Leia mais

Elementos de Máquinas II. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica

Elementos de Máquinas II. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica Elementos de Máquinas II 6. ELEMENTOS DE APOIO - Mancais de Deslizamento TÓPICOS ABORDADOS: 6.1. Introdução 6.. Nomenclatura e Definições 6.3. Projeto de Mancais de Deslizamento 6.4. Lubrificação 6.5.

Leia mais

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico) ECOAMENTO VARIÁVEI EM PREÃO (Choque Hidráulico) Equações Fundamentais 26-5-2003 Equações Fundamentais 1 Escoamentos variáveis em pressão: regime gradualmente variado (ou quase-permanente) ou regime rapidamente

Leia mais

FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos

FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos Sistemas Hidráulicos podem ser descritos por leis que regem o comportamento de fluidos confinados em: regime permanente (repouso) invariante no tempo; regime

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Exame de 1ª época, 18 de Janeiro de 2013 Nome : Hora : 8:00 Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Convecção Natural - Parte 1 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS TÍTULO: DESENVOLVIMENTO DE UM KIT DIDÁTICO DE PERDA DE CARGA CATEGORIA: EM ANDAMENTO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE DE ENGENHARIA DE SOROCABA AUTOR(ES): RAPHAEL

Leia mais

O reômetro capilar Análise Problemas e limitações Correções Outras informações. Reometria Capilar. Grupo de Reologia - GReo

O reômetro capilar Análise Problemas e limitações Correções Outras informações. Reometria Capilar. Grupo de Reologia - GReo Reometria Capilar Grupo de Reologia - GReo Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ 28 de julho de 2015 Sumário O reômetro capilar descrição exemplo de reômetro comerical

Leia mais

ENERGIA HIDRÁULICA MÁQUINA DE FLUXO ENERGIA MECÂNICA

ENERGIA HIDRÁULICA MÁQUINA DE FLUXO ENERGIA MECÂNICA ª EXPERIÊNCIA - ESTUDO DAS BOMBAS APLICAÇÃO DA ANÁLISE DIMENSIONAL E DA TEORIA DA SEMELHANÇA 1 INTRODUÇÃO AO ESTUDO DAS MÁQUINAS DE FLUXO ( BOMBAS, TURBINAS, COMPRESSORES, VENTILADORES) As máquinas que

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Física I 2010/2011. Aula 19. Mecânica de Fluidos II

Física I 2010/2011. Aula 19. Mecânica de Fluidos II Física I 2010/2011 Aula 19 Mecânica de Fluidos II Fluidos Capítulo 14: Fluidos 14-7 Fluidos Ideais em Movimento 14-8 A Equação da Continuidade 14-9 O Princípio de Bernoulli 2 Tipos de Fluxo ou Caudal de

Leia mais

Hidrodinâmica. Profª. Priscila Alves

Hidrodinâmica. Profª. Priscila Alves Hidrodinâmica Profª. Priscila Alves priscila@demar.eel.usp.br Objetivos Apresentar e discutir as equações básicas que regem a mecânica dos fluidos, tal como: Equações do movimento. Equação da continuidade.

Leia mais

Uma breve introdução à Análise Dimensional

Uma breve introdução à Análise Dimensional Uma breve introdução à Análise Dimensional Nelson Luís Dias Departamento de Engenharia Ambiental e Lemma Laboratório de Estudos em Monitoramento e Modelagem Ambiental Universidade Federal do Paraná 13

Leia mais

Escoamento interno viscoso e incompressível

Escoamento interno viscoso e incompressível Escoamento interno viscoso e incompressível Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de 200 Sumário o conceito de desenvolvimento

Leia mais

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente.

RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. RESUMO MECFLU P2 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. Hipóteses Fluido invíscido (viscosidade nula) não ocorre perda de energia. Fluido incompressível

Leia mais

Camada limite laminar

Camada limite laminar Camada limite laminar J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Camada limite laminar 1 / 24 Sumário 1 Introdução 2 Equações da camada limite laminar 3 Solução

Leia mais

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 9

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 9 Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 9 (Turbomáquinas: Análise dimensional e diagrama de Cordier) EXERCÍCIO 1 Considere as turbinas do tipo Francis do aproveitamento hidroeléctrico

Leia mais

Mecânica dos Fluidos I Trabalho Prático «Estudo Experimental de um Jacto Livre»

Mecânica dos Fluidos I Trabalho Prático «Estudo Experimental de um Jacto Livre» Mecânica dos Fluidos I Trabalho Prático «Estudo Experimental de um Jacto Livre» 1. INSTALAÇÃO O escoamento é produzido por um jacto de ar com simetria circular e 14 mm de diâmetro interior (Fig. 1), que

Leia mais

Escoamentos externos. PME2230 Mecânica dos Fluidos I

Escoamentos externos. PME2230 Mecânica dos Fluidos I Escoamentos externos PME2230 Mecânica dos Fluidos I Aplicações Aeronaves Veículos terrestres Embarcações e submarinos Edificações Camada limite Camada limite: região delgada próxima à parede, onde as tensões

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Sobre uma Placa Plana Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

Profa. Dra. Milena Araújo Tonon Corrêa. Turma Farmácia- 4º Termo

Profa. Dra. Milena Araújo Tonon Corrêa. Turma Farmácia- 4º Termo Profa. Dra. Milena Araújo Tonon Corrêa Turma Farmácia- 4º Termo A Mecânica dos Fluidos é a parte da mecânica aplicada que estuda o comportamento dos fluidos em repouso e em movimento A fluidização é empregada

Leia mais

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR M. H. MARTINS 1, A. KNESEBECK 1 1 Universidade Federal do Paraná, Departamento de Engenharia Química E-mail para contato: marcellohmartins@gmail.com

Leia mais

Grandezas Físicas Fundamentais

Grandezas Físicas Fundamentais ANÁLISE DIMENSIONAL Grandezas Físicas Fundamentais Grandeza Física Unidade no SI Comprimento L metro m Massa M quilograma kg Tempo T segundo s Temperatura termodinâmica Corrente elétrica Intensidade luminosa

Leia mais

CAPÍTULO 4 - RELAÇÕES DIFERENCIAIS APLICADAS A UM ELEMENTO DE FLUIDO Introdução

CAPÍTULO 4 - RELAÇÕES DIFERENCIAIS APLICADAS A UM ELEMENTO DE FLUIDO Introdução PREFÁCIO À PRIMEIRA EDIÇÃO NOTA DOS AUTORES CAPÍTULO 1 - INTRODUÇÃO. CONCEITOS FUNDAMENTAIS 1.1 - Noções preliminares. O conceito de fluido 1.2 - Da natureza discreta ao tratamento contínuo 1.2.1 - Estados

Leia mais

Regime: Semestre: GRANDEZAS FÍSICAS, UNIDADES E DIMENSÕES Conceito de Grandeza: Grandezas fundamentais e derivadas

Regime: Semestre: GRANDEZAS FÍSICAS, UNIDADES E DIMENSÕES Conceito de Grandeza: Grandezas fundamentais e derivadas FUNDAMENTOS DE FÍSICA [10400] GERAL Regime: Semestre: OBJETIVOS O objectivo da disciplina de Física é o de adquirir conhecimentos técnicos baseados nos princípios físicos fundamentais à análise de problemas

Leia mais

UNIVERSIDADE DE RIO VERDE FACULDADE DE ENGENHARIA DE PRODUÇÃO PROGRAMA DE DISCIPLINA

UNIVERSIDADE DE RIO VERDE FACULDADE DE ENGENHARIA DE PRODUÇÃO PROGRAMA DE DISCIPLINA UNIVERSIDADE DE RIO VERDE FACULDADE DE ENGENHARIA DE PRODUÇÃO PROGRAMA DE DISCIPLINA Disciplina: LOGÍSTICA E DISTRIBUIÇÃO II Código da Disciplina: EPD016 Curso: Engenharia de Produção Semestre de oferta

Leia mais

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 6

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 6 Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 6 (Equação de Von-Kármán; Escoamento na camada limite turbulenta) EXERCÍCIO Considere o escoamento de um fluido com massa específica ρ,

Leia mais

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 3. Leandro Franco de Souza. Leandro Franco de Souza p.

0.5 setgray0 0.5 setgray1. Mecânica dos Fluidos Computacional. Aula 3. Leandro Franco de Souza. Leandro Franco de Souza p. Leandro Franco de Souza lefraso@icmc.usp.br p. 1/2 0.5 setgray0 0.5 setgray1 Mecânica dos Fluidos Computacional Aula 3 Leandro Franco de Souza Leandro Franco de Souza lefraso@icmc.usp.br p. 2/2 Fluido

Leia mais

Convecção Térmica. Subdivisões: Convecção forçada no exterior de corpos Convecção forçada no interior de corpos. Convecção natural ou livre

Convecção Térmica. Subdivisões: Convecção forçada no exterior de corpos Convecção forçada no interior de corpos. Convecção natural ou livre Convecção Térmica Subdivisões: Convecção forçada no exterior de corpos Convecção forçada no interior de corpos Convecção natural ou livre O coeficiente de Transmissão de Calor (h) O coeficiente de transmissão

Leia mais

12. o ano - Física

12. o ano - Física 12. o ano - Física - 2002 Ponto 115-2. a chamada I Versão 1 Versão 2 1. (B) (D) 2. (C) (C) 3. (A) (B) 4. (B) (A) 5 (A) (E) 6. (B) (C) II 1. 1.1 Figura 1: Legenda: N - reacção normal (força aplicada pela

Leia mais

4. Redução de dados Modelo matemático

4. Redução de dados Modelo matemático 4. Redução de dados Modelo matemático 4.1. Coeficiente global de Troca de calor o balanço de resistências térmicas para um elemento no trocador, tem-se. 1 1 1 eplac 1 1 = + + + + (19) U h R k R h 1 F 1

Leia mais

Complementos de Fluidos

Complementos de Fluidos Complementos de Fluidos A consequência mais visível da viscosidade de um fluido é o seu perfil de velocidades no interior de um tubo: Ver nota 1 A equação de Bernoulli é, então, substituída pela expressão:

Leia mais

32 a Aula AMIV LEAN, LEC Apontamentos

32 a Aula AMIV LEAN, LEC Apontamentos 32 a Aula 2429 AMIV LEAN, LEC Apontamentos (RicardoCoutinho@mathistutlpt) 32 Fórmula da variação das constantes Temos então pela fórmula dos da variação das constantes (para sistemas de equações - Teorema

Leia mais

TRANSMISSÃO DE CALOR resumo

TRANSMISSÃO DE CALOR resumo TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo

Leia mais

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos) ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br Objetivos da Disciplina Apresentar noções de mecânica dos

Leia mais

Mecânica dos Fluidos I Trabalho Prático «Caudal de quantidade de movimento e equação de Bernoulli»

Mecânica dos Fluidos I Trabalho Prático «Caudal de quantidade de movimento e equação de Bernoulli» Mecânica dos Fluidos I Trabalho Prático «Caudal de quantidade de movimento e equação de Bernoulli» Este trabalho consta de uma série de demonstrações no laboratório com o objectivo de: ilustrar a relação

Leia mais

2a LISTA DE EXERCÍCIOS

2a LISTA DE EXERCÍCIOS IPH 01107 a LISTA DE EXERCÍCIOS 1) Para o escoamento de 15 N/s de ar [R = 87 m /(s.k)] a 30 o C e 100 kpa (absoluta), através de um conduto de seção transversal retangular com 15 X 30 cm, calcule (a) a

Leia mais

Avaliação Energética do Escoamento em Tubos. Supondo um escoamento permanente num tubo de seção variável, a equação da energia seria: =0

Avaliação Energética do Escoamento em Tubos. Supondo um escoamento permanente num tubo de seção variável, a equação da energia seria: =0 Escoamentos Internos (cont.) Avaliação Energética do Escoamento em Tubos Supondo um escoamento permanente num tubo de seção variável, a equação da energia seria: 0 Q & + W & eixo + W & cisalhamento + W

Leia mais

INSTITUTO SUPERIOR TÉCNICO

INSTITUTO SUPERIOR TÉCNICO INSTITUTO SUPERIOR TÉCNICO LICENCIATURA EM ENGENHARIA E ARQUITECTURA NAVAL HIDRODINÂMICA EXERCÍCIOS J.A.C. Falcão de Campos 2006-2007 Capítulo 2 Aplicação da Análise Dimensional a Problemas de Hidrodinâmica.

Leia mais

-Semelhança geométrica. -Semelhança cinemática. Semelhança hidrodinámica. - Semelhança dinámica.

-Semelhança geométrica. -Semelhança cinemática. Semelhança hidrodinámica. - Semelhança dinámica. -Semelhança geométrica. Semelhança hidrodinámica. -Semelhança cinemática. - Semelhança dinámica. Semelhança geométrica Semelhança geométrica é cumprida quando são iguais os ângulos semelhantes das máquinas

Leia mais

PME Análise Dimensional, Semelhança e Modelos Exercícios extras. Alberto Hernandez Neto

PME Análise Dimensional, Semelhança e Modelos Exercícios extras. Alberto Hernandez Neto PME 3230 Análise Dimensional, Semelhança e Modelos Exercícios extras Alberto Hernandez Neto PME 3230 - MECÂNICA DOS FLUIDOS I - Alberto Hernandez Neto Análise Dimensional 1/16 Exercício 6 Análise da operação

Leia mais

Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular

Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular 1. (Petrobrás/2010) Um oleoduto com 6 km de comprimento e diâmetro uniforme opera com um gradiente de pressão de 40 Pa/m transportando

Leia mais

EM34B Transferência de Calor 2

EM34B Transferência de Calor 2 EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Convecção Forçada Escoamento Interno Parte I 2 Convecção Forçada: Escoamento Interno Definição Escoamento Interno: é um

Leia mais

White NOTA METODOLOGIA

White NOTA METODOLOGIA White 7.116 O avião do problema anterior foi projectado para aterrar a uma velocidade U 0 =1,U stall, utilizando um flap posicionado a 60º. Qual a velocidade de aterragem U 0 em milhas por hora? Qual a

Leia mais

ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL

ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL 6 ESCOAMENTO INCOMPRESSÍVEL TRIDIMENSIONAL 6.1. Introdução Até agora foram analisados escoamentos bidiemensionais. Os escoamentos em torno dos corpos e perfis dos capítulos anteriores envolvem apenas duas

Leia mais

ENGENHARIA DE MATERIAIS. Mecânica dos Fluidos e Reologia

ENGENHARIA DE MATERIAIS. Mecânica dos Fluidos e Reologia ENGENHARIA DE MATERIAIS Mecânica dos Fluidos e Reologia Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br Objetivos da Disciplina Apresentar noções de mecânica dos fluidos e

Leia mais

Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA

Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA Fundamentos da Lubrificação e Lubrificantes Aula 4 PROF. DENILSON J. VIANA Introdução à Lubrificação Lubrificação É o fenômeno de redução do atrito entre duas superfícies em movimento relativo por meio

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Cruzado Sobre Cilindros e Esferas Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

Capítulo 6: Escoamento Externo Hidrodinâmica

Capítulo 6: Escoamento Externo Hidrodinâmica Capítulo 6: Escoamento Externo Hidrodinâmica Conceitos fundamentais Fluido É qualquer substância que se deforma continuamente quando submetido a uma tensão de cisalhamento, ou seja, ele escoa. Fluidos

Leia mais

É o número de oscilações que acontecem por segundo. A medida é feita em hertz: T = 1 f. x = x m

É o número de oscilações que acontecem por segundo. A medida é feita em hertz: T = 1 f. x = x m 1 OSCILAÇÕES Veja o pêndulo simples abaixo. Suponha que a bola amarela parta da posição vertical de repouso até alcançar o ponto de máximo deslocamento positivo. Considerando que não há nenhuma perda,

Leia mais

Equações de Navier-Stokes

Equações de Navier-Stokes Equações de Navier-Stokes J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v. 1 Equações de Navier-Stokes 1 / 16 Sumário 1 Relações constitutivas 2 Conservação do momento

Leia mais